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In the study of open quantum systems, one typically obtains the decoherence dynamics by solving a master
equation. The master equation is derived using knowledge of some basic properties of the system, the environment,
and their interaction: One basically needs to know the operators through which the system couples to the
environment and the spectral density of the environment. For a large system, it could become prohibitively
difficult to even write down the appropriate master equation, let alone solve it on a classical computer. In this
paper, we present a quantum algorithm for simulating the dynamics of an open quantum system. On a quantum
computer, the environment can be simulated using ancilla qubits with properly chosen single-qubit frequencies
and with properly designed coupling to the system qubits. The parameters used in the simulation are easily
derived from the parameters of the system + environment Hamiltonian. The algorithm is designed to simulate
Markovian dynamics, but it can also be used to simulate non-Markovian dynamics provided that this dynamics
can be obtained by embedding the system of interest into a larger system that obeys Markovian dynamics. We
estimate the resource requirements for the algorithm. In particular, we show that for sufficiently slow decoherence
a single ancilla qubit could be sufficient to represent the entire environment, in principle.
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I. INTRODUCTION

For most problems of practical interest, the Schrödinger
equation describing the evolution of a quantum system is
too complicated to be solved exactly. Numerical simulations
are therefore commonly employed for this purpose. However,
simulating quantum systems on a classical computer is a hard
problem. The dimension of the Hilbert space of the system
increases exponentially with the size of the system (e.g., the
number of particles in the system). On a quantum computer,
on the other hand, the number of qubits required to simulate
the system increases linearly with the size of the system. As
a result, the simulation of quantum systems is more efficient
on a quantum computer (see, e.g., [1–8]) than on a classical
computer.

In general, quantum systems are never perfectly isolated
from their environments, and in some cases they must be
treated as open systems. Understanding the dynamics of
open quantum systems is therefore important for studying
various quantum phenomena [9–14]. However, the simulation
of open quantum systems on a classical computer is also a hard
task. In addition to the exponential increase in the size of the
Hilbert space of the open system, one also has to consider the
effect of the environment, which adds even more degrees of
freedom to the problem.

The Hamiltonian for an open quantum system coupled to
an environment can be expressed as

H = HS + HB + HI , (1)

where HS , HB , and HI represent the Hamiltonians of the
open system, the environment, and the interaction between the
open system and the environment, respectively. The interaction
Hamiltonian HI can usually be written in the form,

HI =
∑

i

Ai ⊗ Bi, (2)

where the operators Ai and Bi act in the state space of the
open system and the environment, respectively. In general,
the environment has a large number of degrees of freedom.
Therefore the Hamiltonian in Eq. (1) for the global system
becomes too complicated to be solvable. However, one is
usually only interested in the evolution of the open system,
and not the environment. It turns out that for environments
that have short correlation times (i.e., no memory effects)
and induce slow decoherence in the system, the microscopic
details of the environment are not important. For purposes of
analyzing the dynamics of the system, one only needs to know
a quantity called the spectral density of the environment. The
spectral density characterizes the frequency distribution of the
noise from the environment on the open system. It combines
the density of the environment modes and the strength of
the coupling between the environment modes and the system.
For a small set of discrete modes, the spectral density would
consist of a sequence of peaks. However, the frequencies of
the environment modes are usually so dense that the spectral
density is a smooth function of frequency [12].

Then, the task for the study of the dynamics of open
systems can be formulated as follows: Given the Hamiltonian
of the open system, the operators through which the open
system interacts with the environment, the spectral density
of the environment, and the temperature, how can we obtain
the dynamics of the open system? And how can we obtain
the evolution of the various physical properties of the open
system?

In the case where the environment has no memory effects
(also referred to as Markovian dynamics), the evolution
of the system can be obtained by solving the so-called
master equation, which in the interaction picture has the
form [13],

d

dt
ρS(t) =

∑
ω

∑
ij

{
− iSij (ω)[A†

i (ω)Aj (ω),ρS(t)]

062317-11050-2947/2011/83(6)/062317(11) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.062317


HEFENG WANG, S. ASHHAB, AND FRANCO NORI PHYSICAL REVIEW A 83, 062317 (2011)

+ γij (ω)

{
Aj (ω)ρS(t)A†

i (ω)

− 1
2 [A†

i (ω)Aj (ω),ρS(t)]+

}}
, (3)

where ρS(t) represents the density matrix of the open system,
and Ai(ω) is the decomposition of the operator Ai into
eigenprojectors of the Hamiltonian HS . The operator Ai

represents the ith operator that acts in the state space of the
open system in the interaction Hamiltonian as shown in Eq. (2).
The operators Ai(ω) can be very complicated in matrix form
depending on the details of the open system. The coefficients
Sij (ω) are given [13] by

Sij (ω) = 1

2i

[ ∫ ∞

0
dteiωt 〈B†

i (t)Bj (0)〉

−
∫ ∞

0
dte−iωt 〈B†

i (0)Bj (t)〉
]
, (4)

where

Bi(t) = exp(iHBt)Bi exp(−iHBt), (5)

and we have set h̄ = 1. The operator Bi represents the ith
operator that acts in the state space of the environment in the
interaction Hamiltonian as shown in Eq. (2). The non-negative
quantities γij (ω) play the role of decay rates for different decay
channels of the open system and are given in terms of certain
correlation functions of the environment [13]:

γij (ω) =
∫ +∞

−∞
dt eiωt 〈B†

i (t)Bj (0)〉. (6)

If one were to try to simulate the dynamics of a large
open quantum system on a classical computer, one would
be faced with the problem that the number of basis states
grows exponentially with the size of the open system. The
master equation that describes the dynamics of the open
system becomes too complicated to be exactly solvable, and
sometimes it is even practically impossible to derive the master
equation. One natural possibility for tackling such problems is
therefore to use quantum simulation.

There has been some work on the quantum simulation
of open systems in the literature. In Ref. [15], the authors
suggested an approach for simulating the Markovian dynamics
of an open quantum system on a quantum computer. They
showed that the simulation of the Markovian dynamics can
be reduced to building generators for a Markovian semigroup.
However, as mentioned above, the generator for the Markovian
semigroup can be difficult to obtain for a large system. In
Ref. [16], an approach for preparing the thermal equilibrium
state of an open quantum system was suggested. Small-scale
open system quantum simulators have also been demonstrated
experimentally [17,18].

