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We introduce the informational power of a quantum measurement as the maximum amount of classical
information that the measurement can extract from any ensemble of quantum states. We prove the additivity by
showing that the informational power corresponds to the classical capacity of a quantum-classical channel. We
restate the problem of evaluating the informational power as the maximization of the accessible information of a
suitable ensemble. We provide a numerical algorithm to find an optimal ensemble and quantify the informational
power.
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I. INTRODUCTION

The information stored in a quantum system is accessible
only through a quantum measurement, and the postulates
of quantum theory severely limit what a measurement can
achieve. The problem of evaluating the informational power
of a quantum measurement—that is, how much informative the
measurement is—has not been addressed yet in the literature,
despite the obvious practical relevance in several contexts,
such as the communication of classical information over noisy
quantum channels, the storage and retrieval of information
from quantum memories [1], and the purification of noisy
quantum measurements [2].

For which ensemble of states is a given quantum mea-
surement more informative? To answer this question, one can
consider two figures of merit: the probability of correct detec-
tion (in a discrimination scenario) and the mutual information
(in a communication scenario). Up to now, the only case of
optimization of an input ensemble in the literature [3] considers
the former as a figure of merit, benefiting from its linearity,
which simplifies calculations, and working out an explicit
form for the optimal states and the corresponding detection
probability. The latter case of optimization, namely, the
maximization of the mutual information over input ensembles,
is the aim of this work. To this purpose, we define the
informational power as the maximal mutual information that
a given quantum measurement is able to extract from an
ensemble of quantum states. We call the optimal ensemble
maximally informative.

The problem has analogies with those of quantifying clas-
sical capacity of quantum channels and of attaining accessible
information [1]. In fact, as we will show, the informational
power of a quantum measurement is the channel capacity of a
quantum-classical (q-c) channel [4], and the evaluation of the
informational power is the dual of the problem of accessible
information, in a sense that we clarify later.

The paper is organized as follows. In Sec. II we introduce
the informational power of quantum measurements. We
show that it is the classical capacity of a q-c channel and
prove additivity. We restate the problem of maximizing the
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informational power of a measurement as the problem of
maximizing the accessible information of a suitable ensemble
and provide a bound on the minimal number of states of
a maximally informative ensemble. In Sec. III, we provide
a numerical algorithm to find a maximally informative
ensemble for a given quantum measurement. In Sec. IV,
we classify some quantum measurements according to their
informational power, namely, quantum measurements with
commuting elements, real-symmetric and mirror-symmetric
quantum measurements, and the two-dimensional symmet-
ric informationally complete quantum measurement (i.e.,
the tetrahedral measurement). We summarize our results in
Sec. V.

II. INFORMATIONAL POWER OF QUANTUM
MEASUREMENTS

Let us recall some basic definitions [5] and set the notation.
A random variable X = {pi,Xi} is a set of outcomes {i}
with values {Xi} and prior probabilities {pi}. A joint random
variable (X1, . . . ,XN ) is defined analogously.

A measure of the uncertainty associated with a random
variable X is given by the Shannon entropy H (X)

H (X) := −
∑

i

pi log pi, (1)

where log2 x denotes the logarithm to base 2. A measure of
the remaining uncertainty of a random variable Y given that
the value of X is known is provided by the conditional entropy
H (Y |X) :

H (Y |X) := H (X,Y ) − H (X). (2)

A measure of how much two random variables X and Y are
correlated is given by the mutual information:

I (X : Y ) := H (X) + H (Y ) − H (X,Y ). (3)

The expected value of the mutual information of two random
variables X and Y , given the value of a third Z, is the
conditional mutual information:

I (X : Y |Z) := H (Y |Z) − H (Y |X,Z). (4)
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Given a Markov chain X → Y → Z, that is, a set of
three random variables X, Y , and Z, with Z conditionally
independent of X, one has the data-processing inequality
I (X : Y ) � I (X : Z). In fact,

I (X : Z) = I (X : Y ) − I (X : Y |Z), (5)

and I (X : Y |Z) � 0.
An ensemble of quantum states R = {pi,ρi}Mi=1 is repre-

sented by a set of M density matrices ρi (positive semidefinite
unit-trace operators), each with a prior probability pi . For
ensembles of pure states we replace the density matrices
with the normalized states, and we write V = {pi,|ψi〉}Mi=1.
A quantum measurement is described by a positive operator-
valued measurement (POVM) � = {�j }Nj=1, defined as a set
of N positive semidefinite operators �j that sum to identity,
namely,

∑N
j=1 �j = 1. If we consider an ensemble R =

{pi,ρi} and a POVM � = {�j }, the conditional probability
pj |i of outcome j given state ρi is given by the Born rule, that
is, pj |i = Tr[ρi�j ]. In the case of a POVM � performed over
an ensemble R, the mutual information is a measure of how
much the outcomes of the POVM � are correlated with states
ρi ; in fact,

I (R,�) :=
∑
i,j

piTr[ρi�j ] log2
Tr[ρi�j ]∑

k pkTr[ρk�j ]
. (6)

Now we can introduce the informational power of a POVM,
the quantity that we analyze in the rest of this work.

