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We introduce an intuitive measure of genuine multipartite entanglement, which is based on the well-known
concurrence. We show how lower bounds on this measure can be derived and also meet important characteristics
of an entanglement measure. These lower bounds are experimentally implementable in a feasible way enabling
quantification of multipartite entanglement in a broad variety of cases.
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I. INTRODUCTION

Entanglement is an essential component in quantum in-
formation and at the same time a central feature of quan-
tum mechanics [1,2]. Its potential applications in quantum
information processing vary from quantum cryptography [3]
and quantum teleportation [4] to measurement-based quantum
computing [5]. The use of entanglement as a resource bears not
only on the question of how it can be detected, but also on how
it can be quantified. For this purpose, several entanglement
measures have been introduced, one of the most prominent
of which is concurrence [1,2,6]. However, beyond bipartite
qubit systems [6] and highly symmetric bipartite qudit states
such as isotropic states and Werner states [7,8], there exists
no analytic method to compute the concurrence of arbitrary
high-dimensional mixed states. For a bipartite pure state |ψ〉
in a finite-dimensional Hilbert space H1 ⊗ H2 = Cd1 ⊗ Cd2

the concurrence is defined as [9] C(|ψ〉) = √
2(1−Tr ρ2

1 ) where
ρ1 = Tr 2ρ is the reduced density matrix of ρ = |ψ〉〈ψ |. For
mixed states ρ the concurrence is generalized via the convex
roof construction C(ρ) = inf{pi ,|ψi 〉}

∑
i piC(|ψi〉) where the

infimum is taken over all possible decompositions of ρ,
i.e., ρ = ∑

i pi |ψi〉〈ψi |. This generalization is well defined;
however, as it involves a nontrivial optimization procedure
it is not computable in general. The concurrence is a useful
measure with respect to a broad variety of tasks in quantum
information that exploit entanglement between two parties.
However, considering multipartite systems, a generalization of
the concurrence is needed that strictly quantifies the amount of
genuine multipartite entanglement—the type of entanglement
that not only is the key resource of measurement-based
quantum computing [10] and high-precision metrology [11]
but also plays a central role in biological systems [12,13],
quantum phase transitions [14,15], and quantum spin chains
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[16]. Although many criteria to detect genuine multipartite
entanglement have been introduced (see, e.g., Refs. [17–32]),
there is still no computable measure quantifying the amount of
genuine multipartite entanglement present in a system. There
are only a few quantities available for pure states (a set of
possible measures is given in Ref. [33]), which, however, are
in general incomputable for mixed states, and corresponding
computable lower bounds have not been found so far. In this
paper, we define a generalized concurrence (analogously to
a measure proposed for pure states in Ref. [34]) for systems
of arbitrarily many parties as an entanglement measure that
distinguishes genuine multipartite entanglement from partial
entanglement. Our main result is that we show that strong
lower bounds on this measure can be derived by exploit-
ing close analytic relations between this concurrence and
recently introduced detection criteria for genuine multipartite
entanglement.

II. GENUINE MULTIPARTITE ENTANGLEMENT

An n-partite pure state |ψ〉 ∈ H1 ⊗ H2 ⊗ . . . ⊗ Hn is
called biseparable if it can be written as |ψ〉 = |ψA〉 ⊗
|ψB〉, where |ψA〉 ∈ HA = Hj1 ⊗ . . . ⊗ Hjk

and |ψB〉 ∈
HB = Hjk+1 ⊗ . . . ⊗ Hjn

under any bipartition of the Hilbert
space, i.e., a particular order {j1,j2, . . . ,jk|jk+1, . . . ,jn} of
{1,2, . . . ,n} (for example, for a four-partite state, {1,3|2,4}
is a partition of {1,2,3,4}). An n-partite mixed state ρ is
biseparable if it can be written as a convex combination
of biseparable pure states ρ = ∑

i pi |ψi〉〈ψi |, wherein the
contained {|ψi〉} can be biseparable with respect to different
bipartitions (thus, a mixed biseparable state does not need to
be separable with respect to any particular bipartition of the
Hilbert space). If an n-partite state is not biseparable then it is
called genuinely n-partite entangled.

If we denote the set of all biseparable states by S2 and
the set of all states by S1 we can illustrate the convex nested
structure of multipartite entanglement (see Fig. 1).
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FIG. 1. Illustration of the convex nested structure of multipartite
entanglement. The set of biseparable states S2 is convexly embedded
within the set S1 of all states (S2 ⊂ S1).

