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Analytical results beyond the mean-field-limit approximation for several observables of the two-dimensional
limit of the vibron model are presented. Finite-size scaling exponent values are also analytically derived. The
computed corrections and scaling exponents are compared to numerical calculations for this algebraic model,
based on a bosonic u(3) spectrum-generating algebra, obtaining good agreement.
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I. INTRODUCTION

Researchers from widely different fields of physics, from
condensed-matter to high-energy particle physics, show signif-
icant interest in the study of quantum phase transitions (QPTs)
as zero-temperature phase transitions between different phases
of a system. In particular, special attention has been drawn
to the transitions between different geometrical limits of
algebraic models. The pioneer work in this field was carried out
by Gilmore [1], who coined the term ground-state transitions
to refer to the qualitative changes that a system’s ground-
state wave function undergoes upon small changes in the
Hamiltonian parameters in the vicinity of their critical value.

The algebraic approach, based on the concept of spectrum-
generating algebra, has given rise to simple and insightful
approximations for the study of different physical systems.
Nuclear structure is one of the branches of physics where
this approach has gained more momentum, and the interacting
boson model (IBM) [2] has become a standard tool in this
field, offering a simple model that fits a wide range of nuclei
well. A very similar formalism, the vibron model, has also
proved useful in the modeling of molecular structure [3].
A particularity of the algebraic approach is the existence
of dynamical symmetries, which are situations associated
with a particular chain of algebras that terminates in the
system’s symmetry algebra. Dynamical symmetries provide
easy-to-handle limiting cases, usually with a clear physi-
cal interpretation and an analytical energy formula [2-5].
Each dynamical symmetry can be mapped to a geometrical
configuration of the system. The system’s Hamiltonian can
be defined in such a way that, according to the values
of one or several control parameters, it can be made of
Casimir or invariant operators belonging exclusively to one of
the available dynamical symmetries. In this way, varying the
control parameter values, the Hamiltonian encompasses the
full gamut of intermediate situations. This is the main reason

“pedropf@us.es
tariasc@us.es

fenrique.ramos @dfaie.uhu.es
Sfrancisco.perez@dfaie.uhu.es

1050-2947/2011/83(6)/062125(15)

062125-1

PACS number(s): 03.65.Fd, 05.70.Fh, 05.70.Jk, 33.20.Vq

why algebraic models provide a handle on the study of
precursors of QPTs in mesoscopic systems [6].

The QPTs, also called, in this context, ground-state tran-
sitions and shape-phase transitions, take place when small
changes in the control parameters around a critical value
enforce qualitative changes in the nature of the system’s ground
state. Recent reviews of QPTs in algebraic models can be found
in Refs. [7-9].

In this paper, we deal with the two-dimensional (2D)
limit of the vibron model. The vibron model, originally
presented in Ref. [10], is an algebraic model based on the
spectrum-generating algebra u(4). This approach is appropri-
ate for the modeling of three-dimensional systems and has
mostly been employed to model rotational and vibrational
molecular spectra of diatomic [10,11] and polyatomic [12,13]
molecular species, treating molecular degrees of freedom as
collective excitations in a bosonic space (vibrons) [3]. The
one-dimensional (1D) limit of the model [14] has been used to
decouple vibrations from rotations, permitting us to take full
advantage of the discrete molecular symmetry [15].

The 1D limit of the vibron model is specially suited to
deal with stretching vibrations. However, the study of the
bending dynamics of linear and quasilinear molecules implies
the simultaneous consideration of rotational and vibrational
degrees of freedom. This is a 2D problem, for which the 2D
limit of the vibron model constitutes an appropriate framework
using the u(3) Lie algebra as a spectrum-generating algebra.
Originally presented in Ref. [16], this model has proved useful
for modeling the vibrational bending excitation spectrum [17]
and line intensities [18] of quasilinear and nonrigid molecular
species. A recent reference [19] presents a detailed account
of this algebraic model, both from a quantal and a classical
perspective. Hereafter, we will refer to the 2D limit of the
vibron model as the u(3) model.

Apart from the application to the modeling of vibrational
bending dynamics, the u(3) model has been applied to other
systems. On one hand, it has been proposed in the realm of
high-T, superconductors based on s-d wave pairing in 2D
systems [20-22]. On the other hand, the u(3)-based algebraic
model is a convenient playground to study excited-state QPTs
(ESQPTs) [23-27]. In this latter case, the transition does not
take place on the system’s ground state upon a change of
a control parameter but on excited states of the system as
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the excitation energy increases. With regard to the ESQPT
topic, the u(3) model permits access to an interesting aspect
of molecular systems: the appearance of monodromy in vibra-
tional bending spectroscopy [19,27]. The possibility of finding
experimental realizations of such transitions in the field of
molecular spectroscopy, on account of the experimental access
to highly excited molecular species, has further bolstered
this line of research. The vibrational bending spectrum of
water in its electronic ground state is one of the systems
where monodromy effects have been recorded experimentally
[28,29].

The study of the phase diagram associated with the different
dynamical symmetries of an algebraic model Hamiltonian
takes place in the mean-field limit, also called the thermo-
dynamic or large-N limit. This limit is obtained using a
variational approach, valid up to 1/N order, where N is
related to the system’s size and becomes exact when N — oo.
An important advantage of algebraic models is that they
allow the study of scaling laws and finite-size effects [6].
However, in order to compare numerically obtained results
with analytical finite-size corrections, it is necessary to go
beyond the mean-field limit.

The main motivation of the present paper is to explore
the finite-size corrections induced in several observables of
interest for the 2D limit of the vibron model. In order to
do so, we combine a Holstein-Primakoff expansion with a
Bogoliubov transformation in the different geometrical phases
of the system. The phases are defined according to the analysis
of the system in the thermodynamic limit. This approach has
proved useful for two-level boson systems with a spectrum-
generating algebrau(2L + 2) with L = 0,1,2, ...[30,31]. The
present case is the simplest case with a half-integer value
of L, L =1/2: a two-level model with a scalar boson as a
ground state and a doubly degenerate upper level, which in our
case, is represented by two Cartesian bosons. The generators
of the u(3) dynamical algebra are the bilinear products of a
creation times an annihilation boson. The analytical finite-size
corrections obtained in the present paper should match the
numerical calculations presented in Ref. [19]. In the Appendix,
we also present a connection between this paper and the results
presented by Dusuel et al. in Ref. [30].

The outline of the present paper is as follows. The prefatory
remarks in this section are followed, in Sec. II, by an abridged
explanation of the basic facts about the u(3) model, the
definition of a model Hamiltonian and several observables
of interest, and the results obtained in the mean-field limit.
Section III is devoted to the derivation of the analytical
finite-size corrections to the mean-field limit. This section is
followed by Sec. IV, where the analytical results derived in
the previous section are compared to numerical results. The
analytical derivation of the scaling properties of the model
with the system’s size is presented in Sec. V. Finally, Sec. VI
includes a brief summary of the main results presented as well
as our concluding remarks.

II. THE u(3) ALGEBRAIC MODEL HAMILTONIAN
AND ITS CLASSICAL LIMIT

The modeling of n-dimensional many-body systems using
a spectrum-generating algebra u(n + 1) provides an effective
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description of a large variety of systems. In this section, we
briefly review the u(3) algebraic approach to 2D systems
[16,19].

