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Asymptotic entanglement of two atoms in a squeezed light field
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The dynamics of entanglement between two-level atoms interacting with a common squeezed reservoir is
investigated. It is shown that for spatially separated atoms there is a unique asymptotic state depending on
the distance between the atoms and the atom-photons detuning. In the regime of strong correlations there is a
one-parameter family of asymptotic steady states depending on the initial conditions. In contrast to the thermal
reservoir, both types of asymptotic states can be entangled. We calculate the amount of entanglement in the
system in terms of concurrence.
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I. INTRODUCTION

Dynamical creation of entanglement by the indirect inter-
action between otherwise decoupled systems has been studied
recently by many researchers, mainly in the case of two-level
atoms interacting with the common vacuum. The idea that
dissipation can create rather then destroy entanglement has
been put forward in several publications [1–4]. In particular,
the effect of spontaneous emission on the destruction and
production of entanglement has been discussed [5–8]. When
the two atoms are separated by a small distance compared
to the radiation wavelength, there is a substantial probability
that a photon emitted by one atom will be absorbed by the
other, and the resulting process of photon exchange produces
correlations between the atoms. Such correlations may cause
initially separable states to become entangled.

The case of two atoms immersed in a common thermal
reservoir was also investigated [9–12]. As shown in [12],
similarly to the vacuum case, the collective properties of the
atomic system can alter the decay process compared to the
single atom. There are states with enhanced emission rates such
that the emission rate is reduced. The important example of the
latter is the antisymmetric superposition |a〉 constructed from
energy levels of considered atoms. When the atoms are close
to each other, this state is decoupled from the environment and
therefore is stable. In that case the asymptotic states of the
system are parametrized by the fidelity F of the initial state
with respect to state |a〉 and the temperature T of the photon
reservoir. Moreover, the asymptotic states can be identified
with thermal generalization of Werner states, that is, mixtures
of state |a〉 and the Gibbs equilibrium state at temperature T .

In the present paper, we consider the atoms interacting
with a photon reservoir in a squeezed state [13]. In practice,
squeezed light sources produce photon fields in multimode
squeezed states, but here we assume a broadband approxima-
tion in which the parameters characterizing the photon field
are constant over a sufficiently broad frequency range. The
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dynamics of atoms interacting with squeezed light has been
studied by many authors (see, e.g., the review paper [14] and
references therein). In the context of our studies, we mention
the result of Palma and Knight [15] showing the existence of
a highly correlated asymptotic state and the analysis of the
cooperative behavior of atoms in broadband squeezed light in
Ref. [16].

In this paper, we study the asymptotic entanglement of a
system of atoms evolving according to the master equation
considered by Tanaś and Ficek [18] but we allow nonzero
detuning between the atomic transition frequency and the
carrier frequency of the photon field. In the case of spatially
separated atoms studied in detail in Ref. [18], there exists
a unique asymptotic state, but in contrast to the vacuum or
thermal reservoirs, this state can be entangled. However, the
produced entanglement is maximal only when the atoms are in
resonance with the squeezed photon field. Nonzero detuning
significantly diminishes this production. The case where the
atoms are separated by a small distance has not been studied
previously by other researchers. In this experimental setup
the dynamics of the system changes radically. Let us point
out that in this case, in contrast to spatially separated atoms
where the stationary asymptotic state is unique, there is a
one-parameter family of steady states, which further implies
that there are dynamically stable nontrivial observables in
the system. The asymptotic states ρas depend on the initial
fidelity F and parameters describing the reservoir, but nonzero
detuning also modifies the matrix elements of ρas. We show
that the asymptotic states can be expressed as a mixture of
a separable Gibbs state and two pure entangled states: an
antisymmetric state |a〉 and some symmetric superposition
of ground and excited levels of the atoms. This realization
of the asymptotic state simplifies for zero detuning and a
minimum-uncertainty squeezed reservoir to a mixture of |a〉
and a two-atom squeezed state [15]. Thus, in that case, there
are two linearly independent stable pure states so that the
decoherence-free subspace is two-dimensional [17].

Depending on the initial fidelity, some of the asymptotic
states are entangled. We calculate the amount of asymptotic
entanglement using the concurrence as its measure. We also
show that for initial fidelity greater than some threshold value
(depending on the properties of the reservoir and detuning), the
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asymptotic concurrence is nonzero. This property is analogous
to the thermal reservoir case. But when the reservoir is in a
squeezed state, somehow an unexpected result occurs: initial
states with low or even zero fidelity become asymptotically
entangled. The possibility of production of entanglement
starting from separable states with zero fidelity is very
interesting. In this case the correlations present in a squeezed
reservoir are transferred to the atomic system, entangling, for
example two atoms, both in the ground state. But as before,
large detuning between atoms and the photon field destroys
this possibility.

