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Mutually unbiased bases in six dimensions: The four most distant bases
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We consider the average distance between four bases in six dimensions. The distance between two orthonormal
bases vanishes when the bases are the same, and the distance reaches its maximal value of unity when the bases
are unbiased. We perform a numerical search for the maximum average distance and find it to be strictly smaller
than unity. This is strong evidence that no four mutually unbiased bases exist in six dimensions. We also provide
a two-parameter family of three bases which, together with the canonical basis, reach the numerically found
maximum of the average distance, and we conduct a detailed study of the structure of the extremal set of
bases.
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I. INTRODUCTION

Two orthonormal bases of a Hilbert space are said to be
unbiased if the transition probability from any state of the
first basis to any state of the second basis is independent of
the two chosen states. In the finite dimensional case of Cd ,
the normalization of the two basis states |ai〉 and |bj 〉 of two
unbiased bases implies the defining property

|〈ai |bj 〉|2 = 1

d
for all i,j = 1,2, . . . ,d. (1)

This maximum degree of incompatibility between two bases
[1,2] states that the corresponding nondegenerate observables
are complementary. Indeed, the technical formulation of
Bohr’s principle of complementarity [3] that is given in Ref. [4]
relies on the unbiasedness of the pair of bases. Textbook
discussions of this matter can be found in Refs. [5,6], and
Ref. [7] is a recent review on mutually unbiased bases (MUB),
which are sets of bases that are pairwise unbiased.

In addition to playing a central role in quantum kinematics,
we note that MUB are important for quantum state tomogra-
phy [8,9], for quantifying wave-particle duality in multipath
interferometers [10], and for various tasks in the area of
quantum information, such as quantum key distribution [11]
or quantum teleportation and dense coding [12–14]. In the
context of quantum state tomography, d + 1 von Neumann
measurements provide d − 1 independent data, each in the
form of d probabilities with unit sum, so that in total one has
the required d2 − 1 real numbers that characterize the quantum
state. A set of d + 1 MUB is optimal, in a certain sense [9], for
these measurements—if there is such a set. Such a set is termed
maximal; there cannot be more than d + 1 MUB, since there
are at most d + 1 (d − 1)-dimensional orthogonal subspaces
in a (d2 − 1)-dimensional real vector space [9].

Ivanovic [8] gave a first construction of maximal sets of
MUB if the dimension d is a prime, and Wootters and Fields [9]
succeeded in constructing maximal sets when d is the power of
a prime. These two cases have been rederived in various ways;
see Refs. [15–17], for example. For other finite values of d,
maximal sets of MUB are unknown, but it is always possible
to have at least three MUB (see [7] and references therein).

The smallest non-prime-power dimension is d = 6. Little
is known for sure about the six-dimensional case, for which

Zauner has conjectured that no more than three MUB exist
[18]. Numerical studies seem to support Zauner’s conjecture
[19,20]. Computer-aided analytical methods, such as Gröbner
bases or semidefinite programming, have also been applied to
this problem [21], but limitations in computational power have
so far prevented any definitive answer.

Recently, Bengtsson et al. [22] introduced a distance
between two bases for a quantification of the notion of
“unbiasedness.” The distance vanishes when the two bases are
identical and attains its maximal value of unity when they are
unbiased. One can then consider the average squared distance
(ASD) between several bases and search for its maximal
value. Importantly, this ASD is unity if the bases are pairwise
unbiased, and only then. A numerical search for the maximum
of the ASD between four bases in six dimensions can be
performed. Actually, a numerical study on essentially the same
quantity was recently carried out by Butterley and Hall [23]. In
terms of the ASD, they found the surprisingly large but strictly
less-than-one maximal value of 0.9983. This is strong evidence
that no more than three MUB exist in six dimensions. However,
the set of bases behind this maximum value is not reported
in Ref. [23].

It is the objective of the present paper to close this gap.
In Sec. II we review the notion of Bengtsson et al. for the
distance between bases. We perform a numerical search for
the maximum ASD between four bases in six dimensions and
report, in Sec. III, our results which confirm the maximum
found by Butterley and Hall. We then provide a two-parameter
family of three bases which, together with the canonical basis,
reaches the numerically found maximum, for which we give
a closed expression. We study this family in detail in Sec. IV
and conclude with a summary and outlook. Some matters of a
technical nature are reported in the appendixes.

