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We explore a geometric approach to generating local SU(2) and SL(2,C) invariants for a collection of qubits
inspired by lattice gauge theory. Each local invariant or “gauge” invariant is associated with a distinct closed
path (or plaquette) joining some or all of the qubits. In lattice gauge theory, the lattice points are the discrete
space-time points, the transformations between the points of the lattice are defined by parallel transporters, and the
gauge invariant observable associated with a particular closed path is given by the Wilson loop. In our approach
the points of the lattice are qubits, the link transformations between the qubits are defined by the correlations
between them, and the gauge invariant observable, the local invariants associated with a particular closed path,
are also given by a Wilson looplike construction. The link transformations share many of the properties of parallel
transporters, although they are not undone when one retraces one’s steps through the lattice. This feature is used
to generate many of the invariants. We consider a pure three-qubit state as a test case and find we can generate
a complete set of algebraically independent local invariants in this way; however, the framework given here is
applicable to generating local unitary invariants for mixed states composed of any number of d-level quantum
systems. We give an operational interpretation of these invariants in terms of observables.
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I. INTRODUCTION

One approach to the study of entanglement is the identifica-
tion of local invariants of a collection of quantum objects. With
this approach we imagine the distant labs scenario in which N

spatially separated parties each hold one of the subsystems of
an N -particle entangled state in their laboratory, and they are
free to make arbitrary transformations on their subsystem. One
then looks for properties of the state that remain unchanged
under such local transformations since, under the conditions
that the transformations are unitary, entanglement is defined
to be invariant. If the transformations belong to the group
SL(2,C) it turns out that entanglement, given by the well-
known measure concurrence, is also invariant. Rephrasing,
we can write this scenario as a non-Abelian lattice gauge
theory; the arbitrary transformations are non-Abelian local
gauge transformations made on N subsystems, the N points
of the lattice. Entanglement is a gauge-invariant observable of
the theory. It is this similarity that inspires our work.

Quite a lot is known about the local unitary invariants of
simple entangled states. For example, for a pure state of a
pair of qubits, there is essentially only one local invariant
(not counting the normalization); it characterizes the amount
of entanglement between the two-qubits. For a pure state of
three qubits, one can identify five independent local invariants,
four of them expressing a different aspect of the state’s
entanglement [1–3]. A fifth, the Kempe invariant, is not well
understood [4]. There exist well-known algebraic methods for
generating invariants [5–10], but as the number of subsystems
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increases, the problem of identifying, and interpreting inde-
pendent invariants rapidly becomes very complicated.

Here we explore a different approach inspired by lattice
gauge theory [11]. For a collection of N qubits, we consider
any closed path connecting some of the qubits, and we
associate an invariant quantity with each such path. The
invariant is formed by taking the trace of a transformation
associated with the closed path, which in turn is the product
of transformations associated with the individual two-qubit
links. Each of these “link transformations” is determined
by the density matrix of the two qubits connected by the
link. Because this density matrix will typically change if one
performs a local operation on either of the two qubits, each
link transformation will also typically change under such local
operations. The overall transformation around a closed loop
can similarly change as one performs a local operation on the
qubit that defines the loop’s starting point. However, the trace
and the eigenvalues of the overall transformation do not change
under any single-qubit operations. The trace is our invariant. In
fact, we will generate a few distinct invariants associated with
the same path, by using different, but closely related, ways
of making the correspondence between a two-qubit density
matrix and a link transformation; i.e., one has the choice
whether to apply a spin flip to each qubit in a given loop.

Other authors have explored relations between entangle-
ment and gauge transformations, in the context of an analysis
of the geometry of the set of states [12–15]. Our approach is
different in that the paths we consider are not paths in the set
of states but discrete paths connecting the qubits themselves.

Thus our invariants are determined once we specify the
correspondence between a two-qubit density matrix and a link
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transformation. The first rule we consider, and the one from
which the other cases are derived, is

Mb = tra[(Ma ⊗ Ib)ρab], (1)

where ρab is the two-qubit density matrix in question, Ma

is a 2 × 2 Hermitian matrix, and Mb is its image under our
transformation. (In Sec. II we interpret this rule in terms of
local observables.)

We hope that this geometric approach will ultimately prove
useful in generating and classifying invariants of systems with
many parts. In this paper we try out our ideas by applying
them to a simple system of three qubits in a pure state. For that
case, as indicated above, a natural set of SU(2) invariants is
already known. We ask whether this set, or an equivalent set,
can be generated via our construction. We also ask whether the
path-based approach sheds any light on the physical meaning
of these invariants.

