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Quantum superpositions of a mirror for experimental tests for nonunitary Newtonian gravity
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The aim of this work is to calculate explicitly the result of the experiment of superposition of a mirror in the
Michelson photon cavities interferometric device proposed by Marshall, Simon, Penrose, and Bouwmeester, as
expected within a recently proposed model of nonunitary self-gravity-inducing localization. As for other proposals
of modifications of quantum mechanics in a nonunitary sense, aimed to account for both unitary evolution and
irreversible collapse, like in the famous Ghirardi-Rimini-Weber and Pearle’s models, it turns out that, for the
experimental parameters proposed, no effect is detectable at all. It is pointed out that the enhancing properties of
matter granularity does not substantially change this conclusion. Parameters have also been exploratively varied
in a certain range beyond the proposed values. It is shown that within “sensible” parameters, which are not yet
attainable within current technology, the model exhibits a peculiar signature with respect to other collapse models
as far as parameters space is explored. Besides, the calculation offers a way to see nonunitary gravity at work in
a quasirealistic setting.
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I. INTRODUCTION

In the past few decades, several proposals of modification
of quantum mechanics (QM) have appeared in the literature,
aimed at unifying its internal fundamental dichotomy between
unitary deterministic quantum dynamics and nonlinear irre-
versible state collapse following a measurement process [1].
On the other hand, big efforts have been devoted toward an
attempt to reconcile Einstein gravity with quantum theory. In
this context, some approaches have focused on the possible
role of gravity in state function collapse as a result of the
incompatibility of general relativity and the unitary time
evolution of QM [2–5]. It has been shown, in fact, that
the existence of linear superpositions of states with macro-
scopic mass-distribution differences would entail a breakdown
of classical space-time making the traditional quantum dynam-
ics somehow troubling [2]. As distinct from Penrose proposal,
some other detailed collapse models have been proposed,
which are based on a spontaneous stochastic state vector
reduction: the Ghirardi-Rimini-Weber (GRW) model [6], the
quantum mechanics with universal position location model
(QMUPL) of wave function collapse [3], and the continuous
spontaneous localization (CSL) model [7]. Recently, the
mechanism of spontaneous symmetry breakdown of time
translation symmetry has been invoked as well in order to
give rise to the quantum state reduction [8].

In a different proposal, De Filippo introduced a nonunitary
model of Newtonian gravity (NNG, from now on), which
can be seen as the nonrelativistic limit of a classically
stable version of higher derivative gravity (see, e.g., Ref. [9],
references therein). This model presents several appealing
features to become a natural candidate for an effective low-
energy model of gravity. For example, while reproducing
at a macroscopic level the ordinary Newtonian interaction,
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it presents a mass threshold for gravitational localization,
which for ordinary matter densities is around 1011 proton
masses [10]. The model can be seen as a realistic version of the
nonunitary toy models [11–13] inspired by the emergence of
the information loss paradox [14–16] from black-hole physics.
On the other hand, the violation of unitarity when matching
quantum mechanics and gravity was argued also outside
black-hole physics, on general consistency grounds [2,17]. The
model affords a mechanism for the evolution of macroscopic
coherent superpositions of states into ensembles of pure states,
each one of them corresponding—within a future consistent
general covariant theory—to an unambiguous space-time. Its
features include its ability to produce an evolution of the
density matrix compatible with the expectations leading to
the phenomenological spontaneous localization models, as it
was argued that they should be both nonlinear and nonunitary
[5]. While sharing with the other proposals the nonlinear
nonunitary character, at variance with them, however, it does
not present obstructions consistent with its special-relativistic
extension [18]. Another success of the model is the emergence
of a unified picture for ordinary and black-hole entropy
as entanglement entropy with hidden degrees of freedom
[9], in agreement with Bekenstein-Hawking entropy [19]
and Hawking evaporation temperature; that arises from the
smoothed singularity of the black hole introduced by the model
and paves the way for the quantum foundations of the second
law of thermodynamics.

It is important to realize that the subject of a fundamental
nonunitarity, and the various detailed mechanisms proposed
[2–4,17,20–22], is not just a matter of philosophy, but could
be, in principle, experimentally proved or disproved. Current
technological progresses that have being achieved in isolating,
manipulating, and controlling a higher and higher number of
degrees of freedom indicate a not far possibility of detecting
fundamental decoherence, which would manifest in a clean
way only once the system has been sufficiently protected
against the sources of environmental noise [23]. Indeed,
an experiment designed to detect fundamental deviations
from unitary quantum evolution would be of considerable

062124-11050-2947/2011/83(6)/062124(13) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.062124


MAIMONE, SCELZA, NADDEO, AND PELINO PHYSICAL REVIEW A 83, 062124 (2011)

importance. Some technologies and devices have, at present,
been recognized to be particularly suitable to create quantum-
state superpositions that are macroscopically distinct [24].
Among them, there are diffraction of complex molecules up
to 2 × 103 proton masses [25], current cat states in SQUID
devices [26], and superpositions of atomic matter waves in
Bose Einstein condensates [27].