A. The bosonic u(3) algebra for 2D systems

The bosonic u(3) Lie algebra for 2D systems is built
from a two-level boson model. The lower level is associated
with a scalar boson of, and the upper level is associated
with two degenerate Cartesian bosonic operators {r,j ,rj,'}.
The commutation relations between creation and annihilation
operators are

[0 1=1. [t.t]1=6,. [n.01=0. ij=xy. (1)

All other commutators are zero. It is convenient to introduce
circular bosons [19],

t et
T, ity

Tl 2437}, (2a)
LT (2b)

T+ = F
V2
The nine u(3) generators are the bilinear products of

creation and annihilation operators. They can be written as
[16]
n= riur + tjr,, iy = O'TO',
ﬁ+ = «/z(rio — O'T‘L'_), D_ = \/E(—ria + aTrJr), 3
0. =Vide, 0 =+ide, ®
ﬁ+ = \/E(rlo +olt), R_= ﬁ(tia + oan).

[ = riur — tjr,,

The operator [ is the angular momentum in 2D, as one can
easily see once it is expressed in terms of Cartesian boson
operators.

There are two possible dynamical symmetries that conserve
2D angular momentum. Both start in the u(3) dynamical
algebra and end in the so(2) symmetry algebra,

u(3) D u(2) O so(2) Chain I, (4a)
u(3) O so(3) D so(2) Chain II. (4b)

The system’s symmetry algebra is so(2), which corresponds
to rotations on a plane, and the associated quantum number
is [. Due to the 2D nature of the system, / is not an angular
momentum but a component of it and can take both positive
and negative (or zero) values.

Each dynamical symmetry conveys a basis and an analytical
energy formula. Numerical calculations in the present paper
have been carried out using the TRIAT_U3 package [32]
that makes use of the cylindrical oscillator basis, associated
with dynamical symmetry I. A detailed discussion of both
dynamical symmetries can be found in Ref. [19].

The definition of a simple Hamiltonian that contains the
main physical ingredients of the model implies the consid-
eration of Casimir or invariant operators of the chains under
study. We consider the first-order Casimir operator of u(2) and
the second-order Casimir operator of so(3),

Cilu@)1 =4, Cylso3)=W*=(D,.D_+ D_D,)/2+ .
(5)
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The so(3) Casimir operator W2 can be replaced by the pairing
operator,

P=NN+1)—W? (6)

where the total number operator N = 7, + 7 has been replaced
by its value N due to the fact that we consider systems with a
fixed number of bosons.

B. Model Hamiltonian

Phase transitions in algebraic models can be studied by
considering a general Hamiltonian written in terms of Casimir
operators of all chains [1,33,34]. However, for the sake of
simplicity, invariant operators in subalgebras common to all
the dynamical symmetries under study are not included, and
an essential Hamiltonian is built considering one operator
for each dynamical symmetry. Therefore, ground-state phase
transitions in the u(3) approach can be studied by considering
the model Hamiltonian,

~ R A
H—s|:(1 S)n+N_1P]. 7
We have made use of Egs. (5) and (6), put the overall
energy scale ¢ in front, and introduced the dimensionless
control parameter £ € [0,1]. At & = 0, the system is in phase
I—i.e., the eigenvalues and eigenstates of { are those of the
dynamical symmetry I—while at £ = 1, the system is in phase
II—i.e., the eigenvalues and eigenstates are those of dynamical
symmetry II. The factor 1/(N — 1) is a normalization factor,
introduced to obtain a well-behaved Hamiltonian in the
large-N limit, taking into account that the pairing operator
P is a two-body operator, while 7 is a one-body operator.
One-body operators scale as N, and two-body operators scale
as N(N — 1) [33]. This model Hamiltonian has proved useful
in the modeling of the bending dynamics of several molecular
species [17,18], while the quantal and classical properties
of its associated phase diagram can be found in Ref. [19].
This Hamiltonian is similar to the generalization of the IBM
consistent-Q Hamiltonian proposed in Ref. [30]. As shown
in the Appendix, we can link our model Hamiltonian and the
general boson-pairing Hamiltonian in Ref. [30].
Four possible physical scenarios can be distinguished with
the model Hamiltonian (7) [17,19]:

(1) Rigidly linear case, £ = 0. The spectrum corresponds to
a 2D truncated harmonic oscillator with the corresponding /
degeneracy (dynamical symmetry I).

(2) Quasilinear case, 0 < & < 0.2. In this case, the main
feature is the appearance of positive anharmonicity. The
degeneracy in [ is broken in a particular way with smaller
energy values for increasing values of /.

(3) Quasibentcase,0.2 < & < 1. This situation is character-
ized by the appearance of an anharmonicity that is negative for
the low-lying states and becomes positive at high energy. As
in the previous case, the / degeneracy is broken. In molecular
physics, this situation has long since been known as the Dixon
dip [35].

(4) Rigidly bent case, & = 1. The spectrum is that of a 2D
truncated rovibrator (dynamical symmetry II). The / quantum
number corresponds to the angular momentum projection on
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the figure axis, usually labeled K, with rotational bands on top
of a vibrational head.

C. Mean-field limit

In order to understand whether or not the variations
seen numerically in some quantities as a function of the
control parameter are indeed related to phase transitions, it
is convenient to make use of an algorithm introduced by
Gilmore [1], Gilmore and Feng [33], and Feng er al. [34].
This formalism provides the limit N — oo (called classical,
thermodynamic, or mean-field limit) of the model in terms
of geometrical or shape variables. Such variables are used to
define the system’s phase diagram. The limit is called classical
because the algorithm produces a classical Hamiltonian in
terms of coordinates (and momenta), upon which, a Landau
analysis of the phase transition can be performed. The mean-
field name stems from a fact shown long ago by Gilmore
and Feng [33]: By minimizing the ground-state expectation
value of a Hamiltonian that is regular in the large- N limit, one
obtains an upper limit to the ground-state energy per particle
Ey/N, which converges to the exact energy when N — oco. A
detailed discussion of the application of this algorithm to the
u(3) algebra can be found in Ref. [19].

In making use of the algorithm, we use projective coherent
states that define a normalized intrinsic ground state,

IIN];0;7,0) = L(lﬁ)j\'|0> ®)
s Vsl - W c 5

where r and 6 are the polar coordinates associated with the
Cartesian coordinates x and y, and bl is the boson condensate,

f_ L f 1 opt o vl
bl m(d +x1) 4+ y7)). )
The coherent state (8) is the number-projected generalized
coherent state of u(3) [2]. These coherent u(n) states were
introduced by Gilmore [1] and others [36—38] in the context
of nuclear physics (Lipkin-Meshkov-Glick quasispin model
[39] and Arima-Iachello IBM [2]) and later in the context
of molecular physics [40—42] (Iachello-Levine vibron model
[3]). The coherent states (8) have been generalized to include
excited states [42—44]. The boson condensate definition (9) is
not unique; a different alternative, for the same bosonic u(3)
algebra, can be found in Ref. [44].

The intrinsic state allows the expression in terms of classical
coordinates and momenta of any operator built with the
elements of the spectrum-generating algebra. It should be
noted that the parameters in the coherent state, in general, are
complex and represent both coordinates and momenta [41]. For
the applications in this paper, we only consider the dependence
on coordinates and, thus, set all momenta (p,, pg) equal to zero.

The ground-state energy functional is the expectation value
of the Hamiltonian in the intrinsic ground state,

E(r.0) = (IN1;0;.0|H|[N1; 0; 7.6). (10)

By minimizing E(r,0) with respect to r and 8, one obtains
an approximation for the exact ground-state energy, which is
valid to order N [33].