II. DISTANCE BETWEEN BASES

The main goal of this paper is twofold. First we numerically
search for the maximum value of the ASD between four bases
in six dimensions and see that we cannot obtain four MUB.
And second, we provide a two-parameter family of three
bases which, together with the canonical basis, reaches the
numerically found maximum.
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Following Bengtsson et al. [22], we consider two orthonor-
mal bases of kets of Cd , a = {|ai〉} and b = {|bj 〉}, and
quantify their squared distance by

D2
ab = 1 − 1

d − 1

d∑
i,j=1

(
|〈ai |bj 〉|2 − 1

d

)2

= 1

d − 1

d∑
i,j=1

|〈ai |bj 〉|2(1 − |〈ai |bj 〉|2) . (2)

Clearly, this distance is symmetrical, Dab = Dba and vanishes
when the bases are the same, that is, when the two sets of
projectors {|ai〉〈ai |} and {|bj 〉〈bj |} are identical; the maximal
distance is unity, Dab � 1; and this maximum is reached if the
bases are unbiased, |〈ai |bj 〉|2 = 1/d, and only then.

In the original reasoning by Bengtsson et al., Dab is
actually the chordal Grassmanian distance of two planes in
the (d2 − 1)-dimensional real vector space associated with
traceless Hermitian operators in the d-dimensional complex
Hilbert space. One can also view Dab as the Hilbert-Schmidt
distance between two rank-d statistical operators in Cd ⊗ Cd

that are in one-to-one correspondence with the d-dimensional
bases. Consult Appendix A for this matter.

For a set of k bases, we have the ASD between the
k(k − 1)/2 pairs of bases, given by

D2 = 2

k(k − 1)

k∑
a<b=1

D2
ab . (3)

Owing to the normalization, we have D2 � 1, with D2 = 1
only if the k bases are pairwise unbiased.

With this notion of distance at hand, we can numerically
search for the maximum ASD between four bases in six
dimensions and see whether we obtain D2 = 1, or in other
words, if we can find four MUB. This search is the subject
matter of the next section.

III. NUMERICAL STUDY

Our numerical approach relies on the mapping between
one-qudit operators and two-qudit states established in Chap-
ter 3 of Ref. [7]. Plus we use the steepest-ascent algorithm to
find the maximum ASD between four bases in six dimensions.
Details of the numerical method are presented in Appendix A.
Our numerical results are reported below.

A similar numerical study was recently performed by But-
terley and Hall [23] who minimized 1 − D2 with the so-called
Levenberg-Marquardt algorithm. Our approach confirms the
extremal value they found, and we also exhibit the structure of
the four bases that maximize D2 for d = 6.

We have used our code not only in dimension d = 6 but
also for other d values as a means of benchmarking. We have
run our code 2 500 times for two to five dimensions, 10 000
times for six dimensions, and 300 times for seven dimensions,
both for k = d + 1 bases and for four bases. Our results are
summarized in Table I.

Only in two cases, the maximum ASD does not reach the
upper bound of D2 = 1. They are the cases of four bases in
two and six dimensions.

TABLE I. Rate of success and CPU time for the steepest-ascent
search for the maximum ASD. The absolute maximum of D2 = 1
is always reached for d + 1 bases in dimensions d = 2, 3, 4, and 5.
As the seven-dimensional case illustrates, the difficulty of finding the
global maximum increases rapidly with the dimension because there
are many local maxima at which the steepest-ascent search can get
stuck. We have also looked for the largest ASD between four bases
in two to seven dimensions. We could not find four MUB in two or
six dimensions. The CPU time refers to a Intel R©CoreTM2 Duo CPU
E6550 processor at 2.33 GHz, supported by 3.25 GB of RAM.

d + 1 bases 4 bases

Success CPU Success CPU
d D2

max rate (%) time (s) D2
max rate (%) time (s)

2 1 100 0.049 8/9 100 0.108
3 1 99.9 0.272 1 99.9 0.272
4 1 100 1.268 1 100 0.976
5 1 99.7 4.432 1 59.8 10.995
6 0.9849 39.2 188.407 0.9983 69.6 20.158
7 1 3.8 467.157 1 1.1 101.002

At most, three MUB can be constructed in two dimensions.
Thus the maximum ASD between four bases has to be less than
unity. This example is interesting because it can be analytically
solved. In R3, the four bases correspond to the tetrahedron,
where each edge represents a basis.

Importantly, we have searched for the maximum ASD
between four bases in six dimensions. We have found the
largest value to be D2

max = 0.9983. In the search for the global
maximum, we have also found a few other local maxima whose
frequencies of occurrence are reported in Fig. 1. These results
are consistent with those reported by Butterley and Hall [23].
We find the same local and global maxima with very similar
frequencies. This is as expected because we have generated the
four random bases from which the search proceeds in the same
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FIG. 1. (Color online) Histogram of the maximum values of the
ASD found during a numerical search for 10 000 randomly chosen
initial four bases. The search converges to one of the local maxima in
about 30% of all runs, and to the global maximum of D2

max = 0.9983
for the other 70% of initial bases.
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way as Butterley and Hall, using the same dedicated Matlab
command. The two numerical methods are different, however.
We use the steepest-ascent algorithm while they employ the
Levenberg-Marquardt algorithm for a nonlinear least-squares
optimization.