Recent progress in optomechanical systems may soon allow
one to make superpositions of even larger objects, such as
microsized mirrors or cantilevers [28], and to test quantum
phenomena at larger scales. In this context, an appealing quite
recent proposal for the practical realization of the Penrose
“gedanken experiment” [2] considers the relatively small
center of mass (c.m.) displacement of a lump of 1014 proton
masses in a interferometric device in which two high-finesse
optical cavities are inserted into its arms [29]. The cavity in arm
A has a very small end mirror mounted on a micromechanical
oscillator (cantilever), which suffers the radiation pressure of
the photon confined inside it and as a consequence can be
excited into a distinguishable quantum state. A single-photon
incident on a 50:50 beam splitter will realize a superposition
of being in either of the two arms; then, the coupling between
the photon and the cantilever will lead to an entangled state
putting the cantilever into a superposition of distinct positions.
After a full mechanical period of the cantilever, it recovers
its original position; if the photon leaks out of the cavity at
this stage, a revival of the interference (visibility) is observed,
provided that the quantum superposition state of the system
survives at the intermediate times. Conversely, if the state of
the system collapses due to some decoherence mechanism,
visibility will not revive. Summarizing, a measurement of the
magnitude of the revival of visibility gives a measurement of
decoherence during the time interval under consideration.

Our work is devoted to calculate explicitly the output of
this experiment [29] according to the nonunitary Newtonian
gravity model [9,10,30,31]. We would point out that detailed
calculations for the expectations of some other collapse mod-
els, gravitational or not, have already been done, demonstrating
a far reaching possibility to confirm the theory [32–34].

The plan of the paper is as follows. Section II contains a
brief description of the basic NNG model. In Sec. III we give
a qualitative discussion to argue, in the relevant parameter
space of the experiment by Marshall et al. [29], the subspaces
where gravitational effect could, in principle, be visible with
both homogeneous and granular assumption on mirror mass
distribution. Section IV is devoted to the application of NNG
model to the experiment, and its general solution. Then, in
Section V, we use the Wigner function to monitor the mirror’s
state and verify its behavior in time, after a measurement of
photons’ state. Finally, in Sec.VI, we draw conclusions and
outline perspectives of this work. Calculational details are
devoted to Appendices.

II. NONUNITARY NEWTONIAN GRAVITY MODEL

The aim of this Section is to briefly recall the key features
of the NNG model, which we will use for calculations. On the
basis of a number of considerations (among which consistency
with basic formal relations of QM, approximate energy conser-
vation, classical and quantum behavior of matter, requirement

that nonunitary terms have a gravitational origin, etc.), it is
possible to isolate a two-parameter class of nonunitary gravity
models, as discussed in detail in Refs. [9,10,30,31]. We will
comment later in the section on these parameters, while we
give here a concise definition of the model in its simplest
form, which will allow us to carry out our calculations.

Let H [ψ†,ψ] be the nonrelativistic Hamiltonian of a finite
number of particle species, such as electrons, nuclei, ions,
atoms, and/or molecules, where ψ†,ψ denote the whole set
ψ

†
j (x),ψj (x) of creation-annihilation operators, i.e., one cou-

ple per particle species and spin component. H [ψ†,ψ] includes
the usual electromagnetic interactions accounted for in atomic,
molecular, and condensed-matter physics. To incorporate that
part of gravitational interactions responsible for nonunitarity,
one has to introduce complementary creation-annihilation
operators ψ̃

†
j (x),ψ̃j (x) and the overall (meta-)Hamiltonian:

Htot = H [ψ†,ψ] + H [ψ̃†,ψ̃]

−G
∑
j,k

mjmk

∫
dxdy

ψ
†
j (x)ψj (x)ψ̃†

k (y)ψ̃k(y)

|x − y| ,

(2.1)

acting on the product Fψ ⊗ Fψ̃ of Fock spaces of the ψ and
ψ̃ operators, where mi is the mass of the i-th particle species
and G is the gravitational constant. The ψ̃ operators obey
the same statistics as the corresponding operators ψ , while
[ψ,ψ̃]− = [ψ,ψ̃†]− = 0.

The metaparticle state space S is the subspace of Fψ ⊗ Fψ̃ ,
including the metastates obtained from the vacuum ||0〉〉 =
|0〉ψ ⊗ |0〉ψ̃ by applying operators built in terms of the

products ψ
†
j (x)ψ̃†

j (y) and symmetrical with respect to the
interchange ψ† ↔ ψ̃†; as a consequence, they have the same
number of ψ (physical) and ψ̃ (hidden) metaparticles of
each species. Since constrained metastates cannot distinguish
between physical and hidden operators, the observable algebra
is identified with the physical operator algebra. In view of this,
expectation values can be evaluated by preliminarily tracing
out the ψ̃ operators. In particular, the most general metastate
corresponding to one-particle states is represented by

||f 〉〉 =
∫

dx
∫

dy f (x,y)ψ†
j (x)ψ̃†

j (y) ||0〉〉 .

(2.2)
f (x,y) = f (y,x)

This is a consistent definition since Htot generates a group of
(unitary) endomorphisms of S.