In this paper, by extending the approach of Ref. [16], we
present a quantum algorithm for simulating the Markovian
dynamics of an open system given the following information:
the Hamiltonian of the open system, the operators through
which the open system interacts with the environment, the
spectral density of the environment, and the temperature. This
information forms the input of the simulation.

The structure of this work is as follows: In Sec. II, we
present an algorithm for simulating the dynamics of an
open quantum system. In Sec. III, we estimate the resource
requirements for the algorithm. In Sec. IV, we provide an
example for the algorithm. We close with a conclusion section.

II. THEORETICAL DESCRIPTION OF THE ALGORITHM

In general, there are three steps in simulating the dynamics
of an open system on a quantum computer: first, preparing
the initial state (see, e.g., [19–24]) of the open system and
the environment; second, implementing the dynamics on the
open system, and finally reading out the state of the open
system. We will focus on the step of implementing the
dynamics of the open system, and briefly describe the other two
steps of the algorithm in Sec. II.C since they have been
discussed in the literature.

A. Constructing a model Hamiltonian for the global system

In general, the details related to the environment in Eq. (1)
are unknown. However, as mentioned above, one does not need
to know all these details in order to obtain the system dynamics.
One therefore has a good amount of freedom in constructing a
model Hamiltonian for the environment. One could therefore
say that under the Born-Markov approximation the spectral
density is the only piece of information that one needs to know
about the environment (see, e.g., Refs. [12,14]). Therefore, as
long as the spectral density of the model environment matches
that of the real environment, the effect on the system will be
the same.

In theoretical studies it is common to model the environ-
ment by a bath of harmonic oscillators. For an open system in
such an environment, the environment Hamiltonian takes the
form,

HB =
∑

k

ωk

(
b
†
kbk + 1

2

)
, (7)

and the interaction Hamiltonian can be expressed as

HI =
∑

k

ck Ãk ⊗ (b†k + bk), (8)

where b
†
k (bk) are the creation (annihilation) operators of the

environment modes; ωk are the frequencies of the environment
modes and ck are the coupling coefficients between the open
system and the environment modes; Ãk are operators that act in
the state space of the open system and depend on the coupling
mechanism between the open system and the environment. For
a set of discrete modes, the spectral density is usually written
as [12]

J (ω) = π

2

∑
k

c2
k

mkωk

δ(ω − ωk), (9)

where mk is the mass of the kth oscillator. The δ in Eq. (9) is
not restricted to infinitely sharp δ functions, but to δ-function
approximants.

For purposes of simulating the dynamics of an open
quantum system on a digital quantum computer (which is
based on two-state qubits), it is probably more natural to model
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the environment as a bath of two-level systems or spin-1/2
particles. Such models are also sometimes used in theoretical
studies (see, e.g., [25,26]). For an open system in a spin bath,
the environment Hamiltonian and the interaction Hamiltonian
can be expressed in the form,

HB = 1

2

∑
k

ωk σ z
k , (10)

and

HI = 1

2

∑
k

ck Ãk ⊗ (
gr σ x

k + gϕ σ z
k

)
, (11)

respectively, where σx
k and σ z

k are the Pauli operators, and gr

and gϕ are coefficients that describe the relative size of the
transverse coupling and the longitudinal coupling to the open
system. The transverse component induces relaxation, whereas
the longitudinal component induces pure dephasing. As will
be explained in Sec. II.D, there is a simple alternative method
for simulating pure dephasing. We therefore take gr = 1 and
gϕ = 0. The spectral density can then be expressed as [25]

J (ω) = π
∑

k

c2
k δ(ω − ωk). (12)

The difference between Eq. (9) and Eq. (12) is mostly a matter
of convention.

The environment mode frequencies ωk and the coupling
coefficients ck can be determined as follows: We discretize
the frequency spectrum of the environment modes in the full
frequency range from ωmin to ωmax into d elements where each
element has a width �ω:

�ω = ωmax − ωmin

d
. (13)

Correspondingly, the spectral density of the environment,
J (ω), is discretized and has the value J (ωk) for the kth element,
where ωk is the frequency of the kth element that represents
the kth environment mode. For a given ωk , by making the
following approximation,∫ ωk+�ω/2

ωk−�ω/2
J (ω)dω ≈ J (ωk)�ω = πc2

k, (14)

the corresponding coupling coefficient ck between the kth
element and the open system can be obtained. Then the model
Hamiltonian is constructed based on the given information of
the global system and will be used in the implementation of
the algorithm.

B. Simulating the Markovian dynamics of an open system

The dynamics of the open system is described by the
evolution of the reduced density matrix obtained by tracing out
the environment degrees of freedom from the density matrix
of the global system:

ρS(t) = TrB[ρ(t)], (15)

where ρS(t) and ρ(t) are the density matrices of the open
system and the global system, respectively. The density matrix
ρ(t) undergoes unitary evolution,

ρ(t) = U (t,t0)ρ(t0)U †(t,t0), (16)

where

U (t,t0) = exp[−iH (t − t0)]. (17)

Ideally, the dynamics of the open system can be obtained
by coupling the open system to an environment that has a large
number of particles, letting it evolve, and reading out the state
of the open system. In practice, on a digital quantum computer
that has a limited number of qubits, it is impossible to represent
all the particles of a typical environment. Therefore we have
to use an alternative technique to simulate the dynamics of the
open system in a large environment.