Since we consider four bases, there are six pairs of
bases, and their respective distances are not without interest.
Indeed, it turns out that one basis is unbiased with the
three remaining bases. And these three remaining bases are
themselves equidistant. The immediate implication is that the
privileged basis can be chosen to be the computational basis,
while the three remaining bases are Hadamard bases; that is,
the unitary matrices composed of the columns that represent
the basis kets with reference to the computational basis are
complex Hadamard matrices divided by

√
6. We recall here

that a complex Hadamard matrix is a d-dimensional square
matrix satisfying the two conditions of unimodularity and
orthogonality [24]

|Hij | = 1 for i,j = 1, . . . ,d ,
(4)

HH † = d1 .

Therefore, the unitary matrix H/
√

d has matrix elements that
can be related to a pair of unbiased bases: 〈ai |bj 〉 = Hij/

√
d.

In addition to maximizing D2, our code also returns the
four bases for which the maximum is achieved. After a bit of
polishing—the set of four bases is not unique, since global
unitary transformations yield equivalent sets, and the order
of kets in each basis is arbitrary—this allows us to seek for
the structure hidden behind the maximum ASD. In the next
section we will present a two-parameter family of three bases.
The two parameters are two phases, while the three bases are
three Hadamard bases. We study in detail the properties of
this family and show that, for some definite values of the two
parameters, these three bases together with the canonical basis
reach the numerically found maximum ASD of 0.9983. This
definite structure of the optimal four bases is our main result,
with a closed expression for D2

max as a most welcome bonus;
see Eq. (22) below.

Harking back to Table I, we note that the best set of
seven bases in six dimensions has an ASD of 0.9849, short
of unity by a mere one-and-a-half percent. For all practical
purposes—those of state tomography, say—these seven bases
are marginally worse than the imaginary seven MUB that no
one has managed to find.

IV. THE TWO-PARAMETER FAMILY

Following Karlsson [25], we express the two-parameter
family in terms of 2 × 2 block matrices where each of the nine
blocks is itself a complex Hadamard matrix. Such 2 × 2 block
matrices are called H2 reducible. The two-parameter family
contains three bases, the fourth basis being the canonical basis.
We will see that these three Hadamard bases are equidistant,
that their determinants are identical, and that they belong to
the so-called Fourier transposed family FT

6 . Finally, we will
show that together with the canonical basis they reach the
numerically found maximum of the ASD.

A. Parametrization

We begin by defining a few quantities. We will need the
third root of unity ω = exp(i 2π/3) as well as the following
2 × 2 matrices:

Z =
[

1 0
0 −1

]
, X =

[
x∗ 0

0 x

]
, F2 =

[
1 1

1 −1

]
,

and

T =
[

1 ωt2

1 −ωt2

]
, (5)

where t = exp(iθt ) and x = exp(iθx) are two phases. Let us
notice that T and F2 are themselves Hadamard matrices.

The Hadamard matrices for the three bases are given by

M1 =

⎡⎢⎣X 0 0

0 iω∗tZX∗2 0

0 0 X

⎤⎥⎦ 1√
6

⎡⎢⎣F2 F2 F2

F2 ωF2 ω∗F2

T ω∗T ωT

⎤⎥⎦
= 1√

6
X1N1 ,

M2 = 1√
6

⎡⎢⎣F2 F2 F2

T ωT ω∗T
T ω∗T ωT

⎤⎥⎦ = 1√
6
N2 ,

and

M3 =

⎡⎢⎣X∗ 0 0

0 ω∗X∗ 0

0 0 −itZX2

⎤⎥⎦ 1√
6

⎡⎢⎣F2 F2 F2

T ωT ω∗T
F2 ω∗F2 ωF2

⎤⎥⎦
= 1√

6
X3N3 . (6)

In the above parametrization, we have introduced the matrices
Xi and Ni , i = 1,2,3, which we will address as dephasing
and central matrices, respectively. The derivation of this
parametrization is explained in Appendix B.

The next section is devoted to proving the three properties
mentioned earlier. Before we turn to the proofs, we wish to
point out that an additional relation between the two phases x

and t exists,

cos

(
θt + 1

3
π

)
= cos(2θx)

sin(θx)
. (7)

It reduces the two-parameter family to a single-parameter fam-
ily. Of course, as a subfamily, it conserves all the fundamental
properties of the two-parameter family. Furthermore it still
reaches the maximum ASD.