The energy functional for the essential Hamiltonian (7)
is trivially obtained from Eq. (10) [17,19]. The energy per
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particle £ = E/N is

r2 1 —r2 2
6;(r)=e[<1—s>1+r2+s(1+r2> } (11)

This energy functional does not depend on the polar angle 9,
since the Hamiltonian is a scalar operator.

The minimization of the energy functional (11) reveals that
there are two different geometric limits: symmetric (or linear)
limit and deformed (or bent) limit. In the first case, the energy
minimum is at the equilibrium value r, = 0, while the second
case implies that the minimum energy is attained for r, =
\/ (56 — 1)/(3¢ + 1) # 0. The symmetric phase takes place
for control parameter values & < &, = 0.2, while for values of
& > &, = 0.2, the deformed phase has a lower energy. When
evaluated at r = r,, the energy functional is

£, 0<¢§

—9£24106—1
16€ ’

&,

<
Eelro) = Eo<E<1

(12)

By evaluating the derivatives of & (r,) with respect to &, one
finds that the second derivative is discontinuous at £ = &., and
r. can be taken as a classical order parameter [19]. According
to Ehrenfest’s classification scheme, the phase transition is of
second order.

Several observables can be selected to study the phase
transition, both at the large-N limit and for finite systems.
In the present case, we select four observables that are of
interest in the study of QPTs, and whose behavior, beyond
the mean-field limit, has been studied for u(2L + 2) bosonic
two-level systems in Ref. [30]. Numerical results for most
of these observables in the u(3) boson model under study
can be found in Ref. [19]. For the sake of completeness,
we proceed to briefly review mean-field results. In Sec. III,
we analytically derive the next order correction in N for the
selected observables.

The four observables under study are the ground-state
energy per particle (&), the expectation value in the ground
state of the number of Cartesian bosons per particle ((i7)/N),
the first excited-state energy gap (Ajpn), and the transition
probability between the ground state and the first excited state
(T/N). The calculation in the mean-field limit of & and (72) / N
is immediate, and the results can be found in Ref. [19]. The
ground-state energy per boson is given in Eq. (12), and the
expectation value of the u(2) number operator is

r2 0, 0<é§<é,

NL;0;r0lAl[NT;0;r,0) = N—— = { 5
INEGrOmINEGr O =NT03 = et 6 <6 <1
13)

The mean-field limit calculation of the other two observ-
ables implies an excited state, and it is slightly more involved.
We proceed to briefly resume the results obtained for these
two observables in the mean-field limit.

In order to calculate the mean-field limit of one-quantum
excitations, we consider the possible bosonic excitations
orthonormal to Eq. (9). There are, up to a phase, two
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possibilities,
bl = LS xtl 4+ yth, (14a)
T 1 T T 14
by = ;(ytx — xty). (14b)

The possible one particle-hole (1ph) excitations can be
obtained replacing a condensate boson by an excited boson
in Eq. (8),

1 ;
Nl;iir,0) = ————b!(bH)V"10), 15
[[N];i;r.0) UT?ﬁW(J |0) (15)
with i = 1,2. This procedure is known as the Tamm-Dancoff

approximation (TDA) [42,43]. The 1ph energy excitation A(llgh

is computed as
Al = (IN1:i:r.0|H|INT: 5 7.0)
— ([N1;0;7,0|H|[N1; 0:7.0), (16)

with i = 1,2. The energy gap obtained in the symmetric and
deformed phases, for the two possible excitations (14), is

= a
PR i e E<ES<L,
1-3¢8, 0<&<E,
Ap=1 1 (17b)
= fe<&< L

It is worth emphasizing that these results, at the TDA level,
are not fully self-consistent mean-field results. The result
(17b), obtained using the excited boson (14b), implies that
this excitation becomes a spurious Goldstone boson in the
deformed phase (§ > &), associated with a rotation in the
plane. This point is in good accordance with the well-known
fact that there exists two degenerate vibrational degrees of
freedom in the symmetric (linear) configuration that correlate
to a vibrational plus a rotational degree of freedom in the
deformed (nonlinear or bent) case. Note that, for & < &,
the gap is the same in both cases, and the excitations are
degenerate.

Therefore, a careful definition of this observable Ay,
is important. The appearance of a Goldstone boson in the
distorted or broken phase (£ > &.) implies that the first
excited state in the broken-symmetry phase corresponds to a
state with two quanta of excitation in the symmetric phase.
This can already be appreciated in the correlation energy
diagrams in Ref. [19], and it is a general feature of the
u(2L + 1)-so(2L +2) QPT as explained in Ref. [30]. In
particular, when comparing to the numerical results presented
in Ref. [19], the energy gap Ay, does not correspond all the
way, neither to the first vibrational energy gap, nor to the
first rotational energy gap, denoted as I',—jvipb and I'j—j ror
in Ref. [19]. In order to compare the present paper’s results
and the calculations published in Ref. [19], the A, gap
corresponds to I'j—; ;o for & < &, and I',—; yjp for & > &.

The fourth observable considered is the transition proba-
bility between the ground state and the first excited state. We
begin defining a transition operator in terms of the generators of
the u(3) algebra. We select, as a candidate, the dipole transition
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operator [16,18,19,30],
T, =Dy, (18)

and calculate the transition probability or transition intensity
between states [v/) and |y) as

1 N .
L ;uwnwlnz + (Wl Ty D), (19)

where g, is a statistical factor that takes the initial-state
degeneracy into account.

Following the notation in Ref. [30], we denote the transition
intensity between the ground state (0;) and the first excited
state with angular momentum one (1;) as 7, and we normalize
this observable by a factor of N. We assume that we
cannot distinguish between negative and positive values of
the vibrational angular momentum /. Therefore, if any of the
involved states has a vibrational angular momentum different
from zero, we add up the positive and negative / contributions.

As in the energy-gap case, there is a fundamental difference
in the treatment of the symmetric and deformed regions [30].
To further clarify this point, we express the intrinsic bosons
(9) and (14) in circular coordinates,

i 1 -6 i0
=y (UT - reﬁtr +r%r*> . (20a)
r

bl : '

—i i
i e 1 e T>
- | —ro .+ —1]), 20b)
! A/ 1 =+ Vz < \/5 * \/z (

i . .

bT — _(619.[]L + 6719‘[1).

2 ﬁ +

In the symmetric phase, the equilibrium value of r is r, = 0,
and the intrinsic bosons are simplified to

(20c)

bi = o, (21a)
, o—if el?
) T (21b)
: V22
iei@ \ ie—i@ N
bl= "1l + =1, 21c)
2 \/E + «/i

In this case, bi has zero angular momentum, while bJ{ and b;

are a mixture of ri and ri. Howeyver, it is trivial to recombine
the bosons defined in Egs. (21b) and (21c) to obtain bosons
with a well-defined 2D angular momentum. If we do so, in the
symmetric phase,

(£11]T£]0;) = £+2N, (22)

where we denote the intrinsic ground state by |0;) and the
[ = %1 first excited state by | £ 1;).
Thus, the transition intensity between the first excited state
and the ground state in the symmetric phase is calculated as
T LLITL00) 1P 4 (=1 T-101)?
N 2 N
where the factor % takes the first excited-state degeneracy into
account.