The large size of the environment plays a crucial role in
justifying the Markovian approximation. Under this approxi-
mation, the typical time during which the internal correlations
of the environment related to the effects of the open system
exist, τR , is much shorter than the characteristic relaxation
time of the open system, τS ; as a result, the influence of the
open system on the environment is small and can be ignored.
Therefore, the state of the global system at any time t can be
approximately described by the tensor product [13]:

ρ(t) ≈ ρS(t) ⊗ ρ th
B , (18)

where ρ th
B is the thermal equilibrium state of the environment

and can be written as

ρ th
B =

∑
j

Pj |j 〉〈j |,j = 1, . . . ,L = 2d , (19)

with

Pj = e−βEj

Z
, (20)

and |j 〉 (Ej ) are the eigenvectors (eigenvalues) of the environ-
ment Hamiltonian HB , Z is the partition function,

Z =
L∑

j=1

e−βEj , (21)

where β = 1/kBT , kB is the Boltzmann constant, and T is the
temperature. Note that in the absence of interactions between
the environment qubits, the eigenstates |j 〉 can be written as a
tensor product of the states of the environment qubits:

|j 〉 = |j1〉 ⊗ |j2〉 ⊗ · · · ⊗ |jd〉, (22)

and the eigenvalues Ej can be written as a sum of the
eigenvalues of the Hamiltonians of the environment qubits
for the corresponding eigenstate |j 〉,

Ej = E(j1) + E(j2) + · · · + E(jd ). (23)

As a result, the thermal-equilibrium state of the environment
is a tensor product of the thermal-equilibrium states of the
individual qubits:

ρ th
B = ρ th

1 ⊗ ρ th
2 ⊗ · · · ⊗ ρ th

d , (24)

where

ρ th
k = (1 − pk)|0〉〈0| + pk|1〉〈1|, (25)

denotes the thermal equilibrium state of the kth environment
qubit and

pk = 1

1 + eβωk
. (26)
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FIG. 1. (Color online) (a) Quantum circuit for simulating the
Markovian dynamics of an open quantum system coupled to a
time-independent environment. The first register represents the
open system and the second register represents the environment.
(b) Quantum circuit for simulating the Markovian dynamics of an
open system coupled to a time-dependent environment.

An alternative method that can be used to obtain the
Markovian approximation for a relatively small environment
is to frequently force it back into its thermal-equilibrium
state. This process can be implemented relatively easily on a
quantum computer, where one has full access to all the qubits.
The procedure for simulating the Markovian dynamics of the
open system is therefore as follows: Set the environment to
its thermal equilibrium state, couple the open system to the
environment modes, and let the global system evolve for some
time, then reset the state of the environment to its thermal
equilibrium state. Repeat this process many times and then
read out the state of the open system. Mathematically, the
evolution of the open system in one step is expressed as

ρ
(j+1)
S [(j + 1)τ ] = TrB[U (τ )ρj (jτ )U †(τ ], j = 0,1,2, . . . ,

(27)

where ρj (jτ ) = ρ
j

S ⊗ ρth
B .

Based on the above analysis, the evolution of the open
system can be simulated as follows on a quantum computer
[see Fig. 1(a)]: Prepare two quantum registers RS and RB to
represent the open system and the environment, respectively.

(1) On the quantum register RS , prepare the initial state of
the open system.

(2) On the quantum register RB , prepare the thermal
equilibrium state of the environment.

(3) Implement the unitary operation U (τ ) = exp(−iHτ ) on
the registers RS and RB , where H is the model Hamiltonian.

(4) Repeat steps 2 and 3 a number of times.
(5) Read out the state, or the desired observable, of the

register RS .
In general, the different terms in the model Hamiltonian

do not commute. We therefore employ the Trotter-Suzuki
formula [27] for implementing the unitary operation U (τ ) =
exp(−iHτ ),

U (τ ) = exp[−iHτ ]

= lim
n→∞[e−iHSτ/ne−iHB1 τ/ne−iHI1 τ/n · · ·

× e−iHBd
τ/ne−iHId

τ/n]n

= lim
n→∞[US(τ/n)UB1 (τ/n)UI1 (τ/n) · · ·
×UBd

(τ/n)UId
(τ/n)]n

≈ [US(τ/n0)UB1 (τ/n0)UI1 (τ/n0) · · ·
×UBd

(τ/n0)UId
(τ/n0)]n0 , (28)

where n0 is a finite but large number.
In many cases, one is interested in the value of some

physical properties of the open system in the thermal-
equilibrium state, such as various correlation functions, the
partition function, etc. The thermal-equilibrium state of the
open system can be obtained by repeating steps 2 and 3 until
the open system reaches its thermal equilibrium state [16].

Note that the steps followed in implementing the algorithm
explained above are the same as those used in the algorithm
of Ref. [16]. The goal of that work, however, is different
from the goal of our work. Our algorithm simulates the
dynamics whereas the algorithm of Ref. [16] aims to prepare
the thermal-equilibrium state of the system. This difference
in the purpose of the algorithm leads to a number of further
differences. For example, in our case, we have to design the
interaction Hamiltonian and the parameters of the environment
such that we accurately reproduce the spectral density of
the environment. In Ref. [16], one only requires that certain
inequalities are satisfied in order for the environment register
to act as a good environment. In other words, the exact speed
of reaching thermal equilibrium is not a crucial issue in that
work, as long as the thermal-equilibrium state is reached
in polynomial time. In contrast, if, for example, there is
some symmetry in the simulated system that prevents it from
reaching the thermal-equilibrium state, then our algorithm
would still be considered to work successfully if it produces the
correct dynamics, even though the thermal-equilibrium state
is never reached.

1. Time scales

At this point we should make a few comments regarding
the time scales involved in applying the algorithm. The time
interval τ should be very short compared with τS (so that the
state of the open system changes slightly during τ ). The time τ

can be considered the memory time of the environment since
the environment is reset to its thermal equilibrium state at every
time interval τ . Since the time scale for dynamics involving the
system and a resonant mode of the environment is given by the
inverse of ci times a matrix element between energy eigenstates
of the system, the Markovian condition would require that τ

must be small compared to this time scale, such that the change
in the system’s density matrix is small during the time τ . When
constructing the model Hamiltonian, the frequency spectrum
of the environment is discretized into many elements where
each element has a width �ω. This width �ω must be at most
on the order of 1/τ to make sure that the different δ peaks have
large overlap and produce a smooth spectral density since the
width of the δ peaks is on the order of 1/τ .

Note that our algorithm can be straightforwardly general-
ized to simulate the Markovian dynamics of an open system
coupled to a time-dependent environment [see Fig.1(b)]. In
each iteration, the state of the environment register is reset
to the time-dependent thermal-equilibrium state of the time-
dependent environment. The algorithm can also be generalized
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for the case of an open system that is simultaneously
coupled to two or more different environments with different
temperatures.