B. Properties

1. Equidistance

A significant property of the three proposed Hadamard
matrices is their equidistance. The relevant terms that appear in
the distance between the two bases Ma and Mb (i.e., |〈ai |bj 〉|)
are the elements of the product matrix M

†
aMb (i.e., 〈ai |bj 〉) in

absolute value. Therefore, if the three product matrices M
†
1M2,

M
†
2M3, and M

†
3M1 have equal coefficients in absolute value,
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then the three bases M1, M2, and M3 are equidistant. This
is exactly what happens here. Indeed, we have the following
cyclic structure:

M
†
1M2 = 1

6

⎡⎢⎣a1 a2 a3

a3 a1 a2

a2 a3 a1

⎤⎥⎦ , M
†
2M3 = 1

6

⎡⎢⎣b1 b2 b3

b3 b1 b2

b2 b3 b1

⎤⎥⎦ ,

and

M
†
3M1 = 1

6

⎡⎢⎣c1 c2 c3

c3 c1 c2

c2 c3 c1

⎤⎥⎦, (8)

where, on the one hand, the 2 × 2 submatrices a1, b2, and c3

have the same coefficients in absolute value and, on the other
hand, a2, a3, b1, b3, c1, and c2 have the same coefficients
in absolute value. More precisely, these matrices have the
following forms (where the symbol ˇ stands for swapping the
two diagonal elements). First,

a1 =
[
α β

−β∗ α∗

]
, b2 = ǎ1 ,

and

c3 =
[
iωt∗β iω∗tα
iωt∗α∗ iωt∗β

]
. (9)

Second,

a2 =
[
γ δ

ε ω∗γ ∗

]
, b1 = ǎ2 ,

a3 =
[

ωγ −ε∗

−δ∗ γ ∗

]
, b3 = ǎ3 ,

c1 =
[

it∗δ iωtγ

iω∗t∗γ ∗ −iω∗t∗ε∗

]
, c2 = č1 .

(10)

The various coefficients in Eqs. (9) and (10) can be expressed
in terms of the two angles θx and θt ,

α = 4 cos(θx)[1 − ωt∗ sin(θx)] ,

β = −2iω∗t[cos(2θx) − 2 cos(θt − 2π/3) sin(θx)] ,

γ = −2ω∗ cos(θx)[ω∗ + 2t∗ sin(θx)] , (11)

δ = −2it[cos(2θx) − 2 cos(θt ) sin(θx)] ,

ε = −2iω∗t∗[cos(2θx) − 2 cos(θt + 2π/3) sin(θx)] .

When Eq. (7) is fulfilled, we have ε = ω∗δ∗ and a few
simplifications arise. We obtain

a3 = ωZa2Z , b3 = ωZb1Z , and c2 = −Zc1Z , (12)

for example.

2. Determinant

A direct calculation shows that

Det(X1) = Det(N1) = Det(X3) = Det(N3) = wt2 . (13)

Accordingly, the three Hadamard bases share the same
determinant

Det(M1) = Det(M2) = Det(M3) = w∗t4 . (14)

However, although the determinants are equal, there seems to
be no simple relation between the three matrices M1, M2, and
M3. In particular, they do not have the same spectrum and are,
therefore, not related by unitary operators.

3. Fourier transposed family

The Fourier transposed family, first studied by Haagerup
[26], is parametrized by Karlsson in the form [25]

FT
6 ∼

⎡⎢⎣F2 F2 F2

T1 ωT1 ω∗T1

T2 ω∗T2 ωT2

⎤⎥⎦ , (15)

where the 2 × 2 Hadamard matrices T1 and T2 are given by

Ti =
[

1 ti

1 −ti

]
, |ti | = 1 . (16)

The equivalence relation in Eq. (15) means equality up to
left and right dephasing and left and right permutations. In
other words, the central matrix is the fundamental object that
specifies the equivalence class. In the form of Eq. (6), it is clear
that the three matrices N1, N2, and N3 belong to the Fourier
transposed family. As a result, the two-parameter family itself
belongs to the Fourier transposed family.

Let us note here that only the right equivalence is natural for
more than two bases, because it states that bases are defined
up to permutations and global phases of their basis states. In
particular, the distance between bases is invariant under right
equivalence but not under left equivalence.

C. Average distance

Let us now compute the global maximum of the ASD
between the three bases. Since the three bases are equidistant,
we only have to compute the distance between, say, M1 and
M2. A direct calculation leads to the following expression:

D2
12(θx,θt ) = 8

45

[
5 − P

(
sin(θx), cos

(
θt + 1

3
π

))]
, (17)

with the polynomial

P (p,q) = 8p8 + 8q2p6 − 16q3p5 + 16qp5 − 16q2p4

+ 8q3p3 − 7p4 − 14qp3 + 8q2p2 + 2p2 + 4qp .