Definition 1. The informational power W (�) of a POVM
� is the maximum over all possible ensembles of states R of
the mutual information between � and R:

W (�) = max
R

I (R,�). (7)

We call any ensemble that maximizes the mutual information
a maximally informative ensemble for �.

A. Informational power as a classical capacity

Given the tensor product ⊗N
n=1�

n = {⊗N
n=1�

n
jn

} describing
the parallel use of N POVMs, by using entangled input states
one may ask if the informational power is superadditive.
We recall that the analogous quantity in the problem of
optimization of POVMs, namely, the accessible information,
is additive [6].

According to [4] (see also [7,8]) we provide the following
definitions.

Definition 2. Given a channel � from a Hilbert space H to
a Hilbert space K, the single-use channel capacity is given by

C1(�) := sup
R

sup
�

I (�(R),�), (8)

where the suprema are taken over all ensembles R in H and
over all POVMs � on K.

Definition 3. A q-c channel �� is defined as

��(ρ) :=
∑

j

Tr[ρ�j ]|j 〉〈j |, (9)

where � = {�j } is a POVM and |j 〉 is an orthonormal basis.
A q-c channel �� is a decision rule that maps quantum

states into classical states via a measurement �.

Proposition 1. The informational power of a POVM � =
{�j } is equal to the single-use capacity C1(��) of the q-c
channel ��; that is,

C1(��) = W (�). (10)

Proof. Consider an ensemble R = {pi,ρi} and a POVM
� = {�k}. Introduce the random variables X, Y , and Z.
Take X with prior probability pi . Take Y such that the
conditional probability of outcome j of Y given outcome i

of X is pj |i = Tr[�jρi]. Take Z such that the conditional
probability of outcome k of Z given outcome j of Y is
qk|j = 〈j |�k|j 〉. Clearly, the joint probability of outcome i

and k of X and Z, respectively, is given by piTr[�k��(ρi)],
so I (X : Z) = I (��(R),�), whereas I (X : Y ) = I (R,�).

Notice that X → Y → Z is a Markov chain, so Eq. (5)
holds. By choosing �k = |k〉〈k|, one has qk|j = δj,k , so
H (Y |Z) = 0, and I (X : Y |Z) = H (Y |Z) − H (Y |X,Z) = 0
for any {pi}. Thus,

sup
�

I (��(R),�) = I (��(R),{|k〉〈k|}). (11)

Since pi〈k|��(ρi)|k〉 = piTr[ρi�k], we have

C1(��) = sup
R

I (��(R),{|k〉〈k|}) = sup
R

I (R,�) = W (�).

(12)

�
Proposition 2. The informational power W (�) is an additive

quantity; that is,

W
( ⊗N

n=1 �n
) =

N∑
n=1

W (�n). (13)

Proof. Since the tensor product of q-c channels is a q-c
channel, that is, ⊗N

n=1��n = �⊗N
n=1�

n , the statement follows
immediately from Proposition 1 and from the additivity
property of the capacity for q-c channels [4,7]. �

B. Duality between informational power and accessible
information

According to [9], we provide the following definition.
Definition 4. The accessible information A(R) of an ensem-

ble R = {pi,ρi} is the maximum over all possible POVMs �

of the mutual information between R and �; namely,

A(R) = max
�

I (R,�). (14)

We call any POVM that maximizes the mutual information a
maximally informative POVM for R.

The accessible information of the ensemble R = {pi,ρi} is
upper bounded by the Holevo quantity [9],

A(R) � χ (R) := S(ρR) −
∑

i

piS(ρi), (15)

where S(ρ) := −Tr[ρ log2 ρ] is the von Neumann entropy
and ρR = ∑

i piρi . In contrast, one has the following lower
bound [10]:

A(R) � Q(ρR) −
∑

i

piQ(ρi), (16)
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where Q(ρ) := −∑
k(

∏
l �=k

λk

λk−λl
)λk log2 λk is the subentropy

of a quantum state, {λk} being the set of eigenvalues of ρ.
Since invertible density matrices are a dense subset, in the

following we assume ρ invertible. Given the ensemble S =
{qi,σi}, we call σS = ∑

i qiσi .
Definition 5. Given an ensemble S = {qi,σi}, we define the

POVM �(S) as

�(S) := {
qiσ

−1/2
S σiσ

−1/2
S

}
. (17)

Definition 6. Given a POVM � = {�j } and a density matrix
σ , we define the ensemble R(�,σ ) as

R(�,σ ) :=
{

Tr[σ�j ],
σ 1/2�jσ

1/2

Tr[σ�j ]

}
. (18)

Definition 5 corresponds to the so-called “pretty good”
measurement [11,12]. The ensemble-measurement duality
given by the definitions above was exploited in [13] to
obtain measurement-dependent lower and upper bounds on
A(R(�,σ )). The accessible information of the ensemble
R(�,σ ) has also been studied in [14], in the context of
quantifying the information-disturbance trade-off of quantum
measurements.