The calculation of the transition intensity in the deformed
region in the mean-field limit is hampered by the appearance
of an infinitely degenerate band of states in the large-N limit
(Goldstone modes). In particular, as the model Hamiltonian

=2, (23)

PHYSICAL REVIEW A 83, 062125 (2011)

correlation energy diagram shows [19], the first excited state
collapses with the ground state in the deformed phase for § =
1. As we have explained in the calculation of the Ay, energy
gap, the excitation (20c) becomes a spurious rotational degree
of freedom in the deformed region. Thus, in order to correctly
compute the vibrational transition intensity in this region, the
excitation (20c) has to be excluded, and we only consider the
physical boson b; (20b). Therefore, in the broken-symmetry
phase,

T [IF00 P + (LI 002 =2<1 —r2)2 o

N N 1+r2
If we substitute the equilibrium value of r, r, =
\/(55 —1)/(3& + 1), in Eq. (24), we obtain
T 1 —¢&)?
— = ( £) . (25)
N 8&2

As noted below, the appearance of the Goldstone modes in
the broken-symmetry phase implies that, in the calculation of
T/N, the initial excited state is the second [ = 1 state |1,),
because the first state is a Goldstone mode. Note that Egs. (23)
and (25) are derived in the TDA approximation, and thus, they
are not fully self-consistent.

Following Ref. [30], the transition to the first excited state
(Goldstone boson) can be taken into consideration defining 7”,
a new observable in the deformed region,

T (0174100 + 1401172 10y)

N N

72

N—.
(14 r?2)2

=38 (26)
If we again substitute the radial coordinate equilibrium value,
we obtain

T _ N(5$ - D +3€)_
N 8&2

Note that this result is only valid for the broken-symmetry
region where this observable is defined. As noticed in Ref. [30],
T scales as N while 7" scales as N°.

We proceed to compare the obtained mean-field results
with numerical calculations for a number of bosons N that
is large enough to minimize finite-size effects (N = 1000).
The numerical calculations included in the present paper have
been performed using the programs in the FORTRAN package
TRIAT_U3 [32].

In panels (a) and (b) of Fig. 1, we depict the ground-state
energy per particle and the normalized expectation value
of the u(2) number operator in the system’s ground state,
(i) / N, respectively. In both cases, the agreement between the
numerical calculation and the mean-field result is remarkable.
The second observable is considered as a quantal order
parameter for the ground-state QPT: It is zero in the symmetric
phase and nonzero once the critical point is crossed.

In Fig. 1(b), we also include the schematic phase diagram
associated with model Hamiltonian (7). Having only one
control parameter, the phase diagram is 1D, with two possible
phases, symmetric (orange) and deformed (blue), also denoted
as linear and bent, separated by a continuous (second-order)

27)
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FIG. 1. (Color online) Mean-field (black line) and numerical N = 1000 results (orange squares) for (a) the ground-state energy per particle
(&) and (b) the normalized expectation value of the T boson number operator /i in the ground state ({(ii)/N) as a function of the control

parameter &.

phase transition at the critical point & = £, = 0.2 (green dot)
[19].

The next observable considered is Ajp,, the energy gap
between the ground state and the first excited state that is
depicted in Fig. 2. In this case, as explained above, the
comparison between mean-field and numerical results takes
place for different states in the two phases. In the symmetric
region, the comparison is performed with the numerical energy
gap for the first excited state with / = 1 (orange squares in
Fig. 2), while in the broken-symmetry region, the energy gap
is computed for the second / = 1 excited state (red circles in
Fig. 2). In both cases, there is good agreement between the
analytical results close to the dynamical symmetries (§ =0
and £ = 1) but, as expected, the agreement is far worse in the
region around the critical point £, = 0.2.

It is important to emphasize that, on one hand, the 1,
excited state corresponds to a one-vibrational quantum in the
symmetric phase, while in the deformed region, it belongs
to the infinitely degenerate rotational band associated with
the Goldstone boson. On the other hand, the 0, state is a
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FIG. 2. (Color online) Mean-field (black line) and numerical N =
1000 results (orange squares and red circles) for the energy gap (A )
as a function of the control parameter &.

two-vibrational quanta state in the symmetric phase and a
one-vibrational quantum in the deformed region.

The mean-field result for the normalized transition prob-
ability is compared with numerical results for N = 1000 in
panels (a) and (b) of Fig. 3. In panel (a), we depict T'/N>.
This observable is defined in the deformed region, and it is
compared with the numerical result for the transition of the
+1; to 0; transition. In Fig. 3(b), we compare the mean-field
approximation to 7', normalized by N, with numerical results.
In this case, the numerical calculation is performed for the
41, to 0, transition in the symmetric region. The £1; states
belong to the Goldstone band in the broken-symmetry region,
therefore, we compare with numerical results for the +1,
to 0; transition in this region. We obtain good agreement
between the numerical and the mean-field results that again,
as expected, worsens in the vicinity of the critical region.

III. FINITE-SIZE CORRECTIONS TO THE
MEAN-FIELD LIMIT

The intrinsic state analysis performed in the preceding
section is exact only in the mean-field or thermodynamic limit
(N — +00). For finite N values, the mean-field results are
only valid up to order N. If further corrections are sought, e.g.,
order NV effects, it is necessary to go beyond the mean-field
approximation. The calculations of such analytical corrections
to the mean-field limit sensitively improve the observables’
description in the region around the critical value of the
control parameter where mean-field approximation results
badly fail. To accomplish this task, we adapt the approach
used in Ref. [30] to this particular bosonic u(3) algebraic
model under consideration. In this way, first, we perform a
Holstein-Primakoff expansion [45] and a shift transformation,
followed by a Bogoliubov transform. We first show the results
for the Holstein-Primakoff expansion and the shift. In the
following two subsections, we carry out the Bogoliubov
transformation and extract the finite-size corrections for each
geometrical phase.

The Holstein-Primakoff expansion [45] offers an expansion
in powers of 1/N that keeps the operator Hermiticity and
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FIG. 3. (Color online) TDA (black lines) and numerical N = 1000 results (orange squares and red circles) for the observables 7’/N?
[panel (a)] and T/N [panel (b)] as a function of the control parameter &. The T’ observable, depicted in panel (a), is defined only in the
broken-symmetry region (§ > &.). The T observable in panel (b) is compared with the numerical results for the transition 1, to 0, in the
symmetric region (§ < &.) and the transition £1, to 0 in the broken-symmetry region (§ > &) (see text).

preserves boson commutation relations (for a review on
bosonic expansion methods, see Ref. [46]). We recover the
mean-field-limit result as the leading order of the expansion.

In the Holstein-Primakoff expansion, the scalar o boson is
removed by a transformation to a new set of Cartesian bosons
bi, i =X,y with the usual bosonic commutation relations
[b; ,b}] = §;;. The new bosons bj(bi) are introduced as

v/t =blbj, (282)
tlo = VNbl J1=2,/N = (o1, (28b)
Ay =0lo =N —fp, (28¢)

wherei,j = x,y,and 7, = bibx + biby. The b; bosons satisfy
bosonic commutation relations at each order in N in the Taylor
expansion of the square root in Eq. (28b). A third set of bosons

cj(ci) with i = x,y is defined by a shift transformation,
bl = VNAS;, +c],

where i = x,y. The A shift parameter is zero in the spherical
phase and different from zero in the deformed phase.