In the following section we introduce our basic path-based
method of generating invariants. Section IV applies this idea to
pure states of three qubits and makes the connection between
the invariants generated by this method and the standard three-
qubit SU(2) invariants that have been identified previously.
In Sec. V we show how to generate SL(2,C) invariants by
simply spin flipping each qubit in a loop. In Sec. VI we give
an operational interpretation of these invariants in terms of
observables. Finally, we draw conclusions in Sec. VII and
outline how one would extend this approach to mixed states
comprising any number of qudits.

II. PATH-BASED INVARIANTS

Our basic method of associating a transformation with each
two-qubit link is motivated by a thought experiment. Imagine
many N qubit systems, each having distinguishable qubits
labeled a, b, c, . . ., and each system being in the same quantum
state ρ. We use ρ to define a transformation from qubit a to
qubit b as follows. On several copies of the state ρ, perform
a general quantum measurement on qubit a, one of whose
outcomes is represented by the operator Ma . (This operator
is arbitrary except that it must be positive semidefinite and
less than the identity so that it can be part of a legitimate
measurement.) Now consider only those instances of qubit a

for which this particular outcome is actually achieved. In those
cases, the state of qubit b has been “collapsed” into some state,
typically mixed, even though qubit b has not interacted with
the measuring device. The final state of qubit b is, in fact,
proportional to

Mb = tra[(Ma ⊗ Ib)ρab], (2)

where ρab is the original reduced density matrix of qubits a

and b when the whole system is in state ρ. The normalization
of Mb, that is, trMb, is equal to the probability of getting the
outcome represented by Ma . In this way the density matrix ρab

defines a linear transformation from operators on qubit a to
operators on qubit b, namely, the transformation that takes Ma

to Mb. It is convenient to represent this linear transformation as
a matrix by writing Ma and Mb in terms of Pauli spin matrices.
Let the four real numbers ma

i , i = 0, . . . ,3, be defined by

Ma = ma
0σ0 + ma

1σ1 + ma
2σ2 + ma

3σ3, (3)

where σ0 is the 2 × 2 identity matrix and the other σi are the
usual Pauli matrices, and let the components of Mb be defined
similarly. Then we can express our transformation as the 4 × 4
matrix S(b,a) such that

mb = S(b,a)ma, (4)

where ma and mb are column four-vectors with components
ma

i and mb
i . Writing Eq. (2) explicitly in this operator basis,

we have

∑
k

mb
kσ

b
k = tra

[(∑
i

ma
i σ

a
i ⊗ Ib

)
ρab

]
. (5)

Multiplying both sides by σb
j and tracing over qubit b, we

get an explicit expression for the components of the matrix
S(b,a)ji :

S(b,a)ji = 1
2 tr

(
σa

i ⊗ σb
j ρab

) = 1
2

〈
σa

i ⊗ σb
j

〉
. (6)

So in this representation, the matrix representing our trans-
formation from qubit a to qubit b is proportional to the spin
correlation matrix. Our link transformations are specified by
the correlations between the qubits joined by the link.

We can now imagine repeating this process at qubit b. That
is, starting with several pristine, unmeasured copies of the state
ρ, we imagine performing a measurement on qubit b, one of
whose outcomes is represented by the same operator Mb that
was the result of the first measurement. When this outcome
is achieved, qubit c will be collapsed into some mixed state
proportional to Mc defined as in Eq. (2).

Continuing in this way around a closed loop, we finally
collapse qubit a into some state proportional to

M ′
a = trz [(Mz ⊗ Ia)ρza], (7)

where qubit z is the one that precedes qubit a at the end of
the loop. In this way we have mapped, via the whole loop
C, an operator Ma on the state space of qubit a into another
operator M ′

a on the same space. The matrix representing this
transformation is

S(a,a; C) = S(a,z) · · · S(c,b)S(b,a). (8)

In other words, the overall transformation taking our initial
measurement four-vector ma around the closed loop back to
our new four-vector ma′

is

ma′ = S(a,a; C)ma. (9)

As we show in the following section, the trace of this matrix is
invariant under all single-qubit unitary transformations. This
trace is the invariant we associate with the given closed path.
We present a graphical illustration of the idea in Fig. 1.

Our basic transformation, Eq. (2), is reminiscent of the
transformation that would be associated with the two-qubit
state ρab by the Jamiołkowski isomorphism [16], which
provides a general correspondence between bipartite states
and trace-preserving operations. The transformation defined
by that isomorphism would be

MJ
b = 2tra

[(
MT

a ⊗ Ib

)
ρab

]
. (10)

That is, it would be normalized differently, and it would
require taking the transpose of the initial operator. The
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b a
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FIG. 1. A schematic of our method of generating local invariants
or “gauge invariants” for a collection of quantum objects. The idea
is inspired by lattice gauge theory with the lattice points representing
qubits and the transformations S(b,a) between lattice points a and b

given by the correlations between qubits a and b. Each distinct closed
path or loop generates a local invariant.

transpose is included in order to make the transformation a
legitimate quantum operation—specifically, in order to make
it completely positive. In contrast, the transformation defined
by our Eq. (2) need not be completely positive. We have chosen
the form of Eq. (2) as we have because our aim is not to define a
quantum operation but rather to generate invariants. If we had
included the transpose, the resulting trS(C) would not have
been invariant. Moreover, even though our transformation is
not a quantum operation, it does have a physical interpretation
in terms of measurement.