In the following we show that there exists a duality between
the informational power and the accessible information that
allows us to recast many results from the latter context to the
former one. Notice that R(�(S),σS) = S and, analogously,
�(R(�,σ )) = �. Moreover, for any ensemble S and POVM
�, one has

I (S,�) = I (R(�,σS),�(S)). (19)

Proposition 3. The informational power of a POVM � =
{�j } is given by

W (�) = max
σ

A(R(�,σ )). (20)

The ensemble S∗ = {q∗
i ,σ ∗

i } is maximally informative for the
POVM � if and only if σS∗ = arg maxσ A(R(�,σ )) and the
POVM �(S∗) is maximally informative for the ensemble
R(�,σS∗ ).

Proof. From the definitions of informational power and
accessible information, and from Eq. (19), one has

W (�) = max
σ

max
S|σS=σ

I (S,�)

= max
σ

max
�(S)|σS=σ

I (R(�,σS),�(S))
(21)

= max
σ

max
�

I (R(�,σ ),�)

= max
σ

A(R(�,σ )).

Proposition 3 makes clear the duality between the informa-
tional power and the accessible information. A diagrammatic
representation of this duality is given by

�
σS∗−→ R(�,σS∗ )

↓ ↓
S∗ σS∗←− �(S∗)

where S∗ = arg maxS I (S,�) and �(S∗) =
arg max� I (R(�,σS∗ ),�). Horizontal arrows correspond
to the duality operation of Definitions 5 and 6. Moving in

the sense of the arrow corresponds to applying Eq. (18), thus
requiring σS∗ . Moving in the opposite sense corresponds to
applying Eq. (17). The vertical arrow from � to S∗ indicates
that S∗ is maximally informative for the POVM �, whereas
the vertical arrow from R(�,σS∗ ) to �(S∗) indicates that
�(S∗) is maximally informative for the ensemble R(�,σS∗ ).

From Proposition 3 we can obtain a property of maximally
informative ensembles using Davies’ theorem [15].

Proposition 4. Given a D-dimensional POVM � =
{�j }, there exists a maximally informative ensemble S∗ =
{q∗

i ,σ ∗
i }Mi=1, with all σ ∗

i pure and D � M � D2.
Proof. By Proposition 3, S∗ is maximally informative for �

if and only if σS∗ = arg maxσ A(R(�,σ )) and �(S∗) is max-
imally informative for R(�,σS∗ ). By Davies’ theorem [15],
there exists a maximally informative POVM �(S∗) with M

rank 1 elements and D � M � D2, so the statement follows.
For some classes of POVMs it is possible to improve the

bound on the number of elements of a maximally informative
ensemble as follows.

Definition 7. An ensemble S = {qi,σi} on a Hilbert space
H is real if there exists a basis on H relative to which all σi

have real matrix elements.
Definition 8. A POVM � = {�j } on a Hilbert space H is

real if there exists a basis on H relative to which all �j have
real matrix elements.

Proposition 5. Given a D-dimensional real POVM � =
{�j }, there exists a maximally informative real ensemble S∗ =
{q∗

i ,σ ∗
i }Mi=1, with all σ ∗

i pure and D � M � D(D + 1)/2.
Proof. By Proposition 3, S∗ is maximally informative for

� if and only if σS∗ = arg maxσ A(R(�,σ )) and �(S∗) is
maximally informative for R(�,σS∗ ). By Lemma 5 of [16],
there exists a maximally informative POVM �(S∗) with M

rank 1 elements and D � M � D(D + 1)/2, so the statement
follows.

III. EVALUATION OF THE INFORMATIONAL POWER

Given a POVM, it is in general a hard task to provide an
explicit form for the maximally informative ensemble, due to
the nonlinearity of the mutual information as a figure of merit.
In the following, we prove some necessary conditions for
attaining informational power, and we make use of these results
to provide an iterative algorithm converging to the maximally
informative ensemble. In this section it is convenient to take
the states of the ensemble unnormalized, with the norm giving
the prior probability of each state. Therefore we also use the
notation for the ensemble V := {|ψi〉}, with prior probability
pi = ||ψi ||2.