(18)

We denote by (popt,qopt) the (p,q) pair for which P (p,q) is
minimal and, therefore, D12(θx,θt ) is maximal. It turns out that
qopt is related to popt by

cos

(
θ

opt
t + 1

3
π

)
= qopt = 1 − 2p2

opt

popt
, (19)

which is a particular evaluation of the function defined in
Eq. (7), and p2

opt is the unique real solution of a cubic equation,

112p6
opt − 192p4

opt + 111p2
opt = 22 , (20)

that is,

sin
(
θ

opt
x

)2 = p2
opt = 3 + 16r − r2

28r
= 0.6946, (21)
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FIG. 2. Contour plot of the ASD for the two-parameter family.
Along the dashed curves, relation (7) holds. The four single-parameter
families—one for each dashed curve—are equivalent to the two-
parameter family in the sense that the maximal and minimal value
of the ASD can be found by searching along one of the dashed lines
only. The arrows point to the location of one of the eight maxima at
(θx,θt ) = (0.9852,1.0094), marked by a cross.

with r = (21
√

3 − 36)1/3 = 0.7199. It follows that there are
eight optimal pairs of phases (θopt

x ,θ
opt
t ) for which the maximal

distance Dmax
12 is reached. The above expressions for θ

opt
x and

θ
opt
t can be injected back into the formula of the distance to

obtain first Dmax
12 and then

D2
max = 1

70

[
71 − 12 cos

(
θopt
x

)4]
= 1

70

[
71 − 3

(
r2 + 12r − 3

14r

)2]
= 0.9983, (22)

which agrees with the numerically found maximum ASD
within the machine precision.

Furthermore, the distance D12 vanishes for

θx = π/2 , θt = 0 (mod 2π/3),
(23)

and θx = −π/2 , θt = π/3 (mod 2π/3) .

As can be verified from the parametrization (6) or from the
matrix products (8), the bases are indeed identical up to global
phases and permutations for these values of the two phases θx

and θt .
We can also consider the single-parameter family that we

obtain when eliminating θt by using Eq. (7). Since Eq. (19) is
equivalent to Eq. (7), this single-parameter family reaches the
maximum of the ASD—and also the minimum, since Eq. (19)
is obeyed by (θx,θt ) = (π/2,2π/3). This is illustrated in Fig. 2,
a contour plot of D2 for the two-parameter family of Hadamard
bases, with the location of the (θx,θt ) values of the single-
parameter family indicated. The location of one of the eight

maxima is marked, and the locations of the other seven follow
from the symmetry properties of the contours.

V. SUMMARY AND OUTLOOK

We performed a numerical search for the maximum ASD
between four bases in six dimensions. We found that it is
strictly smaller than unity and so confirmed the recent study
by Butterley and Hall [23]. We regard this result as strong
evidence that no four MUB exist in six dimensions.

Next, we went beyond this numerical result by providing
the four bases behind the numerically found maximum. More
specifically, we found a two-parameter family of three bases,
which together with the canonical basis, reaches the maximum
of the ASD. We characterized this two-parameter family in
full. We proved its inclusion in the Fourier transposed family
and showed that the three bases are equidistant. Furthermore,
we analytically computed the maximum ASD between these
three Hadamard bases and the canonical basis to show that it
reproduces the numerical result.

Two directions might be relevant for an extension of the
present study. First, it would be interesting to see if the
optimality of our solution can be extended to a larger family
of bases, for example, to the whole Fourier transposed family.
Second and complementarily, there might exist an argument
to restrict the search for the maximum ASD between the
canonical basis and three Hadamard bases to the Fourier
transposed family, instead of the entire Hadamard family
which, so far, has not been fully parametrized. In this context,
however, it should be noted that—as follows from the findings
of Jaming et al. [27]—there are no four MUB if one restricts
the search to members of the Fourier family.

Finally, if there is no complete set of seven MUB in six
dimensions, the optimal measurement for state tomography,
in terms of statistical errors, remains to be found.
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APPENDIX A: NUMERICAL METHOD

As discussed in Sec. 3.1 of Ref. [7], for any ket |ϕ〉 or bra
〈φ| in a d-dimensional Hilbert space H or H†, respectively,
there is a conjugate bra or ket

H � |ϕ〉 ←→ 〈ϕ∗| ∈ H† ,
(A1)

H† � 〈φ| ←→ |φ∗〉 ∈ H,

such that

〈ϕ∗|φ∗〉 = 〈ϕ|φ〉∗ = 〈φ|ϕ〉 . (A2)

This mapping is not unique, but two different realizations
differ at most by a unitary transformation. As a rule, 〈φ∗| and
〈φ| = |φ〉† are different bras.
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Once a particular choice of mapping has been made, there
is a one-to-one correspondence between one-qudit operators
and two-qudit kets,

|ϕ〉〈φ| ∈ B(H) ←→ |φ∗,ϕ〉 ∈ H ⊗ H . (A3)

In particular, for an orthonormal basis of kets in
H, a = {|a1〉,|a2〉 . . . ,|ad〉}, we have the conjugate basis
a∗ = {|a∗

1〉,|a∗
2〉, . . . ,|a∗

d 〉}, and jointly they are used in defining
the two-qubit state

ρa = 1

d

d∑
j=1

|a∗
j aj 〉〈a∗

j aj | , (A4)

which has the d-fold eigenvalue 1/d and the (d2 − d)-fold
eigenvalue zero.