If we prepare a pure n-particle state, represented in the
original setting, excluding gravitational interactions, by

|g〉 =
∫

dnx g (x1,x2,...,xn) ψ
†
j1

(x1)ψ†
j2

(x2)...ψ†
jn

(xn) |0〉 ,

its representation in S is given by the metastate∫
dnx dny(g (x1,...,xn) g(y1,...,yn)ψ†

j1
(x1)...ψ†

jn
(xn)

× ψ̃
†
j1

(y1)...ψ̃†
jn

(yn) ||0〉〉).
A comment is in order on the possible extensions of the

model outlined in Refs. [9,10,30,31]. As said in the beginning
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of the section, the phenomenological general model depends
on the two parameters (N,ε). The first refers to the number N

of copies in interaction, which on thermodynamical grounds
can be inferred to be 2 (as in the model presented above). It
is, however, interesting to note that the limit N → ∞ (with
ε = 1) reproduces the famous nonlinear Newton-Schrödinger
equation, sometimes considered in the literature as a possible
candidate equation for the inclusion of the self-gravity in
QM, relevant to the quantum-classical transition [5,10]. The
second, ε, modulates the degree of nununitarity encoded
in the gravitational interaction. The above model definition
corresponds to ε = 1, for which all Newtonian interaction
is of nonunitary type. This choice has been made in order
to maximize the effect of nonunitarity, while calculating the
prediction on the experiment by Marshall et al. [29] in the
best model-setting, which gives the largest possible deviations
from unitarity.

III. A SEMIQUANTITATIVE ARGUMENT FOR NNG
EFFECTS IN MIRROR EXPERIMENT

Before considering the detailed application to the mirror
experiment of Ref. [29], in this section we give a semiquanti-
tative argument for a gross identification of NNG effects.

When considering self-interaction gravitational energy, the
threshold mass of localization, Mtr ∼ 1011proton masses
(= 1.672 × 10−16kg), can be identified in the following way.
If M < Mtr, the metasystem behaves like an hydrogen-like
system, while in the case of M > Mtr, the hidden mass-copy
is quite well superposed to the physical one. As a consequence,
the interaction potential can be approximated, within the
lowest energy state of the metasystem, by the harmonic
oscillator ground state with gaussian wave function width

�G =
[

h̄√
(4/3) πG ρsil M2

]1/2

,

where ρsil = 5 × 103 kg/m3 is silicon density. For nonunitary
gravity to be effective in localizing the mirror, this length scale
must be at least comparable with the wave packets separation:

�x = κ

√
h̄

2Mωm

, (3.1)

where ωm is the mirror’s frequency and κ is the optomechanical
coupling constant; then the condition �x >∼ �G amounts to

κ ≡ 1

ρsil G

(
ωm

κ2

)2

<∼ 1; (3.2)

for the experimental parameters, i.e., ωm � 2π × 500 Hz,
ρsil � 5 × 103 kg/m3 and κ ∼ 1, we get �x � 5.79 ×
10−14m, κ ∼ 1013. As pointed out in Ref. [35], an enhance-
ment in the possibility of observing gravitational decoherence
effects is provided by taking into account the real distribution
of mass inside a crystal, which is very concentrated within
nuclei (see Appendix A2). In that case, one should consider
instead of ρsil a matter density ρnuc ∼ 104ρsil, given by a silicon
nucleus mass divided by its effective radius, which can be
estimated as the typical spread of the wavefunction inside a
crystal. This leads to κ ∼ 109, which is still much greater than
unity.

It should be stressed that the choice between homogeneous
or granular matter distribution is not arbitrary, but is dictated
by the experimental situation. As a matter of fact, when the
relative displacement of metamasses �x is of the order of
the nucleus effective radius, it seems appropriate to take into
account granularity; when �x is made much greater than
interatomic separation, then homogeneity assumption appears
to be the most suitable one; finally, for �x of the order of
interatomic separation, if imperfections like dislocations are
present in the sample (as it usually happens, even when very
accurate preparation methods are used), then metamasses are
likely to “feel” an effective homogeneous masses potential
(this is because in the presence of a sufficient number of
dislocations, as two metanuclei get nearer and nearer in one
place, two nuclei in another place in the crystal can equally
well go farther and farther from each other); otherwise, for a
really perfect crystal, granularity should come again into play.

On the other hand, (fundamental) decoherence rate must
be at least comparable with (or lower than) a period of natural
oscillation of the mirror, which, in its turn, must be comparable
with (or lower than) environmental decoherence rate for the
experiment to be feasible.

Then the following chain of relations must be satisfied:

EG

h̄
∼ πκ2h̄Gρsil (ρnuc)

3ωm

∼ ωm >∼ γD, (3.3)

where EG is the gravitational interaction energy of the
metamasses (see Appendix A), γD is the environmental
decoherence rate of the mirror [29,32]. With the parameters of
the experiment the value ωm = ω

exp
m � 2π × 500 Hz has been

proposed.
An exploration of parameter space within the exact solution

has confirmed that first inequality (3.2) and approximate
equality in Eq. (3.3) must hold in order to see some relevant
deviation from unitarity.

It should be stressed that, in spite of the improvement
of mass size in the mirror experiment with respect to
double-slit-type experiments, the degree of macroscopicity of
superposition is controlled not only by mass but also by space
separation of the superposed wave packets.

A comment is in order on the apparent independence of
the above result on the mass. The main point is that we have
chosen to measure c.m. state separation in units of coherent
states’ size, which means that a larger mass is associated with
a smaller unit of length and then, fixing κ , to a narrower
peak separation. One could also choose to fix the absolute
separation �x and express κ ≡ κ (M,ωm) = �x

√
2Mωm

h̄
in the

above formulas.

IV. APPLICATION OF NNG MODEL TO
THE MIRROR EXPERIMENT

In this Section we carry out interference visibility calcula-
tions within the mirror experiment [29] in the framework of
the NNG model [9,10,30,31].