A. Necessary conditions to attain informational power

When one optimizes the informational power, considering
only ensembles of pure states is not restrictive, as shown in
Proposition 4. We provide here a short alternative proof of this
fact, which is independent of Davies’ theorem [15].

Proposition 6. For any given POVM � = {�j }, there exists
a maximally informative ensemble made of pure states.

Proof. Consider an ensemble R = {pi,ρi}. Each of the
states can be decomposed on the basis of its orthogonal
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eigenvectors as ρi = ∑
k |ψik〉〈ψik|, with

∑
k ||ψik||2 = 1, ∀i.

Denote by V = {|ψik〉} the ensemble of such pure states.
For three random variables X, Y , and Z, we have

I (X : Z) = H (Z) − H (Z|X)

� H (Z) − H (Z|X,Y ) = I (X,Y : Z), (22)

since conditioning reduces entropy. We take X distributed
according to pi . If we set the joint probability pi,j of
outcome i of X and j of Z to be pi,j = piTr[�jρi], we
have I (X : Z) = I (R,�). If we set the joint probability pi,k,j

of outcomes i, k, and j of X, Y and Z, respectively, to be
pi,k,j = pi〈ψi,k|�j |ψi,k〉, we have I (X,Y : Z) = I (V,�), and
hence I (V,�) � I (R,�). Clearly, the maximum of I (R,�)
over R can be searched only among ensembles of pure states.

Now we turn to the problem of finding necessary conditions
for an ensemble of pure states to be maximally informative for
a given POVM � = {�j }. For any ensemble V = {|ψi〉}, by
defining

�′
i :=

N∑
j=1

log2
〈ψi |�j |ψi〉

||ψi ||2
∑M

k=1〈ψk|�j |ψk〉
�j, (23)

we notice that the mutual information I (V,�) can be written
as I (V,�) = ∑

i〈ψi |�′
i |ψi〉.

Proposition 7. Given a POVM � = {�j }, a necessary
condition for the ensemble V = {|ψi〉}Mi=1 to be maximally
informative is that

�′
i |ψi〉 = I (V,�)|ψi〉, ∀i = 1, . . . ,M, (24)

where �′
i is given in Eq. (23).

Proof. Upon introducing a Lagrange multiplier λ to con-
strain the normalization of the input ensemble, let us consider
the expression

C =
M∑
i=1

〈ψi |�′
i |ψi〉 + λ

(
M∑
i=1

||ψi ||2 − 1

)
. (25)

By equating to 0 the derivative of Eq. (25) with respect to each
〈ψi |, we obtain M extremal equations which are necessary
conditions for a maximally informative ensemble, namely,

∂C

∂〈ψi | = [�′
i + (λ − 1)1]|ψi〉 = 0, ∀i = 1, . . . ,M. (26)

Upon redefining µ = 1 − λ, we can rewrite the extremal
equations as �′

i |ψi〉 = µ|ψi〉. By multiplying both sides on the
left by |ψi〉 and summing over i, we notice that µ = I (V,�).

Corollary 1. Given a POVM � = {�j }, a necessary
condition for V = {|ψi〉}Mi=1 to be maximally informative is
that

I (V,�) =
√√√√ M∑

i=1

〈ψi |�′
i
2|ψi〉. (27)

Proof. The result follows immediately by multiplying
Eq. (24) on the left by its Hermitian adjoint and summing
over i. �

B. An iterative algorithm to maximize informational power

In the following we provide a steepest-ascent iterative
algorithm which is effective in finding a maximally informative

ensemble for a given POVM. A similar algorithm for the
evaluation of the accessible information for a given ensemble
is given in [17].

Algorithm 1. The following steepest-ascent algorithm con-
verges to a maximum of the informational power. For arbitrary
ensemble V 0 = {|ψ0

i 〉}Mi=1, evaluate V n = {|ψn
i 〉}Mi=1 at any

order n by the following steps.
(1) Given V n = {|ψn

i 〉}Mi=1, evaluate �′n = {�′
i
n}Mi=1 ac-

cording to

�′
i

n =
N∑

j=1

log2

〈
ψn

i

∣∣�j

∣∣ψn
i

〉
∑M

k=1

〈
ψn

k

∣∣�j

∣∣ψn
k

〉�j − log2

∣∣∣∣ψn
i

∣∣∣∣2
1. (28)

(2) Pick up a small enough positive α and evaluate∣∣ψ̂n+1
i

〉 = [
(1 − α)1 + α�′

i

n]
∣∣ψn

i

〉
. (29)

(3) Obtain V n+1 as

∣∣ψn+1
i

〉 =
∣∣ψ̂n+1

i

〉
√∑M

i=1

∣∣∣∣ψ̂n+1
i

∣∣∣∣2
. (30)