A measure of genuine multipartite entanglement (GME)
E(ρ) should at least satisfy:

M1 E(ρ) = 0 ∀ ρ ∈ S2 (zero for all biseparable states).
M2 E(ρ) > 0 ∀ ρ ∈ S1 (detecting all GME states).
M3 E(

∑
i piρi) �

∑
i piE(ρi) (convex).

M4 E(�LOCC[ρ]) � E(ρ) [nonincreasing under local op-
erations and classical communication (LOCC)].1

M5 E(UlocalρU
†
local) = E(ρ) (invariant under local unitary

transformations).
There are of course further possible conditions that are

sometimes required (such as, e.g., additivity), but this set
of conditions constitutes the minimal requirement for any
entanglement measure. For a more detailed analysis of such
requirements consult, e.g., Refs. [33,35].

III. CONCURRENCE FOR GENUINE n-PARTITE
ENTANGLEMENT

Let us now introduce a measure of multipartite entangle-
ment satisfying all necessary conditions (M1–M5) for being a
multipartite entanglement measure.

Definition 1. For n-partite pure states |�〉 ∈ H1 ⊗ H2 ⊗
· · · ⊗ Hn, where dim(Hi) = di,i = 1,2, . . . ,n we define the
GME-concurrence as

CGME(|�〉) := min
γi∈γ

√
2
[
1 − Tr

(
ρ2

Aγi

)]
, (1)

where γ = {γi} represents the set of all possible bipartitions
{Ai |Bi} of {1,2, . . . ,n}. The GME-concurrence can be gen-
eralized for mixed states ρ via a convex roof construction,
i.e.,

CGME(ρ) = inf
{pi ,|ψi 〉}

∑
i

piCGME(|ψi〉), (2)

where the infimum is taken over all possible de-
compositions ρ = ∑

i pi |ψi〉〈ψi |. For example, for a
tripartite pure state |ψ〉 ∈ H1 ⊗ H2 ⊗ H3 there are
three possible bipartitions γ = {{1|2,3},{2|1,3},{3|1,2}}.

1On a single copy. The property of being nonincreasing under LOCC
in general cannot be required of any measure of genuine multipartite
entanglement, as it has been shown (e.g., in Ref. [2]) that genuine
multipartite entanglement can locally be distilled out of a biseparable
state if more copies are available.

Consequently, the GME concurrence is CGME(ψ) =
min{√2[1−Tr (ρ2

1 )],
√

2[1−Tr (ρ2
2 )],

√
2[1−Tr (ρ2

3 )]}.
The definition of CGME(ρ) directly implies CGME(ρ) = 0

for all biseparable states (M1) and CGME(ρ) > 0 for all
genuinely n-partite entangled states (M2). Convexity (M3)
also follows directly from the fact that any mixture λρ1 + (1 −
λ)ρ2 of two density matrices ρ1 and ρ2 is at least decomposable
into states that attain the individual infima. As the concurrence
of any subsystem has been proven to be nonincreasing under
LOCC (see, e.g., Ref. [9]), the minimum of all possible
concurrences will of course still remain nonincreasing, thus
proving (M4) also holds. Furthermore Tr(ρ2) is invariant under
local unitary transformations for every reduced density matrix
irrespective of the decomposition, which proves that also
condition (M5) holds. For pure states the GME-concurrence is
closely related to the entanglement of the minimum bipartite
entropy introduced for pure states in Ref. [34]. In contrast to
the original definition using von Neumann entropies of reduced
density matrices, we use linear entropies. In this way we can
derive lower bounds even on the convex roof extension, which
had not been considered before.

IV. LOWER BOUNDS ON THE GME-CONCURRENCE

As the computation of any proper entanglement measure
is in general an NP-hard problem (see Ref. [36]), it is
crucial for the quantification of entanglement that reliable
lower bounds can be derived. These lower bounds should
be computationally simple and also experimentally (locally)
implementable to be of any use in practical applications.
Let us now derive lower bounds on CGME that meet these
requirements. Consider inequality II from Ref. [17], which is
satisfied by all biseparable states (such that its violation implies
genuine multipartite entanglement):
√

〈�|ρ⊗2�{1,2,...,n}|�〉 −
∑

γ

√
〈�|�γ ρ⊗2�γ |�〉

︸ ︷︷ ︸
=:I [ρ,|�〉]

� 0, (3)

where |�〉 is any state separable with respect to the two copy
Hilbert spaces and �{α} is the cyclic permutation operator
acting on the twofold copy Hilbert space in the subsystems
defined by {α}, i.e., exchanging the vectors of the subsystems
{α} of the first copy with the vectors of the subsystems {α}
of the second copy. A simple example would be �{1}|φ1φ2〉 ⊗
|ψ1ψ2〉 = |ψ1φ2〉 ⊗ |φ1ψ2〉.