Prior to the application of the Holstein-Primakoff expansion
to the model Hamiltonian, we expand the 1/(N — 1) factor
in Eq. (7) as a series 1/(N — 1) = 1/N + 1/N* + O(1/N?).
In the Holstein-Primakoff expansion, the quotient 71, /N is
assumed to be small to expand the square root in a power
series. When this transformation is carried out on Hamiltonian
(7), the result is an expansion in powers of N with terms,

(29)

A=A+ Ao+ By + O(1/VN), (30)
where H; incorporates the terms with a N’ dependence.
The first term is
H, = N[ + (1 — 56)A% — 4624, (31)

Setting A = r/+/1 + r2, after some trivial algebra, I-AI] reduces
to the mean-field result (11). Equilibrium values of the
order parameter and the resulting system’s phase diagram
are computed from the minimization of this term. In the u(3)
model, we recover the phase diagram included in Fig. 1(b).

The next order in the expansion of the model Hamiltonian
H 1/2 is

Ay = VNAL + E8A* — 5)I(c! + co). (32)

This term goes to zero once the equilibrium values of r (or 1)
2_dH,

are substituted. This stems from the relation H;,, = N
Thus, the first finite-size correction to the mean-field limit is
the Hy term, which is quadratic in the ¢ boson operators,

Hy = 2242 — DE + (1 — 38 + 142%8)clc,
+ (1 =38 +40%)cley + (537 — DE(clel + ceey)
+(207 — DEClel + eyey). (33)

We proceed detailing how this contribution is brought
to diagonal form by a Bogoliubov transformation in the
symmetric and deformed phases. The obtained analytical
results are compared to the results of numerical diagonalization
of the model Hamiltonian for finite-N values in the next
section.

A. Symmetric phase

The symmetric case, which is also known as the linear
configuration in molecular structure, is obtained for control
parameter values 0 < & < 0.2. The associated order parameter
is r. = 0 and, consequently, A, = 0. The resulting Hj has the
same dependence for x and y,

Hogm =0 Y clei+ A D (clef +cic).  (39)

i=x,y i=x,y
with ® = 1 — 3£ and A = —£. The Hamiltonian (34) can be
diagonalized with a Bogoliubov transformation,

T T
=uia; +v;a;,

P =

&
(35)
¢ = u;a; + v,-al.T,
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where i = x,y. If we impose that the transformation is
canonical and that nondiagonal terms in the a bosons vanish
after the transformation, we obtain the set of equations,

A@? +v*) 4+ Ouv =0,
(36)
ur —v? =1,
where we have removed the subindex i because the transfor-
mation is common to the x and y degrees of freedom. The

solution of Egs. (36) is

1 ®
"= / 2 (1 * —m) -

=3 (1 )

Once the Bogoliubov transformation is performed, the Hamil-
tonian (34) is brought to diagonal form

Hosym = [36 — 1+ EY"(®)' 21 + E¥™(€)%iq + O(1/N),
(38)
where 71, is the number operator for a bosons and E¥™ =
(I =551 —$).
When we consider the mean-field result (12) and the
computed N° correction (38), the resulting ground-state
energy per particle and first excited-state energy gap are

& =6+ N3 — 14+ EV®',

Ai}:}? — Esym(é)l/z.

(39a)
(39b)

We can also easily calculate the correction to the expected
value of the number of 7 bosons in the ground state, taking
advantage of the Hellman-Feynman theorem: The derivative
of the eigenvalue of a given operator is equal to the expectation
value of the derivative of this operator with the corresponding
eigenfunction. If we define a new control parameter x such that
&= 14+x’ applying the Hellman-Feynman theorem and taking
into account that the mean-field component for this observable
vanishes, we obtain

() _ d -
N = E[(l + 0)E" (0]

_ 1 1-38— BV

=y =t O(N72).  (40)

The last observable considered is T, the transition proba-
bility between the ground state and the first excited state. The
starting point to obtain BMF results for the matrix elements
of the transition intensity operator (18) is its expression in
terms of Cartesian bosons and the application of the Holstein-
Primakoff expansion (28) and the shift transformation (29).
The obtained expression for fi, fixing A = 0, is

Ty = —V/N{(cl +co) £icl +¢y)
1
+ o lclhe + fces +i(clic + Accy)l). (A1)
2N ) ’
If we substitute the ¢ bosons with the a bosons via the

Bogoliubov transformation defined in Egs. (35) and (36) and
we take into account that the first excited state is doubly

PHYSICAL REVIEW A 83, 062125 (2011)

ay

it
degenerate |+1;) = F \%“y |0), we obtain the following re-
sult:

(£11|T1]01) = FV2N(u + v). (42)
In this case, the observable T is
T LT 100)12 + [(—=14|T_101) 2 1—
T _WLITIo0P + H=hIT 0P, [1-¢
N 2N 1 —5¢&

This result coincides with the first-order term in the expansion
of the observable T in Ref. [30], and it permits the calculation
of the scaling exponent associated with this observable.
However, it does not coincide with the TDA result (23). The
next correction (order zero in N) cannot be computed at this
level and implies a more elaborate Bogoliubov transformation,
including terms of a higher order than linear in the creation
and annihilation operators [47].

B. Deformed phase

The deformed phase, which is known as the bent phase
in molecular structure, is obtained for the control parameter
interval 0.2 < & < 1. The associated order parameter is r, =

gg—;} and, consequently, A2 = %. In this case, the resulting

Hj has a different dependence in x and y,
Hoger = 22422 = DE+ Y Opcler + Y Aiele] +cien),
i=x,y i=x,y
(44)
with
O, = 1 + (142* — 3)g,
O, = 1 + (41> = 3)E,
Ay = (527 = 1,
Ay = (207 — E.
We apply a Bogoliubov transformation to Eq. (44) and follow
the procedure defined in the symmetric case. In this case, the

solution (37) is valid, although the x and y components have
to be treated separately. We obtain

Ec(&)?
Hy get = ES"f + —= >

Aa, + O(1/N),

(45)
where 714, is the number operator for the a; bosons withi = x,y
and

EST = (3 — 1047 + 408 — 1+ E,.(5)'* 4+ 2,(8)'2, (46)
E(E) = 1 + (2802 — 6)& + (5 — 4427 + 960 HE2, (47)
E (&) =1+ (817 — 6)& + (5 — 8A%)E™. (48)

The ground-state energy per boson and the first excited-state
energy gap are computed considering this correction with AZ =

Ay

E,(©)'"?
2

% and the zero energy mean-field result from Eq. (12),
et _ —95% + 105 — 1
0 16&
1 — 68 —278% 4+ BB (£)1/2
Ly [l e pseE )
16&
A(]l;fh — Edef(s)l/2’ (49b)
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where E%f(£) = E,(8) =(56—1)(143%). The y-coordinate
contribution is a spurious Goldstone boson, associated with
a ground-state rotation.

As in the symmetric case, we calculate the correction to the
expected value of the number of 7 bosons in the ground state
making use of the Hellman-Feynman theorem and the change

in variable § = —— +x

@ _ Edef(f)
N~ 8&(1+3¢)
+O(N7?).

148 — D+ (1 - 35)E*(§)'?
N 8€ Bdef (£)1/2

(50)

The last observable considered is the transition probability
between the ground state and the first excited state. In this case,
as explained in the mean-field case, we distinguish between
the T and 7’ observables.