Though introducing the transpose would spoil the invari-
ance, there is a closely related operation that does not have this
effect, namely, the spin flip. At any point along a closed path,
we have the option of inserting a spin flip without destroying
the invariance. In our thought experiment, this would mean
that, having collapsed, say, qubit b into the (subnormalized)
state Mb, in our next step we would perform a measurement
with an outcome represented by M̃b, where the tilde represents
the spin flip; that is,

M̃ = σ2M
T σ2. (11)

The effect of a spin flip on the vector m representing M in
the Pauli basis is simply to multiply m1, m2, and m3 by −1
and to leave m0 unchanged. (σ2 multiplies m1 and m3 by −1,
while the transposition, equivalent to complex conjugation,
multiplies m2 by −1. The spin flip is antiunitary and not a
physical operation). That is, in this representation a spin flip
is represented by the matrix η, the Minkowski metric:

η =

⎛
⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎠ . (12)

We will label each of our invariants by the closed path that
defines it, indicating with a tilde any site at which we have
added a spin flip. Thus, for example, I (ab̃c) is the invariant
defined by

I (ab̃c) = tr[S(a,c)S(c,b)ηS(b,a)]. (13)

It is not hard to see that a spin flip indeed preserves the
SU(2) invariance. In the following section, we will show local
transformations U become elements of SO(3) acting only on
the spatial dimensions of S, those with index values 1,2,3, and
not on the dimension associated with the identity. That is, they
are block-diagonal matrices with a 1 × 1 block and a 3 × 3

block. Thus they commute with η and therefore still cancel
each other.

In fact, we find that the inclusion of a spin flip on every
qubit in a path results in not only an SU(2) invariant but
also a SL(2,C) invariant, a group that contains SU(2). The
group SL(2,C) represents the most general, local operations,
such as Kraus operations, that one may perform on a qubit
up to a positive constant less than unity. This stronger
invariance is interesting as the well-known entanglement
measures concurrence and three-tangle exhibit this higher
invariance [17]. We demonstrate this in the following section.

III. PROPERTIES OF LINK TRANSFORMATIONS

A. Local operations

Suppose that on one qubit, e.g., qubit b for definiteness, we
perform a general local operation, not necessarily unitary Ub,
i.e.,

Mb = tra[(Ma ⊗ Ib)(Ia ⊗ Ub)ρab(Ia ⊗ U†
b )]. (14)

In a cycle that includes the links a → b and b → c, this
transformation would change both S(b,a) and S(c,b). For
example, S(b,a)ji would be transformed into

1
2

〈
σa

i ⊗ (
Ub

†σb
j Ub

)〉
. (15)

We can write this local operation on b as the left action on
S(b,a),

S(b,a) → U (b)S(b,a), (16)

where the components of the new matrix U (b) are given by

U (b)j1j2 = 1
2 tr

(
Ub

†σb
j1
Ubσ

b
j2

)
. (17)

One can make a similar local operation, Ua , simultaneously on
qubit a and find that

S(b,a) → U (b)S(b,a)U (a)T , (18)

where

U (a)Ti1i2
= 1

2 tr
(
Uaσ

a
i1
Ua

†σa
i2

)
. (19)

Under local operations we see that the link transformations
change in the same way as the parallel transporters in lattice
gauge theories if the gauge group is an orthogonal group.
The total transformation around the closed loop described by
Eq. (8), under arbitrary local operations, therefore becomes

S(a,a; C) = U (a)S(a,z)U (z)T · · · U (c)S(c,b)

×U (b)T U (b)S(b,a)U (a)T . (20)

Provided the local operations cancel each other, the trace of
S(a,a; C) is invariant under these operations. We now prove
this fact specifically for U ∈ SU(2), that is, UT U = I. Each of
the components of UT U is given by

UT
l1l2

Ul2l3 = 1
4 tr

(
Uσl1U†σl2

)
tr

(
U†σl2Uσl3

)
. (21)

Writing each of the 2 × 2 matrices in index notation we have

1
4Ui1i2 (σl1 )i2i3U

†
i3i4

(σl2 )i4i1U
†
j1j2

(σl2 )j2j3Uj3j4 (σl3 )j4j1 , (22)

where in the last equation the l indices take the integer values
0, . . . ,3 and the i and j indices take the integer values 0 and 1.
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Summation is implied by a repeated index. We can use the
relation