To this aim, let us start by defining the gravity-free
Hamiltonian

Hfree[b,b†,NA,NB ; ωm] = h̄ωPh(NA + NB) + h̄ωmb†b

− h̄gNA(b + b†),
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where g = κ ωm,NA,B are the number operators for the photon
in the interferometer arms A and B, respectively, while b and
b† are the phonon destruction and creation operators associated
with the motion of the mirror’s c.m. In this way our (meta-)
Hamiltonian can be written as

Htot = Hfree[b,b†,NA; ω∗
m] + Hfree[b̃,b̃†,ÑA; ω∗

m]

−KG(b + b†)(̃b + b̃†),

with ω∗
m = ωm

√
1+2 KG

h̄ωm
(see Appendix A for the calculation of

the gravitational interaction strength KG in both homogeneous
and granular case). In practice, the (relevant degrees of
freedom) metasystem is formed by two gravitationally coupled
harmonic oscillators and two-by-two photonic modes, each
couple of modes interacting with its own mirror. Then,
Schrödinger state at time t is given by:

‖
(t)〉〉 ≡ ‖
(t)〉〉Sch = 1

π2

∫∫
d2βd2β̃ KNAÑA(β,β̃; t)

× |ψ(t)〉β ⊗ |ψ(t)〉β̃ , (4.1)

where

|ψ(t)〉β = 1√
2
e−iωPht (|0A1B〉 ⊗ |βc〉 + f (β)|1A0B〉 ⊗ |βl〉),

with

f (β) = eiκ2(ω∗
mt−sin ω∗

mt)eiκIm[β(1−e−iω∗
mt )]

|βc〉 = |βe−iω∗
mt 〉; |βl〉 = |βe−iω∗

mt + κ(1 − e−iω∗
mt )〉.

Here Im(x) denotes the imaginary part of x. Computational
details on kernel K are devoted to Appendix B.

Since the only experimentally accessible quantity is the
visibility, defined as twice the off-diagonal term (in the
absolute value) of the physical photon’s state ρAB , we are
going to calculate this quantity as

V (t) = 2
∣∣Trm,m̃TrP̃hR

(α)
V

∣∣,
where R

(α)
V is defined as

R
(α)
V = 〈1A0B ||
〉〉〈〈
||0A1B〉.

It can be shown that visibility has a one-to-one cor-
respondence with von Neumann entropy, which represents
a good measure of entanglement for a pure bipartite
state [32].

We write the kernel as:

KNAÑA (β,β̃,t) = �(t)e− KG

2h̄2

[
4α

[
Fγ ∗,+

1 +αFγ ∗ ,γ ∗
1

]
+F+ ,+

1 +F− ,−
2

]
e−|α|2︸ ︷︷ ︸

KNAÑA (t)

e− |β|2
2 − |β̃|2

2 +β∗α+β̃∗α

× e

− KG

2h̄2

⎡⎢⎢⎢⎣(Fγ,γ

1 + Fγ,γ

2 )︸ ︷︷ ︸β∗2

Fp

+2 (Fγ,+
1 + Fγ,−

2 + 2αFγ ∗,γ
1 )︸ ︷︷ ︸β∗

Fp

⎤⎥⎥⎥⎦

× e

− KG

2h̄2

⎡⎢⎢⎢⎣(Fγ,γ

1 + Fγ,γ

2 )︸ ︷︷ ︸
Fp

β̃∗2+2 (Fγ,γ

1 − Fγ,γ

2 )︸ ︷︷ ︸
Fm

β∗β̃∗+2 (Fγ,+
1 − Fγ,−

2 + 2αFγ ∗,γ
1 )︸ ︷︷ ︸

Fm

β̃∗

⎤⎥⎥⎥⎦
,

where the functions Fi = Fi(ω∗
mt) are defined in Appendix B, Eq. (B.3). Then we proceed to write the products

KNAÑA (β,β̃,t)KN ′
AÑ ′

A∗(β ′,β̃ ′,t) in the form (k′ = KG/2h̄2):

KNAÑA (t)KN ′
AÑ ′

A∗(t) e−k′[Fpβ∗2+2Fpβ∗]︸ ︷︷ ︸
K1(β)

e−k′[Fpβ̃∗2+2Fmβ∗β̃∗+2Fmβ̃∗]︸ ︷︷ ︸
K2(β,β̃)

e−k′[F ∗
p β ′2+2F ∗

pβ ′]︸ ︷︷ ︸
K3(β ′)

e−k′[F ∗
p β̃ ′2+2F ∗

mβ ′β̃ ′+2F ∗
mβ̃ ′]︸ ︷︷ ︸

K4(β ′,β̃ ′)

× e− |β|2
2 − |β′ |2

2 +β∗α+β ′α∗︸ ︷︷ ︸
h(β,β ′)

e− |β̃|2
2 − |β̃′ |2

2 +β̃∗α+β̃ ′α∗︸ ︷︷ ︸
g(β̃,β̃ ′)

.