We normalize the Hilbert-Schmidt inner product of two-
qudit operators in accordance with

(A,B) = d Tr{A†B} , (A5)

so that (ρa,ρa) = 1 and (ρa,ρb) = 1/d for a pair of unbiased
bases. For the two-qudit states associated with two single-qudit
bases, we then have

(ρa,ρb) = 1

d

d∑
j,k=1

|〈aj |bk〉|4 = 1 − d − 1

d
D2

ab , (A6)

with the distance Dab of Eq. (2), where the identity
〈a∗

j aj |b∗
kbk〉 = |〈aj |bk〉|2 is used. It follows that Dab can be

expressed in terms of the Hilbert-Schmidt norm of ρa − ρb,

Dab =
√

1

2

d

d − 1
‖ρa − ρb‖, (A7)

with ‖A‖= √
(A,A). This tells us something important: If

a �= b, then ρa �= ρb, so that the mapping a ↔ ρa is one-to-one.
In passing, we note the following challenge. Clearly, not

all two-qudit states with ρ = dρ2 correspond to a single-qudit
basis in the sense of Eq. (A4). But which additional criteria
identify the set of two-qudit states that do?

We are interested in finding the maximum value of the ASD
between k bases in dimension d. The numerical search begins
with a randomly chosen initial set of bases, and then modifies
the bases in each iteration round such that D2 is systematically
increased.

An infinitesimal variation of a ket in basis a is given by

δ|aj 〉 = iεa|aj 〉, (A8)

where εa is an infinitesimal Hermitian operator acting on the
basis a. We have one such Hermitian ε operator for each basis.
The resulting response of D2 is

δD2 =
k∑

a=1

tr{εaGa} , (A9)

where tr{ } is a single-qudit trace and

Ga = 8

k(k − 1)(d − 1)
Im

{
k∑

b=1

d∑
j,k=1

(|aj 〉〈aj |bk〉〈bk|)2

}
(A10)

is the ath component of the gradient. If bases a and b are
unbiased, there is no contribution to Ga from basis b and,
therefore, there is no gradient for a set of MUB. But the
converse is not true: We can have a vanishing gradient although
the bases are not pairwise unbiased.

When the gradient has nonzero components, we choose
εa = κGa with a common κ > 0 that specifies the step size.
This guarantees δD2 > 0 if κ is not too large, and maximiza-
tion along the line specified by the direction of the gradient can
be done by optimizing the value of κ . The line optimization
is a necessary ingredient if conjugate gradients are used for
accelerating the convergence; see Ref. [28], for instance.

The finite unitary change of basis a, |aj 〉 → Va|aj 〉, is then
accomplished by

Va = eiεa , or Va = 1 + iεa/2

1 − iεa/2
,

or Va = (1 + iεa)
∞∏

n=0

[
1 + ei2π/3

(
ε2
a

)3n]
, (A11)

or yet other ones, whichever of them is convenient to use.
All three Va equal 1 + iεa to first order in εa and differ in the
higher-order terms. Note that a high-precision evaluation of
the infinite product in the third version of Va requires very
few terms. This makes the third version a viable alternative
if the computation of the exponential in the first version or of
the inverse operator in the second version is time consuming
or imprecise.

The iteration is terminated when all components of the
gradient vanish (in the numerical sense specified by the
machine precision). We repeat this steepest-ascent search
many times to ensure that we find the global maximum. As
Fig. 1 shows for (d,k) = (6,4), the iteration gets stuck in local
maxima for about three attempts in ten; and, see Table I, only
four in ten trials are successful for (d,k) = (6,7).

APPENDIX B: DERIVATION OF THE TWO-PARAMETER
FAMILY

The d × d matrix Uab composed of the transition ampli-
tudes 〈aj |bk〉 of two orthonormal bases is unitary,

Uab =

⎡⎢⎢⎢⎢⎣
〈a1|
〈a2|
...

〈ad |

⎤⎥⎥⎥⎥⎦ [|b1〉,|b2〉, . . . ,|bd〉] = U
†
ba ,

UabUba = 1 . (B1)

The columns and the rows of Uab are representations of
the kets |bk〉 and the bras 〈aj |, respectively. The unitary
matrices associated with a set of bases have a composition
law for consecutive basis changes: Uab = UacUcb, Uaa = 1. In
particular,

√
d Uab is a complex Hadamard matrix if the bases

a and b are unbiased; see the paragraph containing Eq. (4).
Now, from the numerical search we know that one of

the bases that maximize the ASD between four bases in six
dimensions is unbiased with the other three bases. We identify
this privileged basis as the canonical basis and refer to it as the
zeroth basis, and we characterize the set of four bases by the

062303-6



MUTUALLY UNBIASED BASES IN SIX DIMENSIONS: . . . PHYSICAL REVIEW A 83, 062303 (2011)

three 6 × 6 transition matrices

M1 = U01 , M2 = U02 , M3 = U03 , (B2)

so that the columns of Mi are composed of the probability
amplitudes of the kets of the ith basis with respect to the
privileged basis.