1

2

3∑
l=0

(σl)i1i2 (σl)i3i4 = δi1i4δi2i3 (23)

(
∑3

i=0 σi ⊗ σi = SWAP) and the unitary property of U

Ui1i2U
†
i2i3

= U†
i1i2

Ui2i3 = δi1i3 (24)

to find

UT
l1l2

Ul2l3 = tr
(
σl1σl3

) = δl1l3 . (25)

The remaining local unitary transformations, those made at the
beginning (or end) of the loop, cancel from the cyclic property
of the trace. So the quantity tr S(a,a; C) is indeed invariant
under all local unitary transformations.

A simpler way to see that the local unitary transformations
do indeed cancel is to recognize that an arbitrary unitary acting
on a qubit when written in terms of the Pauli matrices is simply
a three-dimensional spatial rotation acting on the three spatial
components σ1, σ2, and σ3; that is, they are just rotations of the
Bloch sphere. In other words, the local operations U (a), U (b)
acting on qubits a and b, respectively, in the S(b,a) basis can
be written explicitly as

U (b)S(b,a)U (a)T

=
(

1 .

. Rb

)⎛
⎜⎜⎜⎝

s00 s01 s02 s03

s10 s11 s12 s13

s20 s21 s22 s23

s30 s31 s32 s33

⎞
⎟⎟⎟⎠

(
1 .

. RT
a

)
, (26)

where Rb and Ra are 3 × 3 rotation matrices, elements of
SO(3). That is, in the correlation matrix basis, U ∈ SU(2)
become U ∈ SO(3) due to the well-known homomorphism
SU(2) � SO(3) [18]. The components sji are expectation
values of the local spin measurements σa

i and σb
j made on

ρab. One can verify the form of Ra and Rb using Eqs. (17)
and (19).

In a similar way one can see that invariants where one
performs a spin flip on each and every qubit are invariant under
U ∈ SL(2,C) representing general local qubit operations up to
a positive constant. The total transformation obtained by spin
flipping every qubit can be explicitly written as

S(ã,ã; C) = S(a,z)η · · · ηS(c,b)ηS(b,a)η. (27)

Under local operations U ∈ SL(2,C) we have seen from
Eqs. (16)–(19) that the correlation matrices S transform as
S(b,a) → U (b)S(b,a)U (a)T , and thus we can form products
such as U (a)ηU (a)T from a transformation around a loop.
Provided

UηUT = η, (28)

our spin flipped quantities I (ãb̃ · · · z̃) are invariant. In fact,
Eq. (28) is the defining property of the group of Lorentz
transformations, SO+(1,3), and due to the well-known ho-
momorphism SL(2,C) � SO+(1,3) it indeed turns out that in
the correlation matrix representation U ∈ SL(2,C) becomes
U ∈ SO+(1,3) [18]. One can verify Eq. (28) holds explicitly

using Eqs. (17) and (19). Therefore the spin flipped quantities
trS(ã,ã; C) are invariant under local SL(2,C) operations.

B. Directional property

One other useful property of the correlation matrices
or link transformations is simply demonstrated: The link
transformation taking ma to mb, the real matrix S(b,a), is
the transpose of the link transformation taking mb to ma;
that is,

S(b,a) = S(a,b)T . (29)

This property is easily seen from Eq. (6). We note that this is
another property shared by the parallel transporters in lattice
gauge theory: the parallel transporter that takes you from
one lattice point to another is the transpose of the parallel
transporter that takes you back provided the gauge group is
O(N ). However, the parallel transporters have the additional
feature that a loop not enclosing area is the identity, for
example, U (a,b)U (b,a) = I. A similar expression for link
transformations does not hold. In fact, we will make use of
this property in the following section.

IV. IDENTIFICATION OF INVARIANTS

For any collection of qubits, one can consider the manifold
representing the set of orbits of pure states under all local
unitary transformations; that is, each point in the manifold
corresponds to such an orbit. For a system of three qubits—
we call them a, b, and c—it is known that the manifold of
orbits is five dimensional [2]. (A quick but incomplete counting
argument makes this result plausible. The eight-dimensional
space of pure states can be parameterized by 14 real numbers, if
we fix the normalization and the overall phase. A generic orbit
has nine degrees of freedom, because each of the three local
unitaries has three real parameters. This leaves five parameters
to specify the orbit itself.) Stating this in an alternative way for
the case of a pure three-qubit state, |ψ〉 is locally equivalent to
|φ〉 provided all local invariants specifying the orbit are equal.1

In the case of equality |ψ〉 and |φ〉 have the same entanglement
properties, and one can obtain |φ〉 from |ψ〉 simply by making
local unitary transformations on each qubit.