Let’s calculate the traces:

Trm,m̃TrP̃hR
(α)
V = 1

4π4
eiκ2(ω∗

mt−sin ω∗
mt)

∫∫∫∫
d2(β,β ′,β̃,β̃ ′) eiκIm[β(1−e−iω∗

mt )] eβlβ
′∗
c − 1

2 |β ′
c|2− 1

2 |βl |2︸ ︷︷ ︸
L(β,β ′)

× [
K10(β,β̃)K00∗(β ′,β̃ ′) eβ̃cβ̃

′∗
c − 1

2 |β̃c|2− 1
2 |β̃ ′

c|2︸ ︷︷ ︸
Hc(β̃,β̃ ′)

+K11(β,β̃)K01∗(β ′,β̃ ′)

× eiκIm[β̃(1−e−iω∗
mt )]︸ ︷︷ ︸

ε(β̃)

e−iκIm[β̃ ′(1−e−iω∗
mt )]︸ ︷︷ ︸

δ(β̃ ′)

eβ̃l β̃
′∗
l − 1

2 |β̃l|2− 1
2 |β̃ ′

l |2︸ ︷︷ ︸
Hl(β̃,β̃ ′)

]
.
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0.2 0.4 0.6 0.8 1.0

t ωm

2 π

0.2
0.4
0.6
0.8
1.0

Visibility

FIG. 1. Interference visibility as a function of time in the homo-
geneous case plotted for κ = 1, mass = 5 × 10−12kg for the mirror
size L = 10−5m and several values of the frequency: ωm = ωexpt

m ×
10−5 (dot-dashed), ωm = ωexpt

m × 10−6 dashed, ωm = 5 ωexpt
m × 10−7

(dotted), and ωm = ωexpt
m × 10−7 (continuous black line). Visibility

and time are expressed in dimensionless units.

Visibility is then given by two contributions:

V (t) = 2
∣∣Trm,m̃TrP̃hR

(α)
V

∣∣ = 2|(I ) + (II )|. (4.2)

Here, we do not write the explicit integrals for (I ) and (II ),
which can be found in Appendix C; it is worth noting that, if we
discard their photon’s number dependence, they are formally
similar. In the free case of no NNG interaction, i.e., by putting
k′ = 0, and for α = 0, we get

(I ) ≡ (II ) = 1
4 |�(t)|2eiκ2(ωmt−sin ωmt) e−κ2(1−cos ωmt)

(for k′ = 0, ω∗
m = ωm and |�(t)|2 = 1),

as found in [29].
The behavior of visibility for κ = 1 and four different

values of ωm is depicted in Fig. 1. The first case shows no
difference with the free case, and the remaining three, in de-
creasing order, progressively give a more and more reduction
of revival effect at the end of the cycle. A direct comparison
can be made with the predictions of other phenomenological
collapse models, like GRW, QMUPL, and CLS [5,33]. Let us
focus, for example, on the GRW model [6]. In such a case the
explicit formula for visibility is

V (t) = V0(t) e
− 3 κ2h̄ η0

2 µnuc ωm
(t− 4

3
sin ωmt

ωm
+ sin 2ωmt

6 ωm
)
,

where V0 is the visibility in the free case, i.e., in the
absence of any mechanism of decoherence (of fundamental
or environmental nature), η0 � 0.5 × 10−2s−1m−2 and µnuc ∼
1.67 × 10−27kg is nucleon mass. Notice that also in this case
no explicit dependence on mass appears. It turns out that in
the “worst” NNG case (ωm = ω

exp
m × 10−7), in which visibility

goes practically to zero, GRW predicts a visibility lowering at
the end of the cycle of about 0.5% with respect to the free case.
It is interesting to note that for smaller �x, an enhancement

of the effect’s observability comes from the consideration of
granularity. As discussed in the previous section, in fact, for
�x ∼ 10−12 or less matter granularity may come into play; as
a consequence, we obtain that already for ωm = ω

exp
m × 10−3

visibility behaves in a similar way to the homogeneous case
with ωm = ω

exp
m × 10−6 (dashed curve of Fig. 1).

V. MONITORING THE MIRROR’S STATE:
THE WIGNER FUNCTION

In the previous section we have considered a measure of
photons’ interference and shown that with a proper choice
of parameters one gets a reduced revival effect at the end of
one oscillation period. Here we want to elucidate about the
mirror’s state soon after a photon measurement process. For
monitoring mirror’s state, and to get a physical insight of what
is going on, we use the Wigner function. As it is well known,
this quasidistribution have both positive and negative parts, the
latter being a signature of quantum coherence survival. It is
expected that the action of NNG-induced decoherence would
reduce, after some time, the interference patterns in the Wigner
distribution.

We calculate the Wigner function starting from the
expression:

W (x,p; t) = 1

2h̄π2

∫
d2λ e−λη∗+λ∗η Tr[ρm(t) eλb̂†−λ∗b̂],

(5.1)

with

η = ip√
2Mω∗

mh̄
+ x

√
Mω∗

m

2h̄
,

where ρm is the reduced density matrix of the mirror after a
photon detection [36]. Following [32], we take this measure-
ment as the process projecting (physical) photons’ state onto
the state

|ϕ〉 = 1√
2

(|0A,1B〉 + eiθ |1A,0B〉),

where θ is a phase constant (it can be shown that the
corresponding results are quasi-independent of θ and then
we put θ = 0). Correspondingly, mirror’s density matrix is
(||ϕ〉〉 ≡ |ϕ〉 ⊗ |ϕ̃〉)

ρm(t) = TrPh,P̃h,m̃[(||ϕ〉〉〈〈ϕ|| ⊗ 1)||
(t)〉〉〈〈
(t)||].