II. MODEL DYNAMICS

Consider two-level atoms A and B with ground states
|0〉j and excited states |1〉j (j = A,B), interacting with the
radiation field in a broadband squeezed vacuum state with the
carrier frequency ωs . The parameters N and M characterizing
the squeezing satisfy

M = |M| eiϑ and |M| �
√

N (N + 1),

where the equality holds for a minimum-uncertainty squeezed
state. In the Markov approximation the influence of the
reservoir on the system of atoms can be described by the
dynamical semigroup with the Lindblad generator [18]

L = −i[H,·] + LD,

where

H = ω0

2

∑
j=A,B

σ
j

3 +
∑

j, k=A,B

j �=k

�jkσ
j
+σ k

−, (II.1)

and

LDρ = 1

2

∑
j, k=A,B

γjk(1+N ) (2σ
j
−ρσ k

+−σ k
+σ

j
−ρ−ρσ k

+σ
j
−)

+ 1

2

∑
j, k=A,B

γjk N (2σ
j
+ρσ k

−−σ k
−σ

j
+ρ−ρσ k

−σ
j
+)

+ 1

2

∑
j, k=A,B

γjk M (2σ
j
+ρ σ k

+−σ k
+σ

j
+ρ−ρσ k

+σ
j
+)e−2iωs t

+ 1

2

∑
j, k=A,B

γjkM(2σ
j
−ρ σ k

−−σ k
−σ

j
−ρ−ρσ k

−σ
j
−)e2iωs t .

(II.2)

Here

σA
± = σ± ⊗ 1, σB

± = 1 ⊗ σ±,

σA
3 = σ3 ⊗ 1, σB

3 = 1 ⊗ σ3.

In the Hamiltonian (II.1), ω0 is the frequency of the transi-
tion |0〉j → |1〉j (j = A,B) and �AB = �BA = � describes
interatomic coupling by the dipole-dipole interaction. In
contrast, dissipative dynamics is given by the generator (II.2)
with parameters γAB satisfying

γAA = γBB = γ0, γAB = γBA = γ. (II.3)

In the above equalities, γ0 is the single-atom spontaneous
emission rate, and γ = G(�rAB) γ0 is the collective damping
constant. In the model considered, G(�rAB) is the function of

the interatomic distance �rAB , and G(�rAB) is small for large
separation of atoms. In contrast, G(�rAB) → 1 when �rAB is
small (for more details see, e.g., [19]).

The time evolution of the system of atoms is given by the
master equation

dρ

dt
= Lρ. (II.4)

In a frame rotating at frequency ωs , the master equation (II.4)
becomes an equation with time-independent coefficients, and
it may be written as

dρI

dt
= L̃ ρI , (II.5)

where

L̃ = −i[H̃ ,·] + L̃D,

with

H̃ = δ0

2

∑
j=A,B

σ
j

3 +
∑

j, k=A,B

j �=k

�jkσ
j
+σ k

−, δ0 = ω0 − ωs, (II.6)

and

L̃DρI = 1

2

∑
j, k=A,B

γjk(1 + N )(2σ
j
−ρIσ

k
+−σ k

+σ
j
−ρI −ρIσ

k
+σ

j
−)

+ 1

2

∑
j, k=A,B

γjk N (2σ
j
+ρIσ

k
−−σ k

−σ
j
+ρI −ρIσ

k
−σ

j
+)

+ 1

2

∑
j, k=A,B

γjk M(2σ
j
+ρIσ

k
+−σ k

+σ
j
+ρI −ρIσ

k
+σ

j
+)

+ 1

2

∑
j, k=A,B

γjk M(2σ
j
−ρIσ

k
−−σ k

−σ
j
−ρI −ρIσ

k
−σ

j
−).

(II.7)

Notice that in the Hamiltonian (II.6), detuning δ0 can be
arbitrary. Only when the atoms are in resonance with the carrier
frequency of the squeezed vacuum does δ0 = 0.