Several authors have studied local invariants of pure
three-qubit states [1–3,7,19–23]. In particular, Sudbery [3]
has identified a convenient set of algebraically independent
invariants, each of which is a polynomial in the eight complex
components of the vector |ψ〉. Not counting the normalization
(which is Sudbery’s I1), there are five of these invariants, the
same as the number of dimensions:

I2 = tr[(ρc)2], I3 = tr[(ρb)2], I4 = tr[(ρa)2],

I5 = (ρab)ij ′,i ′j (ρbc)jk′,j ′k (ρca)ki ′,k′i,

I6 = (1/4)τ 2
abc, (30)

1For the case of pure three-qubit states we need five continuous
local polynomial invariants and one binary polynomial invariant to
identify which states are locally equivalent. This will be discussed
below.
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where summation over repeated indices is implied in the
definition of I5. Here each index takes the values 0 and 1, and
we have used the letters i, j , and k to refer to qubits a, b, and
c, respectively. The Kempe invariant I5 [4] can be written in
several different ways, the above form being most convenient
for our purpose. The quantity τabc is the three-tangle, which
measures a kind of three-way entanglement characteristic of
the Greenberger-Horne-Zeilinger state (1/

√
2)(|000〉 + |111〉)

[19]. If we write |ψ〉 in terms of the standard basis states as
|ψ〉 = ∑

aijk|ijk〉, then the invariant I6 can be expressed as

I6 = |εi1i2εi3i4εj1j2εj3j4εk1k3εk2k4ai1j1k1ai2j2k2ai3j3k3ai4j4k4 |2,
(31)

where εij is the antisymmetric tensor in two dimensions.
The invariants listed in Eq. (30) are not complete in the sense

of determining a unique orbit. In particular, these invariants do
not distinguish between a state and its complex conjugate,
which may well lie on different orbits. Because I1–I6 are real,

Ii(|ψ〉) = Ii(|ψ〉∗). (32)

As reported by Acı̀n et al. [24], Grassl has shown that
this ambiguity can be removed by including a single binary
invariant based on a complex twelfth-degree polynomial in the
amplitudes aijk .

We now ask whether the invariants in Eq. (30) can be
generated via the formalism of Sec. II. The first three can
indeed be expressed quite simply in this way, e.g.,

I (ab) = tr{S(a,b)S(b,a)}

=
∑
ij

tr

[(
σa

i ⊗ σb
j

2

)
ρab

]2

= tr[(ρab)2] = tr[(ρc)2] = I2. (33)

The last line follows from the fact that the operators (σa
i ⊗

σa
j )/2 constitute a complete orthonormal basis for the space

of 4 × 4 matrices.
The Kempe invariant I5 fits particularly well into our

scheme. As we now show, this invariant is simply

I5 = I (abc) = tr[S(a,c)S(c,b)S(b,a)]. (34)

To see this, we start with the following expression for I (abc):

1
8 tr

[(
σa

l ⊗ σb
m

)
ρab

]
tr

[(
σb

m ⊗ σ c
n

)
ρbc

]
tr

[(
σ c

n ⊗ σa
l

)
ρca

]
,

(35)

in which summation over l, m, and n is implied. This
summation considerably simplifies the expression, because of
Eq. (23). This relation tells us how to connect up the indices
of the three density matrices, and we obtain the interlocking
pattern that we saw in Eq. (30):

I (abc) = (ρab)ij ′,i ′j (ρbc)jk′,j ′k (ρca)ki ′,k′i = I5. (36)

Of the set of invariants that Sudbery identifies, the only one
remaining is I6, a degree-eight polynomial in the components
aijk and their conjugates, which is proportional to the square
of the three-tangle. I6 is also invariant under SL(2,C) unlike
I1–I5, which do not have this higher invariance. Our formalism
does not produce I6 directly, though we can easily generate

a different polynomial of degree eight that is likewise alge-
braically independent of the first four invariants. It is defined
by any path that cycles twice between two of the qubits, that
is, any of the invariants

I (abab) = I (bcbc) = I (caca). (37)

One can write this invariant directly in terms of the reduced
density matrices ρab and ρba (which are related to each other by
the SWAP operation that interchanges the two qubits), following
precisely the pattern of index connections that we see in
Eq. (36). Now, however, because the same two-step path is
repeated, we use subscripts 1 and 2 on the indices to distinguish
the two round trips:

I (abab) = tr[S(a,b)S(b,a)S(a,b)S(b,a)]

= (ρab)i1j
′
1,i

′
1j1 (ρba)j1i

′
2,j

′
1i2 (ρab)i2j

′
2,i

′
2j2 (ρba)j2i

′
1,j

′
2i1 .