When multiplied by
√

6, the matrices M1, M2, and M3

are 6 × 6 Hadamard matrices, for which we use Karlsson’s
parametrization [25]. His parametrization applies to H2-
reducible Hadamard matrices that can be written in the form
H = XLPLNPRXR , where the left and right X matrices only
contain phases on the diagonal, the P matrices are permutation
matrices, and the central matrix has the form

N =

⎡⎢⎣F2 T1 T2

T3
1
2T3AT1

1
2T3BT2

T4
1
2T4BT1

1
2T4AT2

⎤⎥⎦, (B3)

where F2 is the unnormalized two-dimensional Fourier matrix
of Eqs. (5) and the 2 × 2 matrices Ti are those of Eq. (16),

Ti =
[

1 ti

1 −ti

]
with |ti | = 1 , (B4)

while

A = F2

(
−1

2
1 + i

√
3

2


)
,

(B5)

B = F2

(
−1

2
1 − i

√
3

2


)
,

with a unitary and Hermitian 2 × 2 matrix . It turns out that
our Hadamard matrices are indeed H2 reducible since they can
be written as Mi = XLi

PLi
NiPRi

XRi
with the central matrices

given by

N1 = 1√
6

⎡⎢⎣F2 F2 F2

F2 ωF2 ω∗F2

T ω∗T ωT

⎤⎥⎦ ,

N2 = 1√
6

⎡⎢⎣F2 F2 F2

T ωT ω∗T
T ω∗T ωT

⎤⎥⎦ , (B6)

N3 = 1√
6

⎡⎢⎣F2 F2 F2

T ωT ω∗T
F2 ω∗F2 ωF2

⎤⎥⎦;

see Eqs. (6).
As in Eqs. (5), we choose to express the matrix T with

factors of ω = exp(i2π/3),

T =
[

1 ωt2

1 −ωt2

]
, (B7)

to exhibit the crucial dependence on the phase factor t . The left
permutation matrices are all equal, PL1 = PL2 = PL3 = PL.

Third, we notice that only the left dephasing and permu-
tation matrices are relevant for the distance. Indeed the right
dephasing matrices only add global phases to the basis vectors,
while the right permutation only permutes the basis vectors.
In other words, two bases B and BPRXR are equivalent in

terms of distance. Therefore we can choose to conserve only
the relevant structure for our bases, that is, Mi = XLi

PLi
Ni .

The fourth step is to use the fact that only relative dephasing
and permutations of the rows are relevant to the distance.
Therefore we define new bases as

M1 =̂ P
†
LX

†
2X1PLN1 ,

M2 =̂ N2 ,
(B8)

M3 =̂ P
†
LX

†
2X3PLN3 .

To simplify the notation, we again denote the two new
diagonal matrices in P

†
LX

†
2X1PL and P

†
LX

†
2X3PL by X1 and

X3, respectively. We further observe that

X1 =
⎡⎣A1 0 0

0 A2 0
0 0 A1

⎤⎦, X3 =
⎡⎣B1 0 0

0 B2 0
0 0 B3

⎤⎦. (B9)

Next we add a suitable global phase to X1 and X3. We
multiply X1 by exp[−iArg(A1[1,1]A1[2,2]/2)] and X3 by
exp[−iArg(B1[1,1]B1[2,2]/2)] such that A1 and B1 take the
simple form [

exp(−iφ) 0
0 exp(iφ)

]
, (B10)

for some phase φ. We end up with the remarkable form

X1 =
⎡⎣A1 0 0

0 A2 0
0 0 A1

⎤⎦, X3 =
⎡⎣A∗

1 0 0
0 ω∗A∗

1 0
0 0 B3

⎤⎦,

(B11)

where [cf. Eqs. (5)]

A1 =
[
x∗ 0
0 x

]
. (B12)

So far, we have found that

A3 = A1,

B1 = A∗
1, (B13)

B2 = ω∗A∗
1,

and it only remains to find the structure behind the two 2 × 2
dephasing matrices A2 and B3.

To do so, we now consider the products Uij = M
†
i Mj . We

obtain

M
†
1M2 =

⎡⎣a1 a2 a3

a3 a1 a2

a2 a3 a1

⎤⎦ with

⎡⎣a1

a2

a3

⎤⎦ = F3

⎡⎣F2A
∗
1F2

F2A
∗
2T

T †A∗
3T

⎤⎦,

(B14)

and F3 is the standard (unnormalized) three-dimensional
Fourier matrix

F3 =
⎡⎣1 1 1

1 ω ω∗

1 ω∗ ω

⎤⎦. (B15)