Proof. Consider POVM � = {�j } and an ensemble V n =
{|ψn

i 〉}Mi=1, so Eq. (28) is just the definition given in (23).
The algorithm we are considering is a steepest-ascent

algorithm. We move the ensemble in the direction of the
gradient of the mutual information, namely,

∇I (V,�) =
(

∂I

∂〈ψ1| , . . . ,
∂I

∂〈ψM |
)

= ((�′
1 − 1)|ψ1〉, . . . ,(�′

M − 1)|ψM〉), (31)

which ensures that we follow the greatest increase in the mutual
information. So, if we set the iteration to be(∣∣ψ̂n+1

1

〉
, . . . ,

∣∣ψ̂n+1
M

〉)
= (1 − α)

(∣∣ψn
1

〉
, . . . ,

∣∣ψn
M

〉) + α∇I (�,V n), (32)

we obtain Eq. (29).
Then Eq. (30) is just the normalization of the updated

ensemble to satisfy
∑M

i=1 ||ψi ||2 = 1. By construction, one
has I (V n+1,�) � I (V n,�).

As for all steepest-ascent algorithms, there is no protection
against the possibility of convergence toward a local, rather
than a global, maximum, whence one should run the algorithm
for different initial ensembles to discriminate between local
and global maxima.

Any ensemble can be used as a starting point, except for a
subset corresponding to the minima of the mutual information
(e.g., all the ensembles composed by a single quantum state).
These minima are unstable fix points of the iteration, so
even small perturbations let the iteration converge to some
maximum. Due to Propositions 4 and 5, it is sufficient to
consider ensembles with D2 states for a D-dimensional POVM
and ensembles with D(D + 1)/2 states for a real POVM.

The parameter α controls the length of each iterative step,
so for α too large, an overshooting can occur. This can be kept
under control by evaluating the mutual information I (V,�) at
the end of each step: if I (V,�) decreases instead of increasing,
we are warned that we have taken α too large. An efficient
evaluation of I (V,�) can be performed through Corollary 1.
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IV. CLASSIFICATION OF QUANTUM MEASUREMENTS

The informational power introduces a complete order-
ing between POVMs. In the following, we classify some
POVMs according to their informational power. We con-
sider POVMs with commuting elements (Sec. IV A), real-
symmetric POVMs (Sec. IV B), mirror-symmetric POVMs
(Sec. IV C), and the two-dimensional symmetric information-
ally complete POVM (Sec. IV D),

A. POVMs with commuting elements

Proposition 8. Given a D-dimensional POVM � =
{�j }Nj=1 with commuting elements, there exists a maximally
informative ensemble V = {p∗

i ,|i〉}Mi=1 of M � D states,
where |i〉 denotes the common orthonormal eigenvectors
of �, and the prior probabilities p∗

i maximize the mutual
information:

W (�) = max
pi

∑
i,j

pi〈i|�j |i〉 log2
〈i|�j |i〉∑

k pk〈k|�j |k〉 . (33)

Proof. For any ensemble R = {pi,ρi}, consider the diagonal
ensemble S = {pi,σi}, where σi = ∑

k〈k|ρi |k〉|k〉〈k|, with |k〉
denoting the common eigenvectors of �. Clearly, Tr[�jσi] =
Tr[�jρi], whence I (R,�) = I (S,�). As in Proposition 6, it is
sufficient to look for the maximum over the prior probabilities
pi , with fixed states |i〉. Hence Eq. (33) follows.

We notice that M � D since some of the prior pi obtained
by optimizing Eq. (33) can be 0. Equation (33) is a concave
function of the prior probabilities, and a numerical algorithm
for performing the optimization is provided in [18].

As an application, we consider the POVM �(η) = {�(η)
j }Dj=1

describing the projective measurement over an orthonormal
basis {|j 〉} in dimension D affected by isotropic noise; that is,

�
(η)
j = η|j 〉〈j | + (1 − η)

1

D
, j = 1, . . . ,D. (34)

When η = 1, a maximally informative ensemble is clearly
V = {pi,|i〉}, with pi = 1/D. For η < 1, by Proposition 8,
ensemble V is maximally informative for {pi} maximizing
Eq. (33). By the Born rule, the conditional probability pj |i
of outcome j given state |i〉 is pj |i = ηδi,j + 1−η

D
. Consider

two random variables X and Y with joint probability pi,j =
pipj |i and marginal probabilities pi and qj = ∑

i pipj |i ,
respectively. Clearly, I (X : Y ) = I (V,�(η)). If pi = 1

D
, then

qj = 1
D

, and the Shannon entropy H (Y ) of Y is obviously
maximized; that is, H (Y ) = log2 D. Moreover, the conditional
Shannon entropy H (Y |X) is independent of pi , and in fact one
has

H (Y |X) = −
(

η + 1 − η

D

)
log2

(
η + 1 − η

D

)

− (D − 1)
1 − η

D
log2

1 − η

D
. (35)

Since I (X : Y ) = H (Y ) − H (Y |X), the maximum of the
mutual information is attained for pi = 1

D
, and the informa-

tional power is W (�(η)) = log2(D) − H (Y |X). As expected,
the informational power is an increasing function of η and is
plotted in Fig. 1, for different values of D.