2. Sequential application of the different dissipation channels

In the above procedure for simulating the dynamics of an
open quantum system, we have assumed that each mode in
the environment is represented by one qubit. In the quantum
circuit shown in Fig. 1(a), the environment quantum register
RB is prepared in the thermal-equilibrium state of all the
environment qubits with all the different frequencies. The
operator U (τ ) acts in the state space of the system qubits
and all the environment qubits.

In this subsection, we show that one can reduce the number
of qubits required to represent the environment by having each
qubit represent multiple environment modes. In this approach
each “evolve-reset”step in the algorithm above is split into
multiple evolve-reset steps, and in each one of those steps a
qubit represents one environment mode. However, the qubit
is reset to different frequencies in the different steps such that
it produces the effect of multiple environment modes on the
system. Under certain conditions even a single qubit can be
used to represent the entire environment: The parameters of
this qubit are sequentially alternated between several different
settings such that the sequence covers all the dissipation
channels of the environment.

In the master equation shown in Eq. (3), the derivative of
the reduced density matrix of the open system is described by
a sum over the decay processes of the open system through all
the different dissipation channels. In the simulation algorithm,
the decay of the open system in one step of the evolution can
be expressed as

ρ int
S [(j + 1)τ ] = TrB

{
U int(τ )

[
ρS(jτ ) ⊗ ρth

B

]
U int†(τ )

}
= (1 − τ�)ρ int

S (jτ ), (29)

where � is a superoperator that describes the decay of the
open system and it is a sum over the contributions from all the
different environment modes (the superscript “int” indicates
the interaction picture). Let �j denote the superoperator that
describes the decay of the open system caused by the coupling
of the open system to only the j th environment mode. If the
open system undergoes a small change during the time τ , such
that τ� � 1 (i.e., all the eigenvalues of � times τ are much
smaller than 1), then the evolution of the open system can be
approximated as

1 − τ� ≈ (1 − τ�1)(1 − τ�2) · · · (1 − τ�d ). (30)

Therefore, the decay of the open system can be simulated
by applying the environment modes to the open system
sequentially.

As a result, an alternative approach for simulating the
dynamics of an open system goes as follows: We divide
the environment modes into a few sets and let the different
sets interact with the open system sequentially. In this way,
we effectively simulate the interaction between the open
system and all the different modes in the environment. The

Hamiltonian for the open system interacting with the ith set of
the environment modes is given by

H (i) = HS +
di∑

k=1

H
(i)
Bk

+
di∑

k=1

H
(i)
Ik

, (31)

where i = 1,2, . . . ,d/di and di is the number of the environ-
ment modes in each set.

One point that requires a little bit extra care here is that
each mode in the environment is coupled to the system in only
one step out of d/di steps, whereas the system Hamiltonian
HS is applied in all of the steps. One therefore needs to be
careful how to calculate the elapsed time in the simulated
system. If the Hamiltonian in Eq. (31) is applied with a given
value of τ , then after covering all the d/di sets of environment
modes the system Hamiltonian would have induced a change
corresponding to a time τd/di , while each environment mode
would have induced a change corresponding to a time τ . In
order to avoid any problems arising from this inconsistency,
one can note that decoherence rates are proportional to
the spectral density (and therefore proportional to c2

i ) from
the interaction Hamiltonian. One can then use a rescaled
Hamiltonian:

H̃
(i) = HS +

di∑
j=1

H
(i)
Bj

+
√

d

di

di∑
j=1

H
(i)
Ij

. (32)

If this Hamiltonian is now applied for a time τ , then after
covering all the different environment modes both the system
Hamiltonian and the coupling to the environment would have
induced changes that correspond to a time τ d/di , removing
the inconsistency in the elapsed time. Note that in order
to guarantee the validity of the Markovian approximation,
the rescaled coupling strengths ci

√
d/di must still be small

compared to 1/τ .
The new procedure for simulating the Markovian dynamics

of open systems is implemented on a quantum computer as
follows:

(1) On the quantum register RS , prepare the initial state of
the open system.

(2) On the quantum register RB , prepare the thermal-
equilibrium state of the qubits representing a subset of the
environment modes.

(3) Implement the unitary operation Ui(τ ) = exp[−iH̃
(i)
τ ]

on the registers RS and RB .
(4) Perform steps 2 and 3 for another set of environment

modes, and keep repeating this process until the algorithm runs
over all the sets of the environment modes.

(5) Repeat steps 2–4 a number of times.
(6) Read out the state, or the desired observable, of the

register RS .
In Eq. (30), the error in the decay of the open system

introduced by sequentially applying the dissipation channels,
up to second order in τ , is τ 2 ∑

i,j �i�j . In the case of using
only a single qubit to represent the environment, the algorithm

will have an error of d2τ 2�
2
0, where �0 denotes the overall scale

of the decay rate of the open system caused by the coupling
of the open system to a single environment mode. When d is
large, this approximation can introduce a large error. On the
other hand, if we use more qubits to represent the environment,
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the errors will be smaller because there will be fewer terms in
the sum for the error.

C. State preparation and readout

In the algorithm, the initial state of the global system is
set to ρS(0) ⊗ ρ th

B , where ρS(0) is the initial state of the open
system and ρ th

B represents the thermal-equilibrium state of the
environment. To prepare the initial state of the global system
on a quantum computer, we prepare two quantum registers
RS and RB to represent the open system and the environment,
respectively. In general, the thermal-equilibrium state of the
environment is a mixed state. In order to prepare the mixed
state ρ th

B as shown in Eq. (19), we can generate a random integer
j , where j ∈ [1, L], with probability Pj . Then we prepare the
corresponding state |j 〉 on the quantum register RB . We repeat
this step many times. This procedure produces an ensemble
(in time) of states |j 〉 with the corresponding probabilities
Pj . This ensemble gives the same effect as the case where the
quantum register RB is prepared in a thermal-equilibrium state
in every time step.