(38)

We can alternatively write this invariant in terms of the
components aijk:

I (abab) = ai1j2k1a
∗
i2j1k1

ai4j1k2a
∗
i3j2k2

ai3j4k3a
∗
i4j3k3

ai2j3k4a
∗
i1j4k4

.

(39)

In this latter form it is clear that the invariant is symmetric
under permutations of the qubits: By permuting the factors
of a and a∗, one can interchange the roles of the i, j , and k

indices.
To show that the invariants we have identified are al-

gebraically independent, it is sufficient to show that their
gradients at any point, together with the gradient of the
normalization invariant I1 = aijka

∗
ijk , constitute a linearly

independent set of vectors [3]. One finds that this is indeed
the case. So we now have the following list of path-based in-
variants, not quite identical to Sudbery’s but no less complete:

I (ab) = tr[S(a,b)S(b,a)],

I (bc) = tr[S(b,c)S(c,b)],

I (ca) = tr[S(c,a)S(a,c)], (40)

I (abc) = tr[S(a,c)S(c,b)S(b,a)],

I (abab) = tr[S(a,b)S(b,a)S(a,b)S(b,a)],

the last being symmetric under permutations of the three qubits
even though the path it is based on is not. The three kinds of
paths we have used in constructing our invariants are illustrated
in Fig. 2.

Notice that our construction provides an interpretation
of the Kempe invariant I (abc) = I5. In our measurement
scenario, in which each successive measurement collapses the
state of the next qubit, the Kempe invariant is the trace of
the transformation that results from following the triangular
path through all three qubits. Recall that at each stage in this
measurement scenario, the trace of the new M matrix is equal
to the probability of getting the desired outcome. Thus, the
resulting invariant tends to be larger if the collapsed state at
each step is strongly represented in the original reduced density
matrix of the qubit in question. The most extreme example of
this kind of consistency is the case of a completely factorable
state, in which the collapsed state must be proportional
to the original pure state of the given qubit. Indeed, the
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(a) I (ab) (b) I (bc)

(c) I (ca)

(d) I (abc) (e) I (abab)

FIG. 2. Graphical representations of the closed paths giving the
set of polynomial local SU(2) invariants for pure states of three qubits.

Kempe invariant is largest when the state is fully factorable
[I (abc) = 1]. One can also show the Kempe invariant takes
its minimal value for the W state |001〉 + |010〉 + |100〉 at
I (abc) = 2/9 [10].

V. LOCAL INVARIANTS USING THE SPIN FLIP

In Sec. IV we provided a complete set of algebraically
independent local SU(2) invariants by considering different
closed paths around the lattice. In this section we again
consider closed paths around the lattice but this time including
the spin flip operation on every qubit lifting the invariance of
the quantities produced to SL(2,C).

From the SU(2) invariant list, it turns out that we can
replace I (ab), I (bc), and I (ca) with I (ãb̃), I (b̃c̃), and I (c̃ã);
the invariants are still independent. Moreover, these “flipped”
invariants can also be interpreted in terms of entanglement.
One finds that

I (ãb̃) = tr(ρabρ̃ab) = τab + 1
2τabc,

I (b̃c̃) = tr(ρbcρ̃bc) = τbc + 1
2τabc, (41)

I (c̃ã) = tr(ρcaρ̃ca) = τca + 1
2τabc.

Here ρ̃ = (σ2 ⊗ σ2)ρT (σ2 ⊗ σ2) is the spin flipped state of the
two qubits, and τab is the tangle between qubits a and b, a
measure of their pairwise entanglement (it is the square of the
concurrence) [25]. The completely flipped version of I (abab),
that is, I (ãb̃ãb̃), likewise produces a nontrivial invariant, but it
is not algebraically independent of I (ãb̃), I (b̃c̃), and I (c̃ã).
A natural eighth-order SL(2,C) invariant is given by the
determinant of any of the link transformations, for example,

det [S(a,b)] = − 1
16τab(τab + τabc). (42)

One can see the determinant of the link transformations is
indeed SL(2,C) invariant from the way the link transforma-
tions change under arbitrary local SL(2,C) transformations
[Eq. (18)] and the property of the determinant det(AB) =
det(A) det(B). We can show this invariant is algebraically

(a) I (ãb̃) (b) I (b̃c̃)

(c)I (c̃ ã)

(d) I (ãb̃c̃) (e)det(S (a, b))

FIG. 3. Graphical representations of the closed paths giving the
set of polynomial local SL(2,C) invariants for pure states of three
qubits. Notice that I (ãb̃c̃), the flipped Kempe invariant, is the only
closed path to enclose area. It is also always equal to zero.

independent of I (ãb̃), I (b̃c̃), and I (c̃ã) using the same methods
of Sec. IV. The paths associated to each of the invariants are
illustrated in Fig. 3.