For the sake of comprehensibility let us show how to derive
lower bounds for three qubits and then generalize the result
(in the Appendix). If we consider the most general three-qubit
pure state in the computational basis

|ψ〉 = a|000〉 + b|001〉 + c|010〉 + d|011〉
+ e|100〉 + f |101〉 + g|110〉 + h|111〉, (4)

the squared concurrences C2(ργ ) = 2[1 − Tr (ρ2
γ )] with re-

spect to the three bipartitions read

C2(ρ1) = 4|ah − de|2 + F1, (5)

C2(ρ2) = 4|ah − cf |2 + F2, (6)

C2(ρ3) = 4|ah − bg|2 + F3, (7)
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where Fi are nonnegative functions. The following relations
thus hold:

C(ρ1) � 2|ah − de| � 2|ah| − 2|de|, (8)

C(ρ2) � 2|ah − cf | � 2|ah| − 2|cf |, (9)

C(ρ3) � 2|ah − bg| � 2|ah| − 2|bg|, (10)

and finally

min{C(ρ1),C(ρ2),C(ρ3)}
� 2|ah| − 2 max{|de|,|cf |,|bg|}
� 2|ah| − 2(|de| + |cf | + |bg|) =: B. (11)

Now for any given mixed state the convex roof construction is
bounded by

CGME(ρ) � inf
{pi ,|ψi 〉}

∑
i

piBi. (12)

For the choice |�〉 = |000111〉 and the abbreviation
ρuvwxyz := 〈uvw|ρ|xyz〉, inequality (3) reads

I [ρ,|000111〉]=|ρ000111|−√
ρ001001ρ110110

−√
ρ010010ρ101101−√

ρ100100ρ011011 �0.

(13)

Now

2|ρ000111| � inf
{pi ,|ψi 〉}

∑
i

pi2|aihi |, (14)

due to the triangle inequality, and

2
√

ρ001001ρ110110 � inf
{pi ,|ψi 〉}

∑
i

pi2|bigi |, (15)

holds due to the Cauchy-Schwarz inequality (and, of course,
for all parts of the other bipartitions).

This leads to a lower bound on the convex roof construction

CGME(ρ) � 2I [ρ,|000111〉]. (16)

As CGME(ρ) is invariant under local unitary transformations,
we can infer that indeed every 2I [ρ,|�〉] constitutes a proper
lower bound. By taking into account the set of all vectors {|�〉}
we can thus define a computable lower bound, which itself has
many favorable properties (satisfying M1, M3, M4, and M5):

CGME(ρ) � max
|�〉

2I [ρ,|�〉]. (17)

As the lower bound is straightforwardly generalized (the
structure of the proof essentially remains the same; see the
Appendix for details), Eq. (17) is indeed a proper lower bound
on (1) for any n-partite qudit state.

V. DISCUSSION

The detection quality of our obtained bounds on the
GME-concurrence is illustrated in Fig. 2 for the family ρ =
c1|GHZ〉〈GHZ| + c2|W 〉〈W | + 1−c1−c2

8 1 of three-qubit states,
where

|GHZ〉 = 1√
2
(|000〉 + |111〉) and

(18)
|W 〉 = 1√

3
(|001〉 + |010〉 + |100〉)

1

1

c1

c2

FIG. 2. (Color online) Contour plot of the lower bound
max|�〉 2I [ρ,|�〉] on the GME-concurrence for the set of three-qubit
states ρ = c1|GHZ〉〈GHZ| + c2|W 〉〈W | + 1−c1−c2

8 1 given by convex
mixtures of a GHZ state, W state, and the maximally mixed state.
The grayscale is related to the bound max|�〉 2I [ρ,|�〉] varying from
0 to 1 (where 0 is white), while the blue region (bottom left corner)
denotes states that are positive under partial transposition with respect
to all bipartitions. The optimization over all {|�〉} was realized using
the composite parametrization of the unitary group (see Ref. [37]).

are the well-known genuinely multipartite entangled GHZ and
W states, respectively. It can be seen that the bounds are
nonzero for a considerable amount of multipartite entangled
states, especially in the vicinity of the GHZ state.