As discussed in Sec. II.A, in the absence of interactions
between the environment qubits, the thermal-equilibrium state
of the environment is a tensor product of the thermal-
equilibrium states of the individual qubits as shown in Eq. (24).
In such cases, the thermal-equilibrium state of the environment
can be prepared in a simpler way: Randomly generating 0 or 1
with respective probabilities (1 − pk) and pk , then preparing
the corresponding states |0〉 or |1〉 on the environment qubit,
and repeating this step many times, the mixed state ρ th

B can be
prepared. In this procedure, an ensemble (in time) of states |0〉
and |1〉 with the corresponding probabilities pk and (1 − pk)
is produced, and it gives the same effect as the case where the
environment qubit is prepared in a thermal-equilibrium state
in every time step.

Observing the decoherence dynamics can be performed in
a number of different ways. For example, the phase estimation
procedure [27] can be used to measure the energy of the open
system, and one can then monitor the dynamics of the energy
distribution.

Alternatively, any matrix element in the density matrix of
the open system can be obtained using a quantum estimator
[28,29] as shown in Fig. 2. In the circuit for the quantum
estimator, if we prepare the second register in the state |ϕ〉 and
the third register in the state |ψ〉, then the value of |〈ϕ|ψ〉| can
be estimated by performing single-qubit measurements on the
index qubit. Through some derivation [28] we have

P (0) = 1
2 (1 + |〈ϕ|ψ〉|2), (33)

0 H H

S A
S

SWAP

FIG. 2. Quantum circuit for a quantum estimator. H represents
the Hadamard gate and SWAP represents the swap gate.

where P (0) is the probability for obtaining the state |0〉 in the
index qubit. If the third register is in a mixed state ρS , then we
have

P (0) = 1
2 (1 + 〈ϕ|ρS |ϕ〉). (34)

For the readout of the state of the open system in some
chosen basis {|n〉}, any diagonal element ρS

nn = 〈n|ρS |n〉 can
be estimated by preparing the second register in the state |n〉
and the third register in the state ρS . For the off-diagonal
elements ρS

mn = 〈m|ρS |n〉, the real part of ρS
mn can be estimated

by preparing the second register in the state |ϕ〉 = (|m〉 +
|n〉)/√2. The imaginary part of ρS

mn can be estimated by setting
|ϕ〉 = (|m〉 + i|n〉)/√2.

The circuit shown in Fig. 2 can also be used for evaluating
the expectation values of arbitrary observables. For an opera-
tor F , by applying the technique developed in Refs. [28,29],
one can obtain the value of 〈F 〉ρS

. Then combined with the
quantum circuit for simulating the Markovian dynamics of
open systems, one can simulate the evolution of the expec-
tation values of the physical observables. Various correlation
functions can also be obtained using this technique.

D. Simulating pure dephasing of a quantum system

So far we have concentrated on the case where the
nonunitary part of the dynamics is caused by the environment
modes that are resonant with the open system. This picture
is valid for energy relaxation. Pure dephasing, on the other
hand, is caused by low-frequency noise. Such low-frequency
noise can also be generated using the algorithm explained in
the previous subsections: Whenever an environment qubit’s
state is changed from the ground to the excited state or vice
versa, the open system feels a telegraph-noise-like change.
This telegraph noise then causes (mostly) pure dephasing
in the system. Although this effect can be induced using
environment qubits, there is a simpler method to generate
telegraph noise. The telegraph noise is essentially a classical
noise signal affecting the open system. There is therefore no
need to use qubits in order to produce this classical signal. It
can be generated using a classical algorithm and added to the
system Hamiltonian HS . If different noise signals are used in
the different runs of the algorithm, the density matrix of the
system (averaged over the different realizations) will exhibit
dephasing dynamics as a function of time.

For an open system coupled to many fluctuators, the
Hamiltonian for the system can be expressed as [30] [see
Eq. (11) for comparison]

H = HS +
∑

k

χk(t)Ãk, (35)

where

χk(t) =
∑

i

vik ξik(t). (36)

The random functions ξi(t) characterize the fluctuators’ state,
instantly switching between ±1/2 at random times. Therefore,
the simulation of the open system coupled to a bath of many
fluctuators is reduced to simulating a closed quantum system,
which will reduce the resources required for performing the
simulation.
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In simulating the dynamics of a quantum system coupled
to many fluctuators, we prepare the initial state of the system
on a quantum register, then implement the unitary operation
U = exp(−iHτ ). Since the signal χ (t) is random, to obtain the
evolution of the quantum system, we have to run the algorithm
many times with a different signal χ (t) in each run.

The noise spectrum of a noise signal is defined as [31]

s(ω) = 1

π

∫ ∞

0
dt cos ωt〈χ (t)χ (0)〉. (37)

In order to generate the telegraph-noise signal [32], we assume
that the environment contains a number of fluctuators. Each
fluctuator switches between two possible configurations with
switching rate γi , and couples to the system with a coupling
strength vi . The corresponding contribution of a fluctuator to
the noise spectrum is a Lorentzian [31],

si(ω) = v2
i γi

4π
(
ω2 + γ 2

i

) . (38)

The (low-frequency) noise spectrum of the entire environment
is the sum of the noise spectra of all the fluctuators,

S(ω) =
∑

i

v2
i γi

ω2 + γ 2
i

. (39)

By adjusting the parameters γi and vi , one can produce
a variety of noise spectra. A typical example in practical
situations is 1/f noise. If the number and density of fluctuators
is sufficiently large, and the distribution of the switching rates
of the fluctuators D(γ ) ∝ γ −1, and is independent of the
distribution of the coupling strengths between the fluctuators
and the open system, the sum over the fluctuators produces the
1/f noise spectrum [33],

S(ω) = G

ω
, (40)

where G is a constant.

E. Simulating the non-Markovian dynamics of an open system

The quantum algorithm presented above for simulating
the Markovian dynamics of an open system can also be
used for simulating a class of non-Markovian dynamics of
open systems. A common situation where non-Markovian
dynamics occurs is the case where a small number of degrees
of freedom in the environment are coherent enough that they
have non-negligible memory effects in their interaction with
the open system [13]. Examples of this situation include the
relaxation dynamics of an atom through a cavity that has a high
quality factor (see, e.g., Ref. [13]) and the relaxation dynamics
of a superconducting qubit close to resonance with a coherent
two-level defect (see, e.g., Ref. [34]).