So far we have a set of four SL(2,C) invariants. They tell us
about the entanglements in the state since one can reconstruct
the amounts of entanglement, τab, τbc, τac, and τabc, from just
these four invariants. For example, the three-tangle can be
expressed as

τabc = 2
√

16 det S(a,b) + I (ãb̃)2. (43)

Even though the three-qubit labels do not enter this expression
symmetrically (there is no explicit reference to qubit c), the
three-tangle is symmetric under permutations of the qubits.
Similar expressions can be written for the two-tangles.

These four amounts of entanglement do not form a complete
set of algebraically independent invariants. To complete this set
we could use the SU(2) Kempe invariant, which one can verify
is algebraically independent of the four tangles; however, we
would also like an invariant with SL(2,C) local invariance. A
natural choice of loop is the one that gave the Kempe invariant.
Strangely enough, the completely flipped version of the Kempe
invariant, that is, I (ãb̃c̃), turns out to be exactly zero for all
pure three-qubit states as we prove in the following subsection.

A. Proof of I(ãb̃c̃) = 0 for any pure three-qubit state

From the definition of I (ãb̃c̃), one finds directly that

I (ãb̃c̃) = 1 − tr
(
ρ2

a

) − tr
(
ρ2

b

) − tr
(
ρ2

c

)
+ tr[(ρa ⊗ ρb)ρab] + tr[(ρb ⊗ ρc)ρbc]

+ tr[(ρa ⊗ ρc)ρac] − I5. (44)

Sudbery [3] showed that Kempe’s invariant can also be written
as

I5 = 3tr[(ρa ⊗ ρb)ρab] − tr
(
ρ3

a

) − tr
(
ρ3

b

)
= 3tr[(ρb ⊗ ρc)ρbc] − tr

(
ρ3

b

) − tr
(
ρ3

c

)
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= 3tr[(ρa ⊗ ρc)ρac] − tr
(
ρ3

a

) − tr
(
ρ3

c

)
. (45)

Using these relations we can rewrite I (ãb̃c̃) as

I (ãb̃c̃) = 1 − [
tr
(
ρ2

a

) + tr
(
ρ2

b

) + tr
(
ρ2

c

)]
+ 2

3

[
tr
(
ρ3

a

) + tr
(
ρ3

b

) + tr
(
ρ3

c

)]
. (46)

This last expression is a function only of the trace of powers
of the single-qubit density matrices. The Cayley-Hamilton
theorem for any 2 × 2 matrix X is

X2 − tr(X)X + det(X)I = 0. (47)

Multiplying this expression by X, taking the trace, and then
using the fact that for a single qubit, det ρ = (1/2)(1 − trρ2),
we obtain the relation

1/3 − tr(ρ2) + (2/3)tr(ρ3) = 0, (48)

which together with Eq. (46) shows that I (ãb̃c̃) = 0.

VI. OPERATIONAL INTERPRETATION OF INVARIANTS

Going back to our original thought experiment in Sec. II
we can obtain a rigorous operational interpretation of our
invariants as follows if we drop the restriction that Ma is
positive but still Hermitian. In other words, Ma represents
an observable rather than a measurement outcome. If we relax
the positivity, our invariant can be thought of as the average
fidelity between our initial observable outcome Ma and our
final observable outcome M ′

a resulting from the transform
around the loop associated with the particular invariant, I (C).
The average is taken over all possible initial outcomes Ma with
a fixed size. Making this idea more precise, we have

I (C) ∝ 〈tr(M†
aM

′
a)〉, (49)

where the brackets 〈.〉 denote the average.
The constraint on the Ma size is given by

tr(M†
aMa) = 2k2. (50)

In terms of the Pauli operator basis, this condition can be
written as

tr(M†
aMa) = 2

3∑
i=0

(
ma

i

)2 = 2k2. (51)

The ma
i must be real for Ma to be Hermitian and represent

the outcome of an observable. Similarly we can write the
outcome on a following the loop C in the Pauli operator basis
as (dropping the sub- and superscript a)

M ′ =
3∑

i=0

m′
iσi (52)

where

m′
i = S(C)ijmj . (53)

S(C) is the total transformation around the loop.

We can substitute these expressions into the equation for the
fidelity between transformed and initial observable outcomes
to give

tr(M†M ′) = 2
3∑

i=0

mim
′
i = 2

3∑
i,j=0

miS(C)ijmj . (54)

Our invariant I (C) is given by the elements S(C)ii , and
therefore we want to find an expression solely in terms of
these elements.