From now on we omit the subscript I . The master equation
(II.5) can be used to obtain the equations for matrix elements
of a state ρ of the system of two-level atoms with respect to
some basis. To simplify the calculations one can work in the
basis of collective states in the Hilbert space C2 ⊗ C2 [19],
given by product vectors

|e〉 = |1〉A ⊗ |1〉B, |g〉 = |0〉A ⊗ |0〉B, (II.8)

symmetric superposition

|s〉 = 1√
2

(|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B), (II.9)

and antisymmetric superposition

|a〉 = 1√
2

(|1〉A ⊗ |0〉B − |0〉A ⊗ |1〉B). (II.10)

In the basis of collective states, the two-atom system can
be treated as a single four-level system with ground state
|g〉, excited state |e〉, and two intermediate states, |s〉 and
|a〉. From (II.5) it follows that the matrix elements of
state ρ with respect to the basis |e〉, |s〉, |a〉, |g〉 satisfy the
equations, which can be grouped into decoupled systems of
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differential equations. So the diagonal matrix elements and ρeg

satisfy

dρee

dt
= (γ0 − γ )N ρaa + (γ0 + γ )N ρss − 2γ0N ρee

− γ (Mρge + M ρeg),

dρss

dt
= −(γ0 + γ )[(1 + 2N ) ρss − (1 + n) ρee − N ρgg

−Mρge − M ρeg],

dρaa

dt
= −(γ0 − γ ) [(1 + 2N ) ρaa − (1 + N ) ρee − N ρgg

+Mρge + M ρeg],

dρgg

dt
= (γ0−γ )(1+N ) ρaa+(γ0+γ ) (1+N ) ρss −2γ0 N ρgg

− γ (M ρge + M ρeg),

dρeg

dt
= −(γ0 − γ )ρaa + (γ0 + γ ) M ρss − γMρgg

− (γ0 (1 + 2N ) + 2iδ0) ρeg. (II.11)

In contrast, the elements ρae,ρag,ρse, and ρsg are connected
by the following equations:

dρae

dt
=

[
γ

(
N + 1

2

)
− γ0

(
2N + 1

2

)
+ i (δ0 + �)

]
ρae

− (γ0−γ ) ρga+(γ0−γ )M ρea−γM ρag,

dρag

dt
=

[
γ

(
N + 1

2

)
−γ0

(
2N + 1

2

)
−i (δ0−�)

]
ρag

+ (γ0 − γ ) M ρga − (γ0 − γ )(1 + N )ρea − γMρae,

dρse

dt
=−

[
γ

(
N + 1

2

)
+γ0

(
2N + 1

2

)
−i (δ0| −�)

]
ρse

+ (γ0 + γ ) Mρes + (γ0 + γ )Nρgs − γMρsg,

dρsg

dt
=−

[
γ

(
N + 1

2

)
+γ0

(
2N + 1

2

)
+i (δ0+�)

]
ρse

+ (γ0 + γ )(1 + N ) ρes + (γ0 + γ ) M ρgs − γ M ρse,

(II.12)

and, finally,

dρas

dt
= − [γ0 (1 + 2N ) − 2i� ] ρas. (II.13)

The equations for the remaining matrix elements can be
obtained by using the Hermiticity of ρ.

From Eqs. (II.11) it follows that, similarly to the case of
a reservoir in the vacuum state (see, e.g., [19]) and thermal
state [12], a system of atoms in symmetric state |s〉 decays at
the enhanced rate γ0 + γ , whereas the antisymmetric initial
state |a〉 leads to the reduced rate γ0 − γ . When the atoms
are so close to each other that we can ignore the effects of
their different spatial positions, we can put γ = γ0. In this
limiting case of strongly correlated atoms (Dicke model), state
|a〉 is completely decoupled from the reservoir. It can also be
checked that the master equation (II.5) describes two types of
time evolution of the system of atoms, depending on the
relation between γ and γ0. When γ < γ0, there is a unique
asymptotic state. This state was found in Ref. [18] for
the special case of zero detuning. In the general case, we

compute it in the next section. In contrast, in the Dicke model
case when γ = γ0, we show that there is a one-parameter
family of nontrivial asymptotic states depending on the initial
states.