0

0.5
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0 0.2 0.4 0.6 0.8 1

W
(Π

)

η
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D=3 (middle line)

D=2 (lower line)

FIG. 1. (Color online) Informational power W (�) of the D-
dimensional POVM �(η) projecting on the orthonormal basis affected
by isotropic noise parameterized by η [see Eq. (34)], as a function of
η, for dimension D = 2,3,4.

This result can be useful to prove that the protocols
proposed in [2] for the purification of noisy quantum mea-
surements are indeed optimal. The aim of purification of
noisy quantum measurements is to recast many uses of a
noisy POVM to a single use of an ideal POVM. More
precisely, given an ensemble R and N uses of a noisy
POVM �, one can ask what channel � maximizes the
mutual information I (�(R),�⊗N ). For example, suppose that
we have the ensemble V = {1/D,|i〉}Di=1 and N uses of the
D-dimensional noisy POVM �(η) as in Eq. (34). Since we
have shown that the maximally informative ensemble for
�(η) is V , by Proposition 2, the channel � that maximizes
I (�(V ),�(η)⊗N ) is the orthogonal cloning; that is, �(ρ) =∑D

i=1〈i|ρ|i〉(|i〉〈i|)⊗N .

B. Real-symmetric POVMs

In the following we parametrize any pure state as |ψ〉 =
( cos θ

sin θ
), in the basis of eigenvectors |0〉 and |1〉 of the Pauli

matrix σz. We denote by ZN the group of rotations of π/N

around the y axis, generated by U = exp(−i π
N

σy).
Definition 9. A two-dimensional real ensemble V =

{pi,|ψi〉}M−1
i=0 , with |ψi〉 = Ui |ψ0〉 for any fixed |ψ0〉, is called

real ZM symmetric.
Definition 10. A two-dimensional real POVM � =

{�j }N−1
j=0 , with �j = 2

N
|πj 〉〈πj | and |πj 〉 = Uj |π0〉 for any

fixed |π0〉, is called real ZN symmetric.
Without loss of generality, we take |π0〉 = |0〉.
Proposition 9. For any real ZN -symmetric POVM

� = { 2
N

|πj 〉〈πj |}N−1
j=0 , the ensemble V = {pi,|ψi〉}M−1

i=0 , with

|ψi〉 = ( sin θi

cos θi

), is maximally informative if M , {θi}, and {pi}
are taken as either

(1) (real ZN symmetric) M = N , θi = πi
N

, and pi = 1
N

or
(2) (real Y shaped) M = 3, θ0 = 0, θ1 = πn

N
, θ2 = −πn

N
, and

p0 = 1 − 2p1, p1 = p2 = 1
4 sin2 πn

N

, ∀n such that 0 � p0 � 1.
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The informational power of � is given by

W (�) =
N−1∑
j=0

[
2

N
sin2

(
πj

N

)]
log2

[
2

N
sin2

(
πj

N

)]
+ log2 N.

(36)

Proof. The conditional probability pj |i of outcome j given
state |ψi〉 is pj |i = 2

N
sin2(θi − πj

N
), and the probability qj of

outcome j is qj = ∑M−1
i=0 pipj |i .

Consider the random variables X and Y , with X distributed
according to pi , and Y such that the conditional probability
of outcome j of Y given outcome i of X is pj |i . Clearly,
I (X : Y ) = I (V,�).

By setting f (θi) = ∑N−1
j=0 pj |i log2 pj |i , we have, for the

joint entropy, H (Y |X) = −∑M−1
i=0 pif (θi). As shown in

Lemma 3 of [16], f (θ ) attains its global maximum for θ = πk
N

,
k ∈ N. Thus by choosing {θi} multiples of π

N
, H (Y |X) attains

its minimum H (Y |X) = f (0), independent of M and {pi}.
By taking the real ZN -symmetric or the real Y -shaped

parametrizations for M , {θi}, and {pi}, we have qj = 1
N

, so the
entropy H (Y ) attains its maximum; that is, H (Y ) = log2 N .
Since I (X : Y ) = H (Y ) − H (Y |X), the proposition remains
proved. �

We notice that for a real ZN -symmetric POVM � =
{ 2

N
|πj 〉〈πj |}, any maximally informative ensemble V =

{pi,|ψi〉} given in Proposition 9 is such that every state
|ψi〉 is orthogonal to one of the |πj 〉. Considering the real
Y -shaped parametrization, we observe that if N is even, one
can chose n = N

2 , obtaining V = {1/2,|i〉}, with i = 0,1.
With this choice, the maximally informative real Y -shaped
ensemble is minimal. For some real ZN -symmetric POVMs,
the maximally informative ensembles with a minimal number
of states are represented in Fig. 2.