When a small number of degrees of freedom in the
environment are responsible for the non-Markovian dynamics,
and assuming that one has sufficient understanding of these
degrees of freedom (i.e., their intrinsic Hamiltonian, their
coupling to the system, and their decoherence mechanisms and
rates), it becomes relatively straightforward to include them in
the algorithm. One now adds the appropriate number of ancilla
qubits needed to describe these degrees of freedom. When
implementing the evolve-reset part of the algorithm, one treats

the additional degrees of freedom as part of the system (i.e.,
they are not reset to their initial state). When the measurement
is performed at the end of the algorithm, however, only the
system qubits are used and the additional degrees of freedom
are ignored. This step corresponds to taking the trace over the
state of these degrees of freedom.

The introduction of the additional degrees of freedom
increases the resource requirements (which will be the subject
of Sec. III) as follows: The number of qubits used in
implementing the unitary operation U (τ ) is increased by
log(Dext), where Dext is the number of degrees of freedom in
the environment that are responsible for the non-Markovian
dynamics. Since the interactions in the expanded system
should still be local, the scaling of resources will still be
polynomial in system+ancilla size and therefore efficient.

F. Implementing environments other than spin baths

Our algorithm simulates the effect of the environment using
a set of ancilla qubits that each represents one spin in a
bath of independent spins [35]. This type of environment is
rather straightforward to implement, since the properties and
manipulation of the environment are done by considering the
ancilla qubits one at a time. For a variety of purposes, this spin
bath is sufficient for the implementation of the desired quantum
simulation. However, the spin bath has certain limitations. For
example, the two-level nature of the environment elements
(i.e., spins) means that increasing the temperature will reduce
the number of spins that are in their ground states, thus
reducing the relaxation rate induced by this environment [26].
This behavior contrasts with the case of a bath of harmonic
oscillators, where both relaxation and excitation rates increase
with increasing temperature. Therefore, if one is interested
in the temperature dependence of the dynamics, one needs
to be careful about the differences between different types of
environments.

One possible technique to use a spin bath in order to
simulate an oscillator bath and obtain the correct temperature
dependence is to calculate a modified (temperature-dependent)
spectral density for the spin bath and use this spectral density in
the simulation. Alternatively, different types of environments
can be simulated by modifying the algorithm such that each
element in the environment is encoded into multiple qubits that
are treated as a single physical object. For example, one could
use n environment qubits to represent the lowest 2n energy
levels of a harmonic oscillator and then design a Hamiltonian
where this harmonic oscillator represents one mode in the
environment. Thus, one can simulate the dynamics of an
open quantum system interacting with a bath of harmonic
oscillators. Note that the state preparation and the form of the
Hamiltonian become more complicated in this case than in the
case of a spin bath.

III. RESOURCE ESTIMATION

In this section, we discuss the resources including the
number of qubits and the operations needed for implementing
the algorithm.

As shown in Fig. 1(a), the number of qubits required for
simulating the Markovian dynamics of the open system is
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�log2 N� + d (here �x� provides the smallest integer larger
than x, or equal to x if x is an integer), where N is the
dimension of the Hilbert space of the open system, and d

is the total number of qubits representing the environment. In
the quantum estimator for the readout of the state of the open
system, �log2 N� + 1 additional qubits are needed as shown in
Fig. 2. Therefore the total number of qubits for simulating the
Markovian dynamics of open systems is 2�log2 N� + d + 1.
One could also use the ancilla qubits that are used in
representing the environment in the readout of the state of
the open system, which would reduce the number of qubits
used in the algorithm to max[�log2 N� + d,2�log2 N� + 1].

The unitary operation U (τ ) = exp(−iHτ ), where H is the
model Hamiltonian, is implemented a finite number m of
times. To implement U (τ ) on the quantum circuit, we employ
the Trotter-Suzuki formula as shown in Eq. (28), in which
U (τ ) is approximated by the product of (2d + 1)n0 unitary
transformations, where n0 is the parameter for dividing the
time in the Trotter expansion. Therefore the number of unitary
operations needed in the quantum circuit shown in Fig. 1(a)
is m(2d + 1)n0 . Note one could obtain higher efficiency using
higher order Suzuki-Trotter formulas, as discussed in Ref. [36].

In the second approach we presented, the environment is
represented using a few or a single qubit. The number of
qubits required for simulating the dynamics of open systems
is 2�log2 N� + di + 1, where di is the number of qubits
representing the environment.

The unitary operations implemented for each set of qubits
are Ui(τ ) = exp[−iH̃

(i)
τ ], where H̃

(i)
is given in Eq. (32). Thus

implementing Ui(τ ) on the circuits by employing the Trotter-
Suzuki formula requires (2di + 1)n0 unitary operations. For
d/di sets of the environment elements where each set of
the elements is implemented m times, the total number of
unitary operations that need to be implemented is m d/di

(2di + 1)n0 .
In preparing the initial state of the global system, we have

to prepare the thermal-equilibrium state of the environment,
which is a mixed state, a number of times. To prepare the
thermal-equilibrium state ρ th

B as shown in Eq. (19), we prepare
the state |j 〉 with the corresponding probability Pj , and repeat
this step many times. In running the algorithm, these basis
states are fed to the register RB in the quantum circuit in
Fig. 1(a) one at a time, and run the algorithm many times with
the register RB prepared in the basis states. For each basis state
|j 〉, we need to reset the state on the register RB m times in the
algorithm. To do this, we need to erase the state on the register
RB and then prepare RB in state |j 〉. We can first perform a
measurement on the register RB , the state on RB collapse to a
basis state, then we can perform a unitary operation to rotate
this state into the state |j 〉.

In the readout of the state of the open system, we employ
the quantum estimator, in which the information of the open
system is obtained by performing single-qubit measurements
on the index qubit and taking the average. We have to prepare
many copies of the state of the open system in order to obtain
accurate results. Both this procedure and the procedure for
preparing the thermal-equilibrium state of the environment
require running the algorithm many times. The number of
times for running the algorithm, however, does not depend

TABLE I. Resource needed for implementing the algorithm. Here
�x� provides the smallest integer larger than x, or equal to x if x

is an integer. N is the dimension of the Hilbert space of the open
system, d is the total number of qubits needed in representing the
environment in one time, and di is the number of qubits used in
representing the environment in approach 2. m is the number of times
the unitary operation U (τ ) = exp(−iHτ ) is implemented, and n0

is the parameter for dividing the time in the Trotter expansion in
Eq. (28).