III. ASYMPTOTIC STATES

A. Spatially separated atoms

The case of spatially separated atoms when γ < γ0 was
studied in detail in Ref. [18], but for completeness of the
exposition we also discuss this point briefly. In addition, we
allow nonzero detuning, which makes the model more realistic.
Direct calculations show that, in that case, there exists a unique
stationary asymptotic state ρu, which in the canonical basis

|1〉A ⊗ |1〉B, |1〉A ⊗ |0〉B, |0〉A ⊗ |1〉B, |0〉A ⊗ |0〉B
has nonvanishing matrix elements

ρ11 = a0

u0
, ρ22 = ρ33 = c0

u0
,

(III.1)

ρ23 = b0

u0
, ρ14 = z0

u0
, ρ44 = d0

u0
,

where for

δ = δ0

γ0
, γ̂ = γ

γ0
,

we have

u0 = (1 + 2N )2 [ (1 + 2N )2 + 4 δ2 ]

+ 4|M|2 (γ̂ 2 − (1 + 2N )2), (III.2)

and

a0 = N2[ (1 + 2N )2 − 4|M|2 + 4δ2] + |M|2γ̂ 2,

c0 = N (N + 1)
[
(1 + 2N )2−4|M|2 + 4δ2

]+|M|2γ̂ 2,

d0 = (1 + N )2 [(1 + 2N )2 − 4|M|2 + 4δ2] + |M|2γ̂ 2.

(III.3)

Moreover,

b0 = −2γ̂ |M|2, z0 = −(1 + 2N − 2iδ) γ̂ M. (III.4)

State (III.1), in contrast to the analogous asymptotic state in
the thermal reservoir, can be entangled and as we show later, its
entanglement depends crucially on the value of the normalized
detuning δ and the normalized damping constant γ̂ .

B. Strongly correlated atoms

The main new results of the paper concern the atoms
which are close to each other. Then we can put γ = γ0

and equations (II.11)–(II.13) simplify. One can check that
the solutions of (II.12) and (II.13) asymptotically vanish and
the only contribution to the asymptotic states ρas comes from
ρee,ρaa,ρss,ρgg , and ρeg . Note that in this case

dρaa

dt
= 0, so ρaa(t) = ρaa(0) = F,

where

F = 〈a|ρ|a〉
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is the fidelity of the initial state ρ with respect to the
antisymmetric state |a〉. Hence the fidelity of the asymptotic
state ρas also equals F and one finds that in the canonical basis
the matrix of ρas has the same “X” form as in the case of state
(III.1), but with nonvanishing matrix elements given by

ρ11 = (1 − F )
a

u
, ρ22 = (1 − F )

c

2u
+ F

2
,

ρ23 = (1 − F )
c

2u
− F

2
, ρ14 = (1 − F )

z

u
, (III.5)

ρ44 = (1 − F )
d

u
,

and ρ33 = ρ22. In Eqs. (III.5) we have

u = (1 + 2N )2 (1 + 3N + 3N2 − 3|M|2)

+ 4 (1 + 3N + 3N2) δ2, (III.6)

and

a = 4N2[N (N + 1) − |M|2] + |M|2 + N2 (1 + 4δ2),

c = (1 + 2N )2[N (N + 1) − |M|2] + 2N (N + 1)δ2,

d = (1 + 2N )[1 + N + 3(N (N + 1) − |M|2)]

+ 2N [N (N + 1) − |M|2] + 4(1 + N )2δ2

z = −(1 + 2N − 2iδ) M. (III.7)

The asymptotic states ρas defined by (III.5) exist for any initial
state and, for fixed parameters characterizing the squeezing,
depend on the initial fidelity and the normalized detuning δ =
δ0/γ0 of the electromagnetic field. When M = 0, we recover
the case of a standard thermal bath with N playing the role of
the mean photon number [12].

To study the structure of the asymptotic states, we consider
first the special case of minimum-uncertainty squeezing and
zero detuning of the radiation field. One can check that, in that
case, the matrix elements of ρas are given by

ρ11 = (1 − F )
N

1 + 2N
, ρ22 = (ρas)33 = F

2
,

ρ23 = −F

2
, ρ44 = (1 − F )

1 + N

1 + 2N
, (III.8)

ρ14 = (1 − F )

√
N (N + 1)

1 + 2N
eiθ ,

where θ = ϑ + π . The asymptotic state given by (III.8) has a
remarkable structure: it is a mixture

ρas = (1 − F ) |N,θ〉〈N,θ | + F |a〉〈a| (III.9)

of the pure state

|N,θ〉=
√

N

1+2N
|0〉A ⊗ |0〉B + eiθ

√
1 + N

1+2N
|1〉A ⊗ |1〉B

(III.10)

and the antisymmetric state |a〉. State |N,θ〉 is known as a
two-atom squeezed state and can be obtained from the ground
state |g〉 = |0〉A ⊗ |0〉B by applying the atomic squeezing
transformation S(ξ ), given by

S(ξ ) = exp (ξ σA
− σB

− − ξ σA
+ σB

+ ), (III.11)

for the appropriate choice of the complex parameter ξ [15].
This state is entangled, and in the limit of maximal squeezing

(N → ∞), it becomes a maximally entangled generalized Bell
state. Notice also that |a〉 and |N,θ〉 span a decoherence-free
subspace for this specific system, as recently established in
Ref. [17].