The real Z3-symmetric POVM � is usually called the
trine measurement. The informational power of � is W (�) =
log2 3/2 by Proposition 9. The maximally informative en-
semble for � parameterized as in Proposition 9 is usually
called antitrine. The analogous problem of maximization of
the accessible information for real-symmetric ensembles has
been addressed by Holevo [9] and by Sasaki et al. [16].

C. Mirror-symmetric POVMs

In this subsection we apply the duality shown in Propo-
sition 3 between the informational power and the accessible
information to mirror-symmetric POVMs.

Definition 11. We call a mirror-symmetric ensemble any
two-dimensional real ensemble S = {pi,|ψi〉} such that for
any |ψi〉, there exists a |ψk〉 = σz|ψi〉 and pi = pk .

Definition 12. We call a mirror-symmetric POVM any
two-dimensional real POVM � = {�j } with �j = nj |λj 〉〈λj |
such that for any |λj 〉, there exists a |λl〉 = σz|λj 〉 and nj = nl .

The problem of accessible information for mirror-
symmetric POVMs has been addressed in [19]. From Defi-
nitions 5 and 6, it immediately follows that if the ensemble
S is mirror symmetric, the POVM �(S) is mirror symmetric,
and that if the POVM � is mirror symmetric, the ensemble
R(�,σ ) is mirror symmetric, for any density matrix σ .

|π0〉

|π1〉
|π2〉

|π3〉

|π4〉

|π5〉
|π6〉

|ψ0〉

|ψ1〉

|ψ2〉

|π0〉

|π1〉
|π2〉

|π3〉

|π4〉

|π5〉
|π6〉

|ψ0〉

|ψ1〉

|ψ2〉

|π0〉

|π1〉

|π2〉

|π3〉

|π4〉

|ψ0〉

|ψ1〉

|ψ2〉

|π0〉

|π1〉

|π2〉

|ψ0〉

|ψ1〉

|ψ2〉

FIG. 2. (Color online) Real ZN -symmetric POVMs � =
{ 2

N
|πj 〉〈πj |}N−1

j=0 (blue vectors labeled |πj 〉) for N = 3 (upper left),
N = 5 (upper right), and N = 7 (lower left and lower right). A
maximally informative ensemble (red vectors labeled |ψi〉) V =
pi,|ψi〉M−1

i=0 with a minimal number of states is represented for each
POVM. For N = 7, there are two inequivalent maximally informative
ensembles (lower left and lower right). The angle between state

|ψ〉 = ( cos θ

sin θ
) and state |ψ〉 = ( cos θ

sin θ
) is 2(θ1 − θ0), as in the Bloch

sphere representation. The length of the vector corresponding to state
|ψi〉 is proportional to

√
pi .

Proposition 10. Given a mirror-symmetric POVM � =
{�j }, there exists a maximally informative ensemble S =
{pi,|ψi〉}M−1

i=0 such that S is mirror symmetric and M � 4.
Proof. By Proposition 3, S∗ is maximally informative

for � if and only if σS∗ = arg maxσ A(R(�,σ )) and �(S∗)
is maximally informative for R(�,σS∗ ). By Proposition 2
in [19], there exists a maximally informative mirror-symmetric
four-element POVM �(S∗), so the statement follows.

As an application we consider the mirror-symmetric POVM
� = {nj |πj 〉〈πj |}2

j=0, with

|π0〉 =
(

1
0

)
, |π1〉 =

(
sin θ

cos θ

)
, |π2〉 =

(
sin θ

− cos θ

)
,

(37)

and n0 = cos 2θ
cos2 θ

and n1 = n2 = 1
2 cos2 θ

. Figure 3 shows the
informational power W (�) as a function of θ , as obtained
by Algorithm 1. �

D. Two-dimensional SIC POVM

According to [20] and [21], we provide the following
definition.