Taking into account that the y degree of freedom is spurious,
the BMF expansion in the deformed phase of the transition
operator is

NV N
- {2Aﬁ [1 -

1 A 1 1
— (cl+ey) — — Aic
2./N 1-)\2 2N 1 — A2

N 1 € e | T
c - — Cx — i,
¥ 2J/N 1 — A2 IN1-—22

[
_—Vnc- Cx (

1 A i 1
+ [1-——= (c; +cx) — ==

2JN1-=22"" 2N 1
(S
with Bogoliubov coefficients,
" = 238 -3 S (52)
VGE-DEE+ 1)
1 23t -3
= = . 53
’ fz\/ weE-neern

We substitute the ¢ bosons with the a bosons via the
Bogoliubov transformation defined in Eq. (35), and we take
into account that, in this case, the first excited state is
[1;) = al|0;). Doing so, we obtain that the matrix element
of the transition operator in the broken-symmetry phase is

(L|T10;) = —v/Ny/1 — 32 01|ax
[2xd_+

1—222
V1 =22
As in the symmetric phase, the corrections that have a lower
orderin N cannot be extracted without applying a more general
Bogoliubov approach. Up to the present order, the observable
T is

T (L7100 + [T (00 P (1—2A2>2

- = 2
N N 1—2x (ux + vy)

-1
458 = DA +38)

(ux + Ux)(a + ax):| |01>

=-VN (ux + vy). 4

(55)

PHYSICAL REVIEW A 83, 062125 (2011)

In the T’ case, the relevant expectation value of the transition
operators (51) is

T (01T 100 + (04 F_[0y)

= =81%(1 —1%)
N N
_ (1+38)(56 — I)N’
8&?2

(56)

where we recover the result calculated in the mean-field limit.
As in the previous case, we cannot go beyond this result with
the Bogoliubov transformation (35).

IV. COMPARISON WITH NUMERICAL RESULTS

The algebraic Hamiltonian (7) can be diagonalized numer-
ically once an appropriate basis is defined. In the present
section, we compare the numerical, the mean-field, and the
beyond mean-field (BMF) analytical corrections. To carry out
the numerical diagonalization, we use the basis associated
with dynamical symmetry I [16,19]. The results obtained for
the four observables under study are the following.

A. Ground-state energy per particle

In Fig. 4, we depict the results obtained for this observable
using the above-mentioned different approaches. The thin
dashed black line is the (N-independent) mean-field result
given in Eq. (12); red circles denote the results after numerical
diagonalization of the model Hamiltonian for N = 40. The
finite- N correction to the symmetric phase 0 < & < 0.2, given
in Eq. (39a), is depicted with a thick orange line. The deformed
phase correction (49a), valid for control parameter values
0.2 < &, < 1, is indicated by a thick blue line.

It is apparent that mean-field results and computed cor-
rections are both good approximations for control parameter
values close to a dynamical symmetry (£ values close to 0 or
1). However, the agreement, when the finite-N corrections are
considered, is far better than the pure mean-field approach as
the control parameter takes values closer to the critical value

0.25 LI —

0.20

o
o
o

©
o
o

-- Mean field

F oo o Numerical, N = 40

re BMF (N=40, symmetric)

Fo — BMF (N=40, deformed)

[

B

0-00\\\\‘\\\\‘\\\\‘\\\\‘\\\\
0.0 0.2 0.4 0.6 0.8 1.0

Control parameter &

o

o

a
I

S
o b b b by |

Ground, state energy per particle €

FIG. 4. (Color online) Ground-state energy per particle of Hamil-
tonian (7) in arbitrary units as a function of the control parameter &,
&o(&), in various approximations (see text).
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FIG. 5. (Color online) Difference between the ground-state en-
ergy per particle obtained numerically and using the two analytical
approximations considered in this paper. Panel (a) displays the results
obtained for N = 40, and panel (b) displays the results obtained for
N =400 as a function of the control parameter.

& = 0.2. At the precise critical value & = 0.2, the corrections
display a kink that is characteristic of this approach.

The difference between the numerical and the BMF results
at this scale is difficult to discern. To clarify the improvement
obtained including the BMF correction, in Fig. 5, we depict
the difference between numerical results and mean-field and
corrected mean-field results for N = 40 and 400. As expected,
both analytical approximations improve as N increases and,
in both cases, the derived BMF correction is much closer (to
order 1/N) to the numerical diagonalization. These differences
between numerical and analytical approximations follow a
similar pattern as the results presented in Ref. [30].

As shown in Fig. 5, the computed analytical correction to
the ground-state energy per particle clearly improves mean-
field results. The difference between numerical and analytical
approaches is far smaller in the BMF case (full orange line),
and it only gets appreciable in a very small region around the
critical point.

B. First excited-state energy gap

The numerical results for this observable are depicted in
Fig. 6, together with the mean-field result and the BMF
correction for the symmetric and deformed phases. The
numerical results for N = 40 are represented as orange circles
for the 0,-state energy gap and as green squares for the 1;-state
energy gap. The dashed black line is the TDA result (17b).
The analytical corrections to the mean-field approach in the
symmetric (39b) and deformed (49b) phases are depicted using
thick orange and blue lines, respectively.

As previously stated, when the critical point is crossed,
the first intrinsic excitation in the symmetric region (1 state,
green squares in Fig. 6) becomes a Goldstone boson in the
broken phase, where the first intrinsic excitation corresponds
to a two-quanta state in the symmetric region (0, state, orange
circles in Fig. 6). This is in good agreement with the results
published in Ref. [30] for u(2L + 1)-so(2L + 2) transitions.

PHYSICAL REVIEW A 83, 062125 (2011)
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FIG. 6. (Color online) Energy gap (A ) for the Hamiltonian (7)
as a function of the control parameter £. Numerical N = 40 results
for 0, and 1, states are shown as (orange) circles and (green) squares.

As in the previous case, the new analytical expression for
the energy gap clearly improves TDA results and adequately
describes numerical results up to values of the control
parameter closer to the critical point.

C. Expectation value of the number operator

Numerical and analytical results for the expectation value
in the system’s ground state of the u(2) number operator 7
are depicted in Fig. 7. In Fig. 7(a), we show the behavior for
the full range of values of the control parameter. A zoom of
the region around the critical value is presented in panel (b)
of this figure. In both panels, numerical results for N = 40
are represented with red circles; the thin dashed black line
is the normalized mean-field result (13), and the analytical
correction to the mean-field approach in the symmetric (40)
and deformed (50) phases is depicted using thick orange and
blue lines, respectively.

As expected, the accordance between analytical and nu-
merical results is remarkably better in the case of the BMF
approximation for both phases, symmetric and deformed. As
for the previous observables, the discrepancy with numerical
results diminishes for increasing values of N. In the vicinity
of the critical point, the computed corrections (40) and
(50) become singular. This divergence can be corrected by
computing more terms in the 1/N expansion (30). This
has already been performed for other bosonic two-level
systems using the continuous unitary transformations (CUTS)
approach [30,48-51]. The divergent behavior is useful in the
calculation of finite-size critical exponents, as shown in the
next section.

D. Transition probability

The comparison of the different analytical results for 7/N
with a numerical calculation for N =40 can be found in
Fig. 8. In panel (a) of this figure, the TDA calculation (broken
line) and the present paper’s result (43) are compared with
numerical results for N = 40 (red circles). The numerical
results are computed for the transition of the first excited state
41, to the ground state.