We now average this fidelity. Since Eq. (50) is the equation
of a three-sphere with radius k, we can perform the average
over the surface of the three-sphere. Writing the mi in
hyperspherical coordinates we have

m0 = k cos φ1,

m1 = k sin φ1 cos φ2,
(55)

m2 = k sin φ1 sin φ2 cos φ3,

m3 = k sin φ1 sin φ2 sin φ3.

We can now compute the average fidelity in terms of these
coordinates. It is given by

〈tr(M†M ′)〉 = 2

A

3∑
i,j=0

S(C)ij

∫
S

mimj dS, (56)

where S is the entire surface of the three-sphere, dS =
k2 sin2 φ1 sin φ2dφ1dφ2dφ3 is the area element, and A =
2π2k2 is its total surface area. One finds that

2

A

∫
S

mimj dS = k2

2
δij , (57)

and we obtain our desired result

〈tr(M†M ′)〉 = k2

2
I (C). (58)

One can also average over all observable sizes (or strengths)
k to obtain the same result up to a constant. The surface integral
over the sphere now becomes a volume integral over the ball.
We also note we can choose Ma to be an element of SU(2);
that is, a unitary that does not have to be Hermitian. In this
case k = 1, and the average is over the three Euler angles
describing a element of this group. For SU(2) m0 is real and
m1, m2, m3 are purely imaginary. The proof goes through in the
same way.

VII. CONCLUSIONS

In this paper we have presented a geometric approach to
constructing quantities that are invariant under local SU(2) and
SL(2,C) transformations. Our basic construction corresponds
to a scenario in which a measurement outcome on each particle
along a closed path defines the state of the next particle. We
have seen that one can produce in this way an algebraically
independent set of five invariants for a pure state of three
qubits, almost identical to the set of invariants identified by
Sudbery. One of these quantities, the Kempe invariant, has
been difficult to interpret as an amount of entanglement. In
our construction, though, it is the one that emerges the most
naturally. Unlike the other four invariants, the Kempe invariant
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I5 = I (abc) corresponds to a path that “encloses area” in the
sense that one does not retrace one’s steps. This property sets
the Kempe invariant apart from the others. Notice that, for
an area-enclosing path, one needs at least three qubits. In a
future paper we will exploit this area-enclosing property and
the existence of a special form of a polar decomposition for
correlation matrices to find quantities much more analogous
to lattice gauge-field theories. The gauge group will turn out to
be the group of Lorentz transformations and has an operational
interpretation in terms of general local qubit operations. The
invariants, the Wilson loops, in this construction, will be
related to the curvature of the correlation space [26].

We have also provided an operational interpretation of the
invariants, including the Kempe invariant, in terms of the
average fidelity between initial and transformed observable
outcomes.

We have concentrated on pure three-qubit states as a test
ground for our ideas; however, there is nothing specific here
about the numbers of qubits of our quantum state. Neither
is there any requirement for the state to be pure or for the
subsystems to be two level. The framework presented here can
be applied to any qudit state to generate local unitary invariants.
To make this generalization, one replaces the Pauli matrices
specific for qubits, by the generalized Gell-Mann matrices λi ,
an orthonormal basis for the (real) (d2 − 1)-dimensional vector
space of traceless Hermitian d × d matrices with the inner
product (X,Y ) = tr(XY ). For U ∈ SU(d), the components of
the local operation in the correlation matrix basis, Uij =
tr(UλiU†λj ), is a special orthogonal matrix in SO(d2 − 1),
representing U in the (d2 − 1)-dimensional (adjoint) repre-
sentation of SU(d). More precisely, the orthogonal matrices
with components Uij form a subgroup of SO(d2 − 1), being
the homomorphic image of SU(d) called the adjoint group,
which is the quotient of SU(d) by its center, the subgroup of
matrices ωId where ω is a dth root of unity. Thus, the property

UT U = Id still holds, and trS(C) is invariant under SU(d).
However, for SL(d,C) the connection with a Lorentz group
works only for d = 2.

We have seen for three pure qubits that only one area-
enclosing path exists, but as the number of qubits increases,
there should be many more Kempe-like quantities, since there
will be many more paths that enclose area. Our original con-
struction, on the other hand, produces many more invariants
even for three qubits, because it makes critical use of the
“shrinking” component of the transformation defined by the
spin correlation matrix.

One caveat with this approach as it stands is that we have
used only the information contained in the two-qubit density
matrices. For states with large numbers of qubits one cannot
obtain a full set of invariants since too much information about
the overall state is lost when tracing out all but the two qubits
in each link. This approach could be extended by considering
contractions of the full correlation tensor. For example, an
N qubit system is described by a real tensor Si1j2···zN

where
i1,j2, . . . ,zN take the values 0,1,2,3. It would be interesting
to find an operational interpretation of contractions of these N

tensors.
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