Algorithm No. of qubits No. of operations

Approach 1 2�log2 N� + d + 1 O[m(2d + 1)n0 ]

Approach 2 2�log2 N� + di + 1 O[md/di(2di + 1)n0 ]

on the dimension of the Hilbert space of the open system.
Therefore the algorithm can be implemented efficiently using
O[m 2d + 1n0 ] [or O[m(d/di)2di + 1n0 ], if the environment
is represented using di qubits] unitary operations. All these
results are summarized in Table I.

IV. EXAMPLE: A TWO-LEVEL SYSTEM IN A SPIN BATH

In this subsection, we consider the example of simulating
the Markovian dynamics of a two-level system that is im-
mersed in a thermal bath of independent two-level systems.
The Hamiltonian of the global system is given by

H = −1

2
ωs σ z − 1

2

∑
k

ωk σ z
k + 1

2
σx ⊗

∑
k

ck σ x
k , (41)

where σx and σ z are the Pauli operators, and ωs and ωk are
the frequencies of the two-level system and the environment
modes, respectively. The first term is the Hamiltonian of
the open system, the second term is the Hamiltonian of the
environment, and the third term describes the interaction
between the open system and the environment.

In this example, assuming Ohmic dissipation, the spectral
density of the spin bath is expressed as [25]

J (ω) = 2παω exp(−ω/ωc), (42)

where α is the dissipation coefficient and ωc denotes the
cutoff frequency (ωc/ωs 
 1). Below we specify frequencies,
temperatures, and times using a standard unit frequency �0.
We first set ωs/�0 = 1, α = 2 × 10−4, ωc/�0 = 100, and
β�0 = 1. The frequency spectrum in the region ω/�0 ∈
[0.8, 1.15] is discretized into eight elements at frequencies
ωk/�0 = (0.80 + 0.05k), with k = 0, 1, . . . ,7. The width of
each element is �ω/�0 = 0.05. The coupling coefficients ck

are determined using Eq. (14).
For this example, the analytical results for the relaxation

rate and the dephasing rate, 1/T1 and 1/T2, can be derived
under the Markovian approximation [14] as

1

T1
= 1

2
J (ω = ωs),

1

T2
= 1

2T1
. (43)

The Markovian dynamics of the two-level system is simulated
with the initial state of the open system being set to the excited
state |e〉 of the two-level system. We set the unitary evolution
time �0τ = 30, and we obtain the evolution of the state of the
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FIG. 3. (Color online) The evolution of the matrix element ρee

of a two-level system in a spin bath, where ρee denotes the diagonal
element of the density matrix that describes the population of the
excited state. The frequency of the environment mode in the region
ω/�0 ∈ [0.8, 1.15] is divided into eight elements with equal width
and each element is represented by a qubit. The Hamiltonian for
the global system is given by Eq. (41). The unitary evolution time
�0τ = 30. The red solid line represents the analytical result for the
evolution of ρee with the initial state |e〉. The black square dots
represent the simulated results for the evolution of ρee.

open system. The relaxation dynamics of the two-level system
is shown in Fig. 3.

From Fig. 3, we can see that there is a clear discrepancy
between the relaxation rates obtained from the numerical
simulation and the exact results given by Eq. (43). This
discrepancy is due to the fact that we used Eq. (14) to determine
the coupling coefficients ck even though only eight δ peaks are
used to represent the spectral density:

J (ω) = π

k=8∑
k=1

c2
k δ(ω − ωk). (44)

Each δ peak has the analytical form [16],

δ

(
ω − ω0

�0
,τ�0

)
= 1 − cos[τ (ω − ω0)]

πτ�0[(ω − ω0)/�0]2
. (45)

In Eq. (14), a good approximation can be achieved when
many δ peaks are used to represent the spectral density and
the peaks cover a sufficiently wide range of frequencies.
The eight peaks used in our simulation do not satisfy these
conditions.

In order to further demonstrate the above explanation of
the discrepancy, in Fig. 4 we show the relaxation rate as
a function of the frequency ωs of the two-level system.
There we compare the numerical results obtained from the
simulation—the analytical results obtained from Eq. (43) with
the spectral density given by Eqs. (44) and (45) and the
coupling coefficients determined through Eq. (14), and the
exact results obtained from Eq. (43) with the spectral density
given by Eq. (42). From Fig. 4 we can see that the numerical
results for the relaxation rate obtained from the simulation

FIG. 4. (Color online) The relaxation rate of the two-level system
as a function of its frequency. The black squares represent the results
obtained from the simulation of the algorithm; the blue dotted line
represents the relaxation rate obtained by using the spectral density
that is spanned by eight δ peaks in Eq. (44); and the red solid line
represents the relaxation rate obtained from the analytical spectral
density in Eq. (42). Obviously only the first two ones agree well with
each other.

fit very well the analytical results of the eight-peak spectral

FIG. 5. (Color online) The relaxation rate of the two-level system
as a function of the frequency of the two-level system. The black
square dots represent the results obtained from the simulation of the
algorithm using the improved coupling coefficients as discussed in
the text; the blue dotted line represents the relaxation rate obtained
by using the spectral density that is produced by eight δ peaks in
Eq. (44) using the improved coupling coefficients; and the red solid
line represents the relaxation rate obtained from the analytical spectral
density in Eq. (42).
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TABLE II. Results for simulating the Markovian dynamics of
a two-level system using different number of qubits to represent
the environment to sequentially simulate a total of eight dissipation
channels. N denotes the number of qubits representing the environ-
ment modes. The exact result for T1 is T exact

1 = 2/J (ω = �0), and
T exact

2 = 2T1. The results here are obtained using the improved choice
of the coupling coefficients as discussed in the text. The results are
essentially independent of N .

N 1 2 4 8

T1/T exact
1 0.998 0.998 0.998 0.996

T2/T exact
1 1.994 1.990 1.991 1.991

density, while both have a systematic deviation from the exact
results.