The results for the observable T in the broken-symmetry
region are shown in panel (b) of Fig. 8. In this case, the first
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FIG. 7. (Color online) Normalized expectation value of the u(2) number of bosons (71) in the ground state of the Hamiltonian (7) as a
function of the control parameter £. Numerical (N = 40) results are depicted with (red) circles, mean-field calculations are depicted with a thin
dashed black line, and BMF results are depicted in the symmetric and deformed phases as thick orange and blue lines (see text). Panel (b) is a

zoom of the region around the critical value of the control parameter.

excited state with/ = 1 is a Goldstone mode, and the numerical
results are computed for the second / = 1 excited state 1, and
again for N = 40.

The mean-field result for 7’ in the deformed region (56)
is depicted in Fig. 9, comparing the analytical results with a
numerical calculation for N = 40.

The analytical result for 7 in the symmetric region (43)
greatly improves the agreement obtained with the TDA
calculation. In the case of T’, the BMF correction cannot
be calculated with the levels of theory used in the present
paper, and its inclusion demands a nonlinear Bogoliubov
transformation.

V. SCALING PROPERTIES OF THE BOSONIC
u(3) APPROACH

Finite-size scaling in condensed-matter systems is a topic of
major interest and has solid foundations since the formulation

of a general theory [52,53] (for a review, see Ref. [54]). More
recently, in the fields of nuclear and molecular structure, driven
by the suggestion of a simple scale-invariant behavior for the
excitation energies of nuclei at the critical point of shape-phase
transitions [55-58], several groups of researchers initiated
a study of finite-size scaling behavior within the context of
algebraic models, paying special attention to the second-order
QPT between the spherical and y-unstable deformed phases
of the IBM u(6) Hamiltonian [30,31,48,59].

We now proceed to analytically derive finite-size scaling
exponents for the observables under study in the 2D limit of the
vibron model. The obtained exponent values are compared to
the numerical results published in Ref. [19]. Finite-size scaling
exponents for au(2L)-so(2L + 1) transition with semi-integer
values of L (L = 1/2) are calculated analytically.

We obtain the scaling exponents from the derived cor-
rections to the mean-field limit of the u(3) algebraic model

12 1.0 -
r 1 [ 0,-1, Numer. N = 40| |
= | 1080 ~ TDA ]
= g [o 0,1, Numer. N =40 12 1 — Mean field ]
5 | |--TDA 1 508 ]
_e' I |— Mean field 5 : ]
S
8 8 o4l ]
P [ ]
[ ) é i ]
0.2f .
[ b ]
(o) T Ll A L 0.0L ‘( ‘)‘ Ll P ; ———
0.00 0.05 0.10 0.15 0.20 0.2 0.4 0.6 0.8 1.0

Control parameter &

Control parameter &

FIG. 8. (Color online) Different analytical approximations for the 7' observable in the symmetric [panel (a)] and deformed regions [panel
(b)]. Note that, in the symmetric region, we compare with numerical results for the 1, state, while in the deformed sector, we compare with the
transition to the 1, excited state (see text). TDA (broken lines) and BMF (full blue lines) results are compared to a numerical calculation (red

circles and orange squares) for N = 40.
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FIG. 9. (Color online) Analytical approximation to the 7" observ-
able in the broken-symmetry region. The mean field (broken line) is
compared to a numerical calculation (red circles) for N = 40.

making use of an algorithm that profits from the singular
behavior of the observable under study in the QPT critical
point [30,48-51]. The critical behavior may not be apparent
at the obtained correction order (e.g., ground-state energy),
emerging only once subleading corrections are taken into
consideration.

We make use of the extension of the Fisher and Barber
results [52] to infinitely coordinated systems performed by
Botet et al. [53] and Botet and Jullien [60]. An infinitely
coordinated system is composed of N elements, each of which
is coupled to all the others. It is conjectured that, for such
systems, the dependence on the temperature of any observable
in the vicinity of the critical point (7}) is

A~ (T —T.)". (57)

This scaling hypothesis can be extended to the case of large,
but finite, N values,

A~ (T =T FAlN(T = To)"], (58)

where F4(x) — constant as x — oo and behaves as F4(x) ~
x® for x — 0. This function guarantees the right behavior
of the observable in the thermodynamic limit as well as a
regular conduct near the critical point for finite values of N
just imposing w, = —a/v.

The scaling hypothesis (58) can be extended to the study of
QPTs, where a Hamiltonian control parameter plays the role
of the temperature, assuming that the critical behavior of any
observable should be regular for finite N. In general, one can
find that the 1/N expansion of a physical quantity ® (&), near
the critical point of the QPT, can be decomposed in a regular
and a singular part as follows:

Dy (E) = DREE) + DUEE), (59)

where ®5"¢(£) (or its derivatives) diverges when £ tends to &,
while CIDE\e,g (&) and its derivatives stay regular. The extension of
the ansatz (58) to QPTs results in

B(E)™
Nre
where F is a function depending only on the scaling variable

NE(£)" and E(&) includes a factor £ — &, [50]. Once this func-
tional form of ®)'¥(&) is accepted, the scaling exponents can

PYE(E) =

FolNEE)'], (60)
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be obtained because, for finite-N values, physical quantities
do not diverge, and, thus, Fg(x) ~ x’*"‘f/ v, and the system’s
size dependence at the critical point is @ (&,) ~ N 1o ~%e/v,
Note that the term N "¢ is explicitly included to extend the
formalism for observables that are implicitly divided by a
power of N.

The value of v can be obtained from a 1/N expansion of
the singular part of the observables under study, identifying
the scaling variable in the expansion, i.e., N E(£)”. This has
been performed for different systems [u(2L + 1) models] and
observables (ground-state energy, gap, spin components, etc.)
[30,48,50,51]. In all these cases, v = 3/2, which implies a
system’s size dependence @j:,ng(éc) ~ N~1e=2%e/3,

Note that, in the present paper, the value of v cannot be
deduced in this fashion because only one term is obtained in
the expansion of the singular part of each observable. However,
following an argument similar to the one in Ref. [50], the
obtained result for the expected number of T bosons in the
deformed region in Eq. (50) can be written in the vicinity of
the critical point as

(i) 2*(%) 1§51

+ Nzgdef(g)l/z’ (61)

N 8E(1 +38)

where we have only considered the diverging contribution
in the order 1/N. The difference of the exponents that
affect 2%f(§)—i.e., (¢ — &)—in Eq. (61) is 1 — (—3) = 3.
In the case of N, this difference is 0 — (—1) = 1. This
is in accordance with the definition of NE(£)*? as the
system’s scaling variable. The goodness of this definition
is further confirmed by the agreement of the analytically
computed finite-size scaling exponents with the numerical
results included at the end of the present section as well as
in Ref. [19].

Taking the arguments explained above into consideration,
the finite-size scaling exponents can easily be calculated for the
set of observables under study. If we consider, for example,
the ground-state energy in the symmetric phase (39a), the
regular and singular components are &, * = & + (3¢ — 1)/N
and &, = EY™(§)/2/N. Thus, xp = 1/2, ne = 1, and the
scaling exponent is N~*/3. An identical exponent is found
in the deformed phase, using Eq. (49a) as a starting point.
The scaling exponent values for the observables studied in
this paper can be found in the third column of Table I. The
obtained results coincide with the scaling exponents obtained

TABLE 1. Scaling exponents for the observables under study:
ground-state energy (&), energy gap (A ), expected number of ©
bosons ({71)), and the transition probability 7/N.