In the general case the structure of ρas is much more
involved. Define

Fcr = c

c + u
. (III.12)

By a direct calculation we see that if F � Fcr, then

ρas = (1 − p − q)ρβ + p |a〉〈a| + q |ψ〉〈ψ |, (III.13)

where

p =
(

1 + c

u

)
F − c

u
, q = |z| (a + d)

u
√

ad
(1 − F ). (III.14)

State ρβ is a Gibbs state,

ρβ = e−βHa

tr e−βHa
, (III.15)

for the Hamiltonian Ha = H0 + H1, with

H0 = ω0

2

∑
j=A,B

σ
j

3 , H1 = ω1

2

(
1 ⊗ 1 + σA

3 ⊗ σB
3

)
,

the inverse temperature

β = 1

2ω0
ln

d

a
, (III.16)

and the frequency

ω1 = 2ω0

ln d/a
ln

c√
ad − |z| . (III.17)

Moreover, the pure state |ψ〉 is given by

|ψ〉 =
√

a

a + d
|0〉A ⊗ |0〉B + eiφ

√
d

a + d
|1〉A ⊗ |1〉B,

(III.18)

where φ = arg z.
Formula (III.13) is a generalization of Eq. (III.9) as well

as the corresponding representation of ρas by the thermal
generalization of Werner states in the case of a thermal
reservoir [12]. Observe also that for F < Fcr, the asymptotic
state cannot be expressed as the mixture (III.13), but in contrast
to the purely thermal case, the states ρas can be entangled even
if F < Fcr. We study this problem in the next section.

IV. ASYMPTOTIC ENTANGLEMENT

For characterization of the entanglement of the asymptotic
state ρas, we use Wootters’ concurrence [20], defined for any
two-qubit state ρ as

C(ρ) = max( 0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4), (IV.1)

where λ1 > λ2 > λ3 > λ4 are the eigenvalues of the matrix
ρρ̃, with ρ̃ given by

ρ̃ = σ2 ⊗ σ2 ρ σ2 ⊗ σ2,

where ρ denotes complex conjugation of the matrix ρ. For
states in the “X” form, concurrence is given by the function

C(ρ) = max( 0,C1, C2), (IV.2)
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with

C1 = 2(|ρ14| − √
ρ22ρ33),

(IV.3)
C2 = 2(|ρ23| − √

ρ11ρ44).

A. Entanglement of the asymptotic state ρu

Let us start with spatially separated atoms which have the
unique asymptotic state ρu. Its concurrence is given by

C(ρu) = 2 max

(
0,

|z0| − c0

u0
,
|b0| − √

a0d0

u0

)
. (IV.4)

Analysis of this function in the general case of a broadband
squeezed reservoir is involved, so we focus on the case of
minimum-uncertainty squeezed states and consider (IV.4) as
a function of the squeezed field intensity N , for fixed values
of parameters γ̂ and δ. We plot this function in Fig. 1 for
different values of detuning. It is evident that there is a range
of values of mean photon number N for which the asymptotic
concurrence is positive. Observe that the maximum of C(ρu)
appears for rather small values of N and the nonzero detuning
diminishes the production of entanglement.

B. Entanglement of states ρas

The properties of the concurrence of ρas as a function of
the initial fidelity can be studied in more detail. Notice that for
these states we have

C1 =
(

c − 2|z|
u

− 1

)
F − c − 2|z|

u
. (IV.5)

Define

F1 = max

(
0,

c − 2|z|
c − 2|z| − u

)
. (IV.6)

If F1 > 0, then

C1 > 0 for 0 � F < F1.

In contrast,

C2 = 2

(∣∣∣∣(1 − F )
c

2u
− F

2

∣∣∣∣ − (1 − F )

√
ad

u

)
. (IV.7)
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0.00

0.05

0.10

0.15

0.20

N

C
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FIG. 1. Entanglement of state ρu as a function of N for γ̂ =
0.85 and different values of detuning: δ = 0 (dotted curve), δ = 0.5
(dashed curve), and δ = 1 (solid curve).