After some calculations, we get the Wigner function as

W (x,p; t) = 1

2h̄π2

∫
d2λ [e−λη∗+λ∗η Tr(ρm(t) eλb†−λ∗b)] = 1

4h̄π5

∫
d2(β,β̃,β ′,β̃ ′)e−2ηη∗

[α1e
−βcβ

′∗
c − 1

2 |βc|2− 1
2 |β ′

c|2+2βcη
∗+2β ′∗

c η

+α2e
−βlβ

′∗
l − 1

2 |βl |2− 1
2 |β ′

l |2+2βlη
∗+2β ′∗

l η + α3e
−βcβ

′∗
l − 1

2 |βc|2− 1
2 |β ′

l |2+2βcη
∗+2β ′∗

l η + α4e
−βlβ

′∗
c − 1

2 |βl |2− 1
2 |β ′

c|2+2βlη
∗+2β ′∗

c η].

(5.2)
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FIG. 2. (Color online) Wigner function in the homogeneous case
for κ = 2,ωm = ωexp

m × 10−5, for the mirror size L = 10−5m and for
different intermediate times in a complete mirror oscillation. The
variables x and p are in the ranges {−10δx,10δx} and {−10δp,10δp}
with δx

.=
√

h̄

2Mω∗
m

and δp
.=

√
h̄Mω∗

m

2 , while τ = ω∗
mt . In the case with

ωm = ωexp
m , as in the absence of gravity, we get qualitatively the same

graphics. All quantities are expressed in dimensionless units.

Explicit expressions for α1,α2,α3, and α4, together with
calculational details, are reported in Appendix D.

Results for κ = 2 and ωm = ω
exp
m × 10−5 and ωm =

5 ω
exp
m × 10−7, are shown in Figs. 2 and 3, respectively, for

the homogeneous case. As seen for visibility, in the case
of (proposed) experimental values, Wigner function after

FIG. 3. (Color online) Wigner function for ωm = 5 ωexp
m × 10−7.

All the other parameters are as above. All quantities are expressed in
dimensionless units.

measurement is undistinguishable from the free case. For the
second (presently unattainable) much smaller value of ωm,
after a certain time a diminution of interference fringes is
observed together with a contextual lowering of the first rest
peak.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, the output of the mirror experiment proposed
by Marshall et al. [29] has been calculated within the
framework of NNG, assuming both homogeneous and granular
mass distributions. By varying the experimental parameters
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in a wide range beyond the proposed values [29], a window
of “sensible” parameters has been found in which the NNG-
induced decoherence effect is manifest.

In conclusion, even if the experimental test of nonunitary
gravity has been proven to lie beyond current technology,
requiring an unprecedented control of decoherence, its peculiar
form of self-gravitational interaction has been shown to be
in principle distinguishable from the action of other collapse
models. An exploration of the relevant parameter space could,
in fact, in a feasible experiment, lead to a clear distinction of
the most appropriate model. The signature of NNG model is
ultimately connected with the fact that fundamental interaction
occurs with a “simple” system (the mirror’s copy in this
case) rather than with a fundamental “thermal bath” random
field leading to a visibility output somehow indistinguishable
from the effect of temperature. This is essentially due to
the laboratory artificially created superposition state, while
in naturally occurring circumstances it is expected that
“fundamental environment,”being as complex as the system
itself, could eventually lead to autothermalization effects.

In spite of the huge technical challenges, however, we be-
lieve that due to the rapid progress in developing high-quality
micro-optomechanical devices, a prototypal experiment of this
type could be soon realized.

A remark is finally in order concerning a finite temperature
inclusion into the model. It should be clear that, when our initial
knowledge of the system state is characterized by a density
matrix like a thermal state, there is no unique prescription
to associate it with a pure metastate. In such a case, one
has to consider the possibility of using mixed metastates to
encode our incomplete knowledge. This more general case,
independently of the specific experiment treated here, will
pave the way toward a generalized model of gravity-induced

thermalization. Such an interesting issue will be addressed in
a future publication [37].
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APPENDIX A : INTERACTING GRAVITATIONAL
POTENTIAL OF THE METAMIRRORS

In this appendix, the gravitational interaction potential
between metamirrors is computed within the two assumptions
of homogeneous and granular mass distributions.

1. The case with homogeneous masses

Let us consider the Newtonian potential energy for two
particles with masses M1 and M2:

V (r12) = −G
M1M2

r12
.

Starting from the initial condition where the two mirrors
of length L are overlapped, we consider the shifting of the
first mirror of d/2 along z1 positive axis and the second
one along z2 negative axis. Because of the very small
relative displacement d between the metamirrors (which is
at maximum of the order of the size of the wave-function
describing, in the ordinary setting, the c.m. coordinate of the
mirror), it is enough to calculate the quadratic term of the
expansion in the distance of the total gravitational interaction
energy

V (d) =
∫ (L−d)/2

−(L+d)/2
dz1

∫ (L+d)/2

−(L−d)/2
dz2 V (z1,z2) =

(∫ L/2

−L/2
dz1 +

∫ −L/2

−(L+d)/2
dz1 −

∫ L/2

(L−d)/2
dz1

)
×

(∫ L/2

−L/2
dz2 −

∫ −(L−d)/2

−L/2
dz2 +

∫ (L+d)/2

L/2
dz2

)
V (z1,z2)

= Const. + 1

2

[
V

(
L

2
, − L

2

)
− V

(
L

2
,
L

2

)]
d2 + O(d3),

where V (z1,z2) δz1δz2 is the interaction energy of two square infinitesimally tiny mirror sheets parallel to the x − y plane,

V (z1,z2) =
∫ ∫ L

2

− L
2

d x1d y1

∫ ∫ L
2

− L
2

d x2d y2

(
−Gρ2

r12

)
.