Definition 13. A D-dimensional POVM � = {�j }N−1
j=0

with N = D2 elements �j = 1
D

|πj 〉〈πj | with invariant inner
product Tr[�j�l] = [D2(D + 1)]−1, for any i �= j , is called
a symmetric informationally complete (SIC) POVM.
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FIG. 3. (Color online) Informational power of a mirror-
symmetric POVM � = {nj |πj 〉〈πj |}2

j=0, with |πj 〉 as in Eq. (37),
as a function of θ . The minimum is attained for θ = π/6, where
� corresponds to the trine POVM and a maximally informative
ensemble is the antitrine. The maxima at θ = 0 and θ = π/4
correspond to the degenerate case of the POVM projecting on an
orthonormal basis. The label M = 2 or M = 3 denotes the minimum
number M of states of a maximally informative ensemble in each of
the three regions.

For D = 2 there exists only one SIC POVM � =
{ 1

2 |πj 〉〈πj |}3
j=0, with

|π0〉 =
(

1

0

)
, |π1〉 =

⎛
⎝ 1√

3√
2
3

⎞
⎠ ,

(38)

|π2〉 =
⎛
⎝ 1√

3

ei 2
3 π

√
2
3

⎞
⎠ , |π3〉 =

⎛
⎝ 1√

3

ei 4
3 π

√
2
3

⎞
⎠ .

Since these states lie on the four vertex of a tetrahedron, this
POVM is usually called the tetrahedron.

Proposition 11. Given the two-dimensional SIC POVM
� = { 1

2 |πj 〉〈πj |}3
j=0, the ensemble V = { 1

4 ,|ψi〉}3
i=0 with

|ψ0〉 =
(

0
1

)
, |ψ1〉 =

( √
2
3

− 1√
3

)
(39)

|ψ2〉 =
⎛
⎝

√
2
3

ei 1
3 π 1√

3

⎞
⎠ , |ψ3〉 =

⎛
⎝

√
2
3

ei 5
3 π 1√

3

⎞
⎠

is maximally informative, and the informational power is
W (�) = log2

4
3 .

Proof. Consider an ensemble V = {pi,|ψi〉} parameter-

ized as |ψi〉 = (
sin θi

eiφi cos θi

). Call pj |i = |〈ψi |πj 〉|2 the condi-

tional probability of outcome j given state |ψi〉, and qj =∑3
i=0 pipj |i the probability of outcome j .
Consider the random variables X and Y , with X distributed

according to pi , and Y such that the conditional probability
of outcome j of Y given outcome i of X is pj |i . Clearly,
I (X : Y ) = I (V,�).

By setting f (θi,φi) = ∑N−1
j=0 pj |i log2 pj |i , we have, for

the joint entropy, H (Y |X) = −∑M−1
i=0 pif (θi,φi). As it

is easy to show, f (θ,φ) attains its global maximum
log2 3 at θ = 0 for any φ, and at θ = arccos( 1√

3
) for

φ = π
3 , φ = π , and φ = 5π

3 . Thus, making one of these
choices for {θi,φi}, H (Y |X) attains its minimum H (Y |X) =
log2 3.

Moreover, by setting M = 4 and pi = 1/4, we have qj = 1
4 ,

so the entropy H (Y ) attains its maximum; that is, H (Y ) =
log2 4. Since I (X : Y ) = H (Y ) − H (Y |X), the proposition
remains proved.

We notice that for the two-dimensional SIC POVM � =
{ 1

2 |πj 〉〈πj |}3
j=0, the maximally informative ensemble V =

{ 1
4 ,|ψi〉}3

i=0 in Proposition 11 is such that any state |ψi〉
is orthogonal to one state |πj 〉. Since the states of V lie
on the vertexes of a tetrahedron, this ensemble is usually
called antitetrahedron. The accessible information of the
ensemble which enjoys the same symmetry as � has been
proven in [15] to be log2 4/3. We want to comment that
generally SIC POVMs have low informational power, as
happens for overcomplete measurements: for informational
completeness one must pay the price of low informational
power. �

V. CONCLUSIONS

In this work we have introduced the informational power
of a quantum measurement as the maximum amount of
classical information that the POVM can extract from any
ensemble of states. We have shown that it is the classical
capacity of a q-c channel and proved additivity. We have
restated the problem of maximizing the informational power
of a POVM as the problem of maximizing the accessible
information of a suitable ensemble and provided a bound on
the minimal number of states of a maximally informative
ensemble. Then we have provided a numerical algorithm
to find a maximally informative ensemble for a given
POVM. Finally, we have classified some POVMs according
to their informational power, namely, POVMs with commut-
ing elements, real-symmetric POVMs, and mirror-symmetric
POVMs.

The results presented have obvious practical relevance
in several contexts, such as the communication of classical
information over quantum channels and the storage and
retrieval of information from quantum memories.

Note added in proof. Recently, two related papers have
appeared on arXiv [22,23]. In particular, Holevo [23] studied
the informational power in the relevant infinite-dimensional
case.
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