In fact, our bounds are exact for GHZ-like states, i.e., states
of the form |gGHZ〉 = α|0′〉⊗n + β|1′〉⊗n wherein |0′〉 ∈ Hi

and |1′〉 ∈ Hi are arbitrary mutually orthogonal vectors. By
expanding |gGHZ〉 in terms of |0′〉 and |1′〉 analogously
to (4) one finds C(ρAγi

) = 2|αβ| ∀ γi , hence CGME(ρ) =
2|αβ|. In order to prove the exactness of the bound we
choose |φ〉 = |0′〉⊗n|1′〉⊗n for inequality (3), which then yields
2I [|gGHZ〉〈gGHZ|,|φ〉] = 2|αβ|. In fact we already know
from the results of Ref. [17] that the inequality will detect a
huge amount of genuinely multipartite entangled mixed states
in arbitrary high-dimensional and multipartite systems. In all
of these situations we thus also have a lower bound on the
GME concurrence.

VI. EXPERIMENTAL IMPLEMENTATION

In order to be useful in practice, measures for multipartite
entanglement need to be experimentally implementable by
means of local observables (since all particles of composite
quantum systems may not be available for combined measure-
ments) without resorting to a full quantum state tomography
(since the latter requires a vast number of measurements,
which is unfeasible in practice). The bound (17) satisfies these
demands, as for fixed |�〉 its computation only requires at
most the square root of the number of measurements needed
for a full state tomography. Furthermore it can be implemented
locally as explicitly shown in [18]. In an experimental situation
where one aims at producing a certain state |ψ〉, it is now
possible to choose the corresponding |φ〉 and not only detect
the state as being genuinely multipartite entangled, but also
have a reliable statement about the amount of multipartite
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entanglement the state exhibits. Even if the produced state
deviates from the desired states, the criteria are astonishingly
noise robust (as, e.g., analyzed in Ref. [17]), as for example a
GHZ state mixed with white noise is shown to be genuinely
multipartite entangled with a white noise resistance of ≈57%.

VII. CONCLUSION

We introduced a measure of genuine multipartite entan-
glement, which can be lower bounded by means of one of
the currently most powerful detection criteria. These bounds
are experimentally implementable and computationally very
efficient, allowing us to not only detect, but also to quantify
genuine multipartite entanglement in an experimental sce-
nario. This has serious implications for applications where
genuine multipartite entanglement is a crucial resource (as,
e.g., in quantum computing [5] or cryptography [38]) and
might allow us to give a good estimate of the relevance
of genuine multipartite entanglement in other physical sys-
tems (as, e.g., in biological systems [13] or quantum spin
chains [16]).
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APPENDIX

Let us finish by proving the lower bound for the gen-
eral n-qudit case. For the most general pure n-qudit state
|ψ〉 = ∑

i1,i2,...,in
ci1,i2,...,in |i1i2 · · · in〉 the squared concurrences

C2(ργ ) = 2[1 − Tr (ρ2
γ )] with respect to arbitrary bipartitions

(γ ) always take the form

C2(ργ ) = 4|c00...0c11...1 − cα(γ )cβ(γ )|2 + Fγ , (A1)

where Fγ are nonnegative functions (see, e.g., Refs. [33,39]
for details on how to calculate the linear entropies of arbitrary
subsystems). For every bipartition γ there exists one pair α(γ )
and β(γ ) that can be retrieved from

{α(γ ),β(γ )} = πγ {00 . . . 0,11 . . . 1} (A2)

where πγ permutes every number from the subset defined by
γ from the first half of the joint set with the second. Thus

C(ργ ) � 2|c00...0c11...1 − cα(γ )cβ(γ )| (A3)

will hold also for every γ . Now for the GME-concurrence we
can infer

minγ {C(ργ )} � 2|c00...0c11...1| −
(∑

γ |cα(γ )cβ(γ )|
)

=: B.

(A4)

Now for any given mixed state the convex roof construction is
bounded by

CGME(ρ) � inf
{pi ,|ψi 〉}

∑
i

piBi. (A5)

For the choice |�〉 = |0〉⊗n ⊗ |1〉⊗n, inequality (3) reads

I [ρ,|�〉] = |ρ00...011...1| −
∑

γ

√
ρα(γ )α(γ )ρβ(γ )β(γ ) � 0.

(A6)

Now
2|ρ00...011...1| � inf

{pi ,|ψi 〉}

∑
i

pi2
∣∣ci

00(···)0c
i
11(···)1

∣∣, (A7)

due to the triangle inequality and
√

ρα(γ )α(γ )ρβ(γ )β(γ ) � inf
{pi ,|ψi 〉}

∑
i

pi2|cα(γ )cβ(γ )|, (A8)

due to the Cauchy-Schwarz inequality.
This leads to a lower bound on the convex roof construction

CGME(ρ) � 2I [ρ,|�〉]. (A9)

And again due to the local unitary invariance of CGME(ρ) this
proves our lower bound for all |�〉.
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