P Xo ne Scaling exponent Numerical results [19]
& +1/2 +1 —4/3 —Aq = —0.9564(5)*
Apn  +1/2 0 —1/3 —Ar, , = —0.33743(10)
() —-1/2 0 +1/3 —A, +1=0.3770(5)
T/N —-1/2 0 +1/3 0.32026(13)°

2The difference, in this case, is explained by the inclusion of the
regular part in the computation of the scaling exponent in Ref. [19].
See discussion in text.

°This scaling exponent was not computed in Ref. [19]. See discussion
in text.
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FIG. 10. (Color online) Log-log plot of the singular part of the ground-state energy per particle [ = &, panel (a)] and the singular part of
the transition probability between the ground state and the first excited state [® = T /N, panel (b)] evaluated at the critical control parameter
(&, = 0.2) as a function of the system’s size. Both quantities are expressed in arbitrary units. Numerical results are plotted as blue squares, and

the red line shows the expected power dependence.

in Ref. [30] for u(2L)-so(2L + 1) transitions with integer L
values, something expected from the relation between both
works pointed out in the Appendix.

The obtained scaling exponents for Ay, and () agree
with the numerically computed exponents from Ref. [19], as
shown in the last column of Table I, and also coincide with
the asymptotic values suggested in this reference. In the cases
where it has been possible to estimate the asymptotic scaling
exponent to the right and to the left of the critical point, both
values coincide.

Because the observables’ definition in the present paper
and in Ref. [19] is not fully equivalent, the mapping between
exponents is not always direct. To facilitate the comparison,
we have included, in the last column of Table I, not only the
numerical value, but also the notation for the exponent used in
Ref. [19].

The difference between our result and the Ref. [19] result in
the case of the ground-state scaling exponent stems from the
lack of distinction between regular and singular components
of this physical observable in the latter case. It can easily
be seen from Eq. (39a) that, if the singular component of
the ground-state energy is not isolated, the expected finite-size
scaling exponent is —1 as reported in Ref. [19]. We have
performed numerical ground-state energy calculations, leaving
aside the regular part. The obtained results are plotted in a
log-log scale in Fig. 10(a), where it can clearly be noticed that
the expected dependence is well reproduced.

The transition intensity scaling exponent was not numer-
ically estimated in Ref. [19]. Thus, we have carried out
the necessary numerical calculations to check the predicted
value of 1/3. Results are depicted in the log-log plot
of Fig. 10(b), which makes apparent that the numerical
results follow the predicted dependence with the system’s
size. The fit of the numerical results for N > 1000 gives,
as a result, the scaling exponents estimation in Table I,
which reasonably agrees with the theoretically predicted
value.

VI. SUMMARY AND CONCLUDING REMARKS

In this paper, we have investigated the u(2)-so(3) phase
transition that occurs in the u(3) algebraic approach to 2D sys-
tems. In a previous paper [19], this transition was investigated
numerically, and the scaling behavior with the system size of
several relevant quantities was extracted. However, obtaining
the finite-size corrections from numerical studies is always a
difficult task. In this paper, we have combined the Holstein-
Primakoff expansion with a Bogoliubov transformation in
order to analyze both phases, symmetric and nonsymmetric,
of the system so as to analytically obtain the finite-size
corrections for the selected observables. The analytical results
obtained are valid in an interval much closer to the critical
point than mean-field results and largely improve the model
description.

Similar studies for cases described by a spectrum-
generating algebra u(2L +2) with L =0,1,2,... were al-
ready presented in Ref. [30]. However, the present case, which
is the simplest with a half-integer value of L [u(3) corresponds
to L = 1/2] is studied here. The analytical results for the
observables discussed (the ground-state energy, the gap, the
expectation value of the boson number in the upper level that
is considered the quantal order parameter for the transition,
and the reduced transition probability between the first excited
and the ground states) provide specific finite-size corrections
for all the observables studied. The results for the finite-size
corrections numerically obtained in Ref. [19] are consistent,
after reinterpretation of the calculations in some cases, with
the analytical results presented here.
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APPENDIX: RELATION WITH RESULTS OBTAINED
USING CUTS

In Ref. [30], the case of QPTs in two-level boson systems,
the lowest level with zero angular momentum and the upper
one with integer angular momentum L, was analyzed. These
systems have a spectrum-generating algebra u(2L + 2) and
present dynamical symmetries u(2L + 1) and so(2L + 2),
both having a common so(2L + 1) symmetry. Reference [30]
explored the u(2L + 1) to so(2L + 2) transition in these
systems, and the corresponding finite-size corrections for
different observables were obtained using the CUTS method.
For that purpose, the boson-pairing Hamiltonian was used

1—x

(N—l)

ﬁ/

H =xn; +

=xn, +-———(P}PL+ PP, — PP, — PIP,),

1-
4N —1)
(AL)

where P’ is the pairing operator used, which is related to the
s0(2L + 2) Casimir operator, defined as

= 1P| — PI(PL - P, (A2)
with
+L
ng= Y LiL, (A3)
n=—L
Pl = (P! =s's, (Ad)
+L
Pl =P = Y (—1yLiLl, =LiLT. (A5
n=—L

LL creates a boson in the excited L level with projection p,
while L, destroys it. The total number of bosons N = n; +n
is a conserved quantity. All systems cited and worked out in
that paper had L integer values: L = 0 corresponds to the
Lipkin model, L = 1 is the molecular vibron model, L = 2 is
the nuclear interacting boson model, etc. One can realize that
the finite-size corrections obtained for the present u(3) model
are identical to those obtained with the formalism presented
in Ref. [30] if a half-integer L = 1/2 angular momentum for
the upper level is selected and an appropriate change in the
control parameter is made. In this appendix, we would like to
show that the Hamiltonian (A1) can be rewritten as the u(3)
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Hamiltonian (7) and that the results presented in Ref. [30] can
also be used for the L half-integer.
In our case, the Hamiltonian reads

—¢ [(1 —EA+ %P] (A6)
With the definitions of P, Egs. (5) and (6), and defining
n, =olo, (A7)
ne =t +t, (A8)
= (P)f =o'l (A9)
Pl=(P)l =tirt =27lcf (A10)

after some algebra, the so(3) pairing operator P (6) can be
written as

P =(PiP. + PP, + PP, +PiP), (A11)

soﬂis
=¢ [(1 — &+ —Ns I(PJP, + PP, + PIP, + PIP,)|.
(A12)

It is straightforward to see that Eqgs. (Al) and (A12) are
similar. In fact, it can be shown that H’ can be written as

1 §
H = 1- PP+ PP,
3$+1|:( §)HL+(N_1)( L+
— PlP, - PjPL)] , (A13)
with the change,
1 —
. (Al14)

3¢ +1

Comparing Eqs. (A12) and (A13), it is evident that, apart
from a global scale 5 ;H , they are identical except for a couple
of signs that correspond to the selection of different pairing
operators: In Ref. [30], the pairing (A2) is used, while here,
we use the pairing (All). Apart from a global numerical
factor absorbed in the change of the control parameter, both
selections correspond to different so(3) realizations, usually
called so(3) and so(3) in the literature [ 19]. These two algebras
are isomorphic, and a consistent treatment provides the same
results for all matrix elements in the model and, consequently,
leads to the same spectra and relevant observables. Thus, the
u(3) Hamiltonian used in this paper is a particular case of
the boson-pairing Hamiltonian used in Ref. [30], and we have
demonstrated here, by an alternative method, that finite-N
effects calculated in Ref. [30] are also applied to the case
of the L half-integer L = 1/2 with the change (A14), and
properly describe the shape-phase transition in the 2D limit of
the molecular vibron model.
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