Notice that if F < Fcr, then

(1 − F )
c

2u
− F

2
> 0,

and

C2 =
(

2
√

ad − c

u
− 1

)
F − 2

√
ad − c

u
. (IV.8)

Since

2
√

ad − c

u
− 1 < 0,

so

C2 < 0 when F < Fcr.

Let now F � Fcr, then

C2 =
(

1 + c + 2
√

ad

u

)
F − c + 2

√
ad

u
. (IV.9)

Define

F2 = c + 2
√

ad

c + 2
√

ad + u
(IV.10)

Form Eq. (IV.9) we see that

C2 > 0 when F > F2.

In contrast, direct calculations show that

F2 � Fcr and F1 � F2.

Taking into account the above results, we arrive at the
conclusion that, depending on the initial fidelity F , the
asymptotic state ρas is entangled for all F ∈ [0,F1) ∪ (F2,1]
(provided F1 > 0) and separable for F ∈ [F1,F2] (see Fig. 2).
The asymptotic concurrence reads

C(ρas) =
{

C1, 0 � F < F1

C2, F2 < F � 1
, (IV.11)

with C1 and C2 given by Eqs. (IV.5) and (IV.9), respectively.
This general result also covers the special cases of a vacuum
reservoir where F2 = 0, a thermal reservoir with F1 = 0 and

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

F

C
on

cu
rr

en
ce

FIG. 2. Asymptotic entanglement versus fidelity for a minimum-
uncertainty squeezed reservoir with N = 1 and detuning δ = 0.8

062322-5
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FIG. 3. Asymptotic entanglement of initial states with F = 0 as a
function of N , for different values of detuning: δ = 0 (dotted curve),
δ = 0.8 (dashed curve), and δ = 2 (solid curve)

F2 > 0, and a minimum-uncertainty squeezed reservoir where
F1 = F2. It is worth stressing that the creation of asymptotic
states with nonzero entanglement from initial states with low
or even zero fidelity is only possible when the reservoir is
in a squeezed state. Let us discuss this point in more detail
in the special case of atoms which are in resonance with a
minimum-uncertainty radiation field. In this case

F1 = F2 = 2
√

N (N + 1)

2
√

N (N + 1) + (1 + 2N )
, (IV.12)

and

C(ρas) =
{ −(1 + C0)F + C0, F < F1

(1 + C0)F − C0, F > F1
, (IV.13)

with

C0 = 2

√
N (N + 1)

1 + 2N
. (IV.14)

For all initial states with zero fidelity, we obtain a pure
entangled state (III.10) with concurrence equal to C0. Notice

that in the limit of maximal squeezing, this state becomes
maximally entangled. For pure product states

|�〉 = |ϕ〉 ⊗ |ψ〉, (IV.15)

the fidelity is given by the formula

F = 1
2 (1 − |〈ϕ|ψ〉|2), (IV.16)

so the zero fidelity corresponds, for example, to the case of
two atoms prepared in the same initial states. This leads to
a remarkable result: the interaction with a squeezed reservoir
will entangle two atoms which are initially in the ground state
|g〉 = |0〉A ⊗ |0〉B . The analogous phenomenon cannot occur
when the photon field is in the vacuum or thermal state. Notice
also that for nonzero detuning, the asymptotic state is no longer
pure and the production of stationary entanglement is less
effective (Fig. 3).

V. CONCLUSIONS

We have investigated the dynamics of two-level atoms
interacting with a photon reservoir in a broadband squeezed
vacuum state. The time evolution of the system depends
crucially on the relative distance between the atoms. When
the atoms are spatially separated, there is a unique asymptotic
state, which can be entangled, in contrast to the analogous
asymptotic state for a thermal reservoir. In the case of a small
interatomic distance, there are nontrivial asymptotic states ρas

which are parametrized by the fidelity F and the parameters N

and M characterizing the squeezing. The states ρas also depend
on the detuning between the atomic transition frequency and
the carrier frequency of the photon field. For values of F

above the threshold fidelity F2, the states ρas are entangled.
Nonzero entanglement can also occur for small values of F

or even if F = 0, and this possibility is a unique feature of
the squeezed reservoir. When the atoms are in resonance with
the photon field and |M| = √

N (N + 1), the asymptotic state
corresponding to F = 0 is a pure entangled state known as the
two-atom squeezed state.
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