Similarly we have

M
†
2M3 =

⎡⎣b1 b2 b3

b3 b1 b2

b2 b3 b1

⎤⎦ with

⎡⎣b1

b2

b3

⎤⎦ = F3

⎡⎣F2B1F2

T †B2T

T †B3F2

⎤⎦,

(B16)
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and

M
†
3M1 =

⎡⎢⎣c1 c2 c3

c3 c1 c2

c2 c3 c1

⎤⎥⎦ with

⎡⎢⎣c1

c2

c3

⎤⎥⎦ = F3

⎡⎢⎣F2Y1F2

T †Y2F2

F2Y3T

⎤⎥⎦,

(B17)

where

Y = X∗
3X1 =

⎡⎢⎣Y1 0 0

0 Y2 0

0 0 Y3

⎤⎥⎦ =

⎡⎢⎣A2
1 0 0

0 ωA1A2 0

0 0 B∗
3 A1

⎤⎥⎦.

(B18)

The seventh step is to look once more at the numerics. With
respect to the product M

†
1M2, we see that

a2 = ω∗Za3Z . (B19)

Thus we are led to define the matrix equation

E1 =̂ a2 − ω∗Za3Z = 0 . (B20)

This only represents a system of three equations since
E1[1,1] = E1[2,2]. In the same manner, we have for M

†
2M3

E2 =̂ b1 − ω∗Zb3Z = 0 , (B21)

and E2[1,1] = E2[2,2], so that, here too, only three equations
are relevant. Finally, for M

†
3M1, we obtain

E3 =̂ c1 + Zc2Z = 0, (B22)

and, owing to (ω∗ − 1)E3[1,2] = t(1 − ω)E3[2,1], again only
three equations are relevant. We should mention here that there
are other interesting identities within the products M

†
i Mj , such

as b2 = [a1 + a
†
1 + Z(a1 − a

†
1)Z]/2, but they are much more

complicated to handle and will not be necessary to achieve our
parametrization.

The eighth step is to solve the above nine equations. We
obtain

E1[1,1] : tr{A1} = tr{A3} ,

E1[1,2] : A1 − 2ω∗t∗2A2 + ω∗t∗2A3 = r1 , (B23)

E1[2,1] : ω∗t∗2A1 − 2ω∗t∗2A2 + A3 = r ′1 .

From the numerics, we know that r = r ′ and thus A1 = A3,
which we already found by looking at the dephasing matrix
X1. Note also that the expression of the complex number r is
not required. Furthermore we find

E2[1,1] : tr{B1} = ωtr{B2} ,

E2[1,2] : ω∗t∗2B1 + ωB2 − 2ωt∗2A3 = s1 , (B24)

E2[2,1] : B1 + t∗2B2 − 2ωt∗2B3 = s ′1 .

From the numerics, we know that s = s ′(= r) and thus
B1 = ωB2, which we already obtained by looking at the
dephasing matrix X3. The next three equations are much more
interesting. Indeed we have

E3[1,1] : 2tr{Y1} − ω∗tr{Y2} − ωtr{Y3} = 0 ,

E3[2,2] : 2tr{Y1} − ωt∗2tr{Y2} − ω∗t2tr{Y3} = 0, (B25)

E3[1,2] : t∗2Y2 − Y3 = u1.

From the numerics, we know that u = 0 and the last equation
reduces to

Y3 = t∗2Y2. (B26)

Since Y2 = ωA1A2 and Y3 = B∗
3 A1, the above equation

directly translates into

B3 = ω∗t2A∗
2 . (B27)

This last relation can be inserted in E3[1,1] and E3[2,2], which
become identical and can be written as

2tr{Y1} − (ω∗ + ωt∗2)tr{Y2} = 0 . (B28)

This equation will soon become Eq. (7).
A last hint from the numerics is needed. We actually notice

that

Y1Y2Y3 = −1 . (B29)

As Y3 = t∗2Y2, we arrive at t∗2Y1Y
2
2 = −1 so that

ωt∗A2
1A2 = ±iU , where U 2 = 1, that is, U = 1 or U = Z

since it has to be diagonal. With the help of the numerics, we
conclude that

A2 = iω∗tZA∗2
1 , (B30)

and consequently

B3 = −itZA2
1 . (B31)

The final parametrization of the dephasing matrices is therefore
given by

X1 =

⎡⎢⎣A1 0 0

0 iω∗tZA∗2
1 0

0 0 A1

⎤⎥⎦ ,

X3 =

⎡⎢⎣A∗
1 0 0

0 ω∗A∗
1 0

0 0 −itZA2
1

⎤⎥⎦ , (B32)

which are ingredients in Eqs. (6).
Let us finally come back to Eq. (B28). We can now

substitute Y1 = A2
1 and Y2 = (iω∗tZA∗2

1 )(ωA1) = itZA∗
1 in

Eq. (B28) and, upon defining x = exp(iθx) and t = exp(iθt ),
we arrive at

cos(θt − 2π/3) = −cos(2θx)

sin(θx)
, (B33)

which is Eq. (7).
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