Here we have used the assumption that, for example,
∫ −L/2
−(L+d)/2 dz1

∫ L/2
−L/2 dz2V(z1,z2) = d

2

∫ L/2
−L/2 V(−L

2 ,z2)dz2. In this way, the
terms linear in d vanish. Defining the nondimensional coordinates x ′

1 = x1/L, y ′
1 = y1/L, and so on, we get:

[
V

(
L

2
, − L

2

)
− V

(
L

2
,
L

2

) ]

= GM2

L3

∫∫ 1/2

−1/2
dx ′

1dy ′
1

∫∫ 1/2

−1/2
dx ′

2dy ′
2

{
1

[(x ′
1 − x ′

2)2 + (y ′
1 − y ′

2)2]1/2
− 1

[(x ′
1 − x ′

2)2 + (y ′
1 − y ′

2)2 + 1]1/2

}
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= 4
GM2

L3

∫ 1

0
dξ−

∫ 1−ξ−

0
dξ+

∫ 1

0
dη−

∫ 1−η−

0
dη+

(
1

[ξ 2− + η2−]1/2
− 1

[ξ 2− + η2− + 1]1/2

)
= 4

GM2

L3

∫ 1

0
dξ−

∫ 1

0
dη− (1 − ξ−) (1 − η−)

(
1

[ξ 2− + η2−]1/2
− 1

[ξ 2− + η2− + 1]1/2

)
= 2π

3

GM2

L3
,

where we have introduced the new variables ξ± = x ′
1 ± x ′

2 and
η± = y ′

1 ± y ′
2.

Then we obtain

V (d) = Const. + π

3
GM ρsil d2,

from which, writing the interaction term in the meta-
Hamiltonian as −KG(b + b†)(̃b + b̃†), we get

Khom
G = πh̄Gρsil

3ωm

.

2. The case with matter-granularity effect

Looking at the metamirrors as aggregates of atoms disposed
in a lattice {Rj }, we are led to consider the gravitational

potential between the metacrystals described by the state (to
be symmetrized) ∣∣�(−d/2)

Crystal

〉 ⊗ ∣∣�̃(+d/2)
Crystal

〉
,

where superscripts parameters ∓d/2 refer to the center of mass
displacements from the origin of coordinate system along,
say, x axis. The problem is similar to that of potential between
two atoms or molecules, where (within the Born-Oppenheimer
approximation) nuclei positions are treated as parameters of
the atoms/molecules.

The interaction potential is then given by (d ≡ (d,0,0))

V (d) = −Gm2
nuc

∫ ∫
dxdy

〈
�

(−d/2)
Crystal

∣∣ψ† (x) ψ (x)
∣∣�(−d/2)

Crystal

〉〈
�̃

(+d/2)
Crystal

∣∣ψ̃† (y) ψ̃ (y)
∣∣�̃(+d/2)

Crystal

〉
|x − y|

= −Gm2
nuc

(mnucωCrystal

h̄π

) Nnuc∑
h,k=1

∫ ∫
dxdy

e
− mnucωCrystal

h̄

[(
x−R(−d/2)

h

)2+
(

y−R(+d/2)
k

)2]
|x − y| (A.1)

� −Gm2
nuc

(mnucωCrystal

h̄π

)
Nnuc

∫ ∫
dxdy

e− mnucωCrystal
h̄ [(x+d/2)2+(y−d/2)2]

|x − y| ,

where, for simplicity, Einstein model for the crystal has been
used, with ωCrystal ≡ Einstein frequency �10 THz, mnuc �
4.7 × 10−26 Kg is nucleus mass, Nnuc � 1014 the number of
nuclei. In the last line of the above formula, we have made the
assumption that the nuclei wavefunction spreads are much
lower than interatomic distance, and that the formers are
greater than d. To get a simple estimate, we can consider
the interaction between interpenetrating spheres of radius√

h̄
2mnucωCrystal

separated by a distance d, so that

V (d) � Const. + 2

3
GMρnuc d2,

giving the (enhanced) gravitational coupling

K
gran

G = 2h̄Gρnuc

3ωm

� 104Khom
G .

APPENDIX B : DYNAMICAL EVOLUTION
OF THE METASYSTEM

In the following, we study in detail the dynamical evolution
of the metasystem. As initial metastate we take

||
(0)〉〉 = 1
2 [(|0A1B〉 + |1A0B〉) |α〉] ⊗ [(|0Ã1B̃〉
+ |1Ã0B̃〉) |̃α〉] ≡ |ψ(0)〉 ⊗ |ψ(0)〉, (B.1)

where general coherent states α1 and α2 are considered,
although acceptable metastates must be symmetrized with
respect to the physical and hidden parts.