This systematic deviation from the exact results can be
eliminated by plugging in the analytical form of the δ peaks
as shown in Eq. (45) into Eq. (44) for the eight elements and
then obtaining an improved approximation for the coupling
coefficients ck . In Fig. 5, we show the relaxation rate as a
function of the frequency of the two-level system using the
improved choice of the coupling coefficients. One can see that
in the region around ωs/�0 = 1.0, the numerical results are
now in good agreement with the exact results.

We also perform the same simulation with the sequential
application of the different dissipation channels. In different
simulations we use different numbers of qubits to represent
the environment. We use 1,2,4, or 8 qubits to represent the
environment using the improved choice of ck . The ratios
T1/T exact

1 and T2/T exact
1 are shown in Table II. One can

see that they are in good agreement with the exact results
and that the different simulations give essentially the same
results.

We do not perform any numerical calculations for the sim-
ulation of pure dephasing using telegraph noise here, because
such calculations would follow closely similar calculations
that have been performed in the literature in theoretical studies
of telegraph-noise-induced dephasing (see, e.g., Refs. [31,37]).

V. CONCLUSION

In this paper, we have presented an algorithm for simulating
the Markovian dynamics of an open quantum system. The
algorithm takes as an input the Hamiltonian of the open system,
the operators through which the open system interacts with
the environment, the spectral density of the environment, and
temperature. One therefore does not explicitly deal with the
master equation describing the dynamics. In the simulation,
the environment is represented by a set of ancilla qubits that
are designed to have the same effect on the open system as
the simulated environment. We have also shown that different
dissipation channels can be implemented sequentially, thus
reducing the number of qubits needed to represent the
environment. Pure dephasing also allows a reduction in the
number of needed qubits, since it can be induced by a properly
designed classical noise signal. The algorithm can also be used
to simulate non-Markovian dynamics.

In the present algorithm, the ancilla qubits play a rather
passive role in the sense that they only facilitate the dissipative
dynamics of the system. These ancilla qubits could be used in
a more active role as probes or actuators for the open quantum
system. By monitoring the response of these ancilla qubits as
they interact with the open system, one could obtain the energy
spectrum of the system. Once the spectrum is known, the
ancilla qubits can also be used to provide or absorb any given
amount of energy and guide the system to any desired energy
eigenstate. The details of this algorithm will be presented
elsewhere.
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[20] M. Möttönen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa,
Quantum Inf. Comput. 5, 467 (2005).

[21] A. N. Soklakov and R. Schack, Phys. Rev. A 73, 012307 (2006).
[22] N. J. Ward, I. Kassal, and A. Aspuru-Guzik, J. Chem. Phys. 130,

194105 (2009).
[23] H. Wang, S. Ashhab, and F. Nori, Phys. Rev. A 79, 042335

(2009).
[24] E. Bilgin and S. Boixo, Phys. Rev. Lett. 105, 170405 (2010).
[25] J. Shao and P. Hänggi, Phys. Rev. Lett. 81, 5710 (1998).
[26] H. Krovi, O. Oreshkov, M. Ryazanov, and D. A. Lidar, Phys.

Rev. A 76, 052117 (2007).
[27] M. Nielsen and I. Chuang, Quantum Computation and Quan-

tum Communication (Cambridge University Press, Cambridge,
2000).

[28] A. K. Ekert, C. M. Alves, D. K. L. Oi, M. Horodecki,
P. Horodecki, and L. C. Kwek, Phys. Rev. Lett. 88, 217901
(2002).

[29] P. Horodecki and A. Ekert, Phys. Rev. Lett. 89, 127902
(2002).

[30] Y. M. Galperin, B. L. Altshuler, J. Bergli, and D. V. Shantsev,
Phys. Rev. Lett. 96, 097009 (2006).

[31] Y. M. Galperin, B. L. Altshuler, J. Bergli, D. V. Shantsev, and
V. Vinokur, Phys. Rev. B 76, 064531 (2007).

[32] S. Kogan, Electronic Noise and Fluctuations in Solids
(Cambridge University Press, Cambridge, 1996).

[33] P. Dutta and P. M. Horn, Rev. Mod. Phys. 53, 497
(1981).

[34] S. Ashhab, J. R. Johansson, and F. Nori, Physica C 444, 45
(2006).

[35] N. V. Prokof’ev and P. C. E. Stamp, Rep. Prog. Phys. 63, 669
(2000).

[36] A. M. Childs, Ph.D. thesis, Massachusetts Institute of Technol-
ogy, 2004.

[37] G. Falci, A. D’Arrigo, A. Mastellone, and E. Paladino, Phys.
Rev. Lett. 94, 167002 (2005).

062317-11

http://dx.doi.org/10.1038/nature09801
http://dx.doi.org/10.1103/PhysRevLett.100.140501
http://dx.doi.org/10.1103/PhysRevLett.100.140501
http://dx.doi.org/10.1103/PhysRevA.73.012307
http://dx.doi.org/10.1063/1.3115177
http://dx.doi.org/10.1063/1.3115177
http://dx.doi.org/10.1103/PhysRevA.79.042335
http://dx.doi.org/10.1103/PhysRevA.79.042335
http://dx.doi.org/10.1103/PhysRevLett.105.170405
http://dx.doi.org/10.1103/PhysRevLett.81.5710
http://dx.doi.org/10.1103/PhysRevA.76.052117
http://dx.doi.org/10.1103/PhysRevA.76.052117
http://dx.doi.org/10.1103/PhysRevLett.88.217901
http://dx.doi.org/10.1103/PhysRevLett.88.217901
http://dx.doi.org/10.1103/PhysRevLett.89.127902
http://dx.doi.org/10.1103/PhysRevLett.89.127902
http://dx.doi.org/10.1103/PhysRevLett.96.097009
http://dx.doi.org/10.1103/PhysRevB.76.064531
http://dx.doi.org/10.1103/RevModPhys.53.497
http://dx.doi.org/10.1103/RevModPhys.53.497
http://dx.doi.org/10.1016/j.physc.2006.04.106
http://dx.doi.org/10.1016/j.physc.2006.04.106
http://dx.doi.org/10.1088/0034-4885/63/4/204
http://dx.doi.org/10.1088/0034-4885/63/4/204
http://dx.doi.org/10.1103/PhysRevLett.94.167002
http://dx.doi.org/10.1103/PhysRevLett.94.167002