Let us start by calculating the metastate at time t . We will
use the interaction picture, defining

||
 (t)〉〉Int = ei(Hfree[b,b†,NA,NB ;ω∗
m]+Hfree[b̃,b̃†,N∼

A ,N∼
B ;ω∗

m])t/h̄

× ||
(t)〉〉Sch ,

||
 (t)〉〉Sch = |ψ (t)〉 ⊗ |ψ (t)〉
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and
|ψ (t)〉 = 1√

2
e−iωPht [|0A1B〉 ⊗ |αe−iω∗

mt 〉 + eiκ2(ω∗
mt−sin ω∗

mt)

× eiκIm[α(1−e−iω∗
mt )] |1A0B〉 ⊗ |αe−iω∗

mt

+ κ(1 − e−iω∗
mt )〉]. (B.2)

The interaction Hamiltonian

HG = −KG(b + b†)(̃b + b̃†)

evolves as

HG,Int (t) = −KGei(Hfree[b,b†,NA,NB ;ω∗
m]+Hfree[b̃,b̃†,N∼

A ,N∼
B ;ω∗

m])t/h̄(b + b†)(̃b + b̃†)e−i(Hfree[b,b†,NA,NB ;ω∗
m]+Hfree[b̃,b̃†,N∼

A ,N∼
B ;ω∗

m])t/h̄

= −KGeiHfree[b,b†,NA,NB ;ω∗
m]t/h̄(b + b†)e−iHfree[b,b†,NA,NB ;ω∗

m]t/h̄eiHfree[b̃,b̃†,N∼
A ,N∼

B ;ω∗
m]t/h̄ (̃b + b̃†)e−iHfree[b̃,b̃†,N∼

A ,N∼
B ;ω∗

m]t/h̄.

The above expression is the product of two specular terms,
so it suffices to calculate the first, say. We make use of the
Baker-Hausdorff lemma:

e−F GeF =
∞∑

n=0

(−1)n

n!
[F,G]n ,

with

[F,G]0 = G, [F,G]n = [F, [F,G]n−1],

and

F = −i[ω∗
mb†b − gNA(b + b†)]t, G = b + b†

(g is now defined as g = κ ω∗
m), by which, noting that

[F,G]0 = G = b + b†,

[F,G]1 = −iω∗
mt[b†b,b + b†] = iω∗

mt(b − b†),

[F,G]2 = [F, [F,G]1] = −(ω∗
mt)2[(b + b†)

− 2(g/ω∗
m)NA],

[F,G]3 = −i(ω∗
mt)3(b − b†) = −(ω∗

mt)2 [F,G]1 ,

[F,G]4 = −(ω∗
mt)2 [F,G]2

...

...

[F,G]neven �=0 = (−1)neven/2(ω∗
mt)neven [(b + b†)

− 2(g/ω∗
m)NA]

[F,G]nodd
= (iω∗

mt)nodd (b − b†),

we obtain:

Ô (t) ≡ eiHfree[a,a†,NA,NB ;ω∗
m]t/h̄(b + b†)e−iHfree[a,a†,NA,NB ;ω∗

m]t/h̄

= b†[cos(ω∗
mt) + i sin(ω∗

mt)] + b[cos(ω∗
mt)

−i sin(ω∗
mt)] − 2gNA cos(ω∗

mt)

ω∗
m

+ 2gNA

ω∗
m

,

and a similar result for ̂̃O(t) :̂̃O (t) ≡ eiHfree[̃a,̃a†,ÑA,ÑB ;ω∗
m]t/h̄ (̃b + b̃†)e−iHfree[̃a,̃a†,ÑA,ÑB ;ω∗

m]t/h̄

= b̃†(cos(ω∗
mt) + i sin(ω∗

mt)) + b̃[cos(ω∗
mt)

−i sin(ω∗
mt)] − 2gÑA cos(ω∗

mt)

ω∗
m

+ 2gÑA

ω∗
m

,

or
Ô(t) = γ (t)b† + γ ∗(t)b + (t),˜̂O(t) = γ (t )̃b† + γ ∗(t )̃b + ̃(t),

where
γ (t) = cos(ω∗

mt) + i sin(ω∗
mt),

(t) = −2κNA[cos(ω∗
mt) − 1],

̃(t) = −2κÑA[cos(ω∗
mt) − 1].

The evolution equation is

d‖
(t)〉〉Int

dt
= − i

h̄
HG,Int(t)‖
(t)〉〉Int

= i

h̄
KGÔ(t)̂̃O(t)‖
(t)〉〉Int,

i.e., using the Hubbard-Stratonovich transformation [38],

‖
(t)〉〉Int = T̂ e
∫ t

0
i
h̄
KGÔ(t ′)̂̃O(t ′)dt ′ ‖
(0)〉 =

∫
D[ϕ1(t),ϕ2(t)]e− ic2

h̄

∫ t

0 dt ′(ϕ2
1−ϕ2

2 )T̂ e
ic
√

KG
h̄

∫ t

0 dt ′(ϕ1+ϕ2)Ô(t)T̂ e
ic
√

KG
h̄

∫ t

0 dt ′(ϕ1−ϕ2)̂̃O(t)‖
(0)〉〉

= 1

π2

∫ ∫
d2β d2β̃

∫
D[ϕ1(t),ϕ2(t)]e−ic2/h̄

∫ t

0 dt ′(ϕ2
1−ϕ2

2 )〈β|T̂ eic
√

KG/h̄
∫ t

0 dt ′(ϕ1+ϕ2)Ô(t)|α〉
×〈β̃|T̂ eic

√
KG/h̄

∫ t

0 dt ′(ϕ1−ϕ2)̂̃O(t) |̃α〉|β〉|ent〉 ⊗ |β̃〉|ẽnt〉
= 1

π2

∫ ∫
d2βd2β̃ KNAÑA(β,β̃; α; t)|β〉|ent〉 ⊗ |β̃〉|ẽnt〉,

where c is a constant. Before dealing with the kernel KNAÑA , we calculate the amplitude with the help of the Baker-Campbell-
Hausdorff formula:

et(Â+B̂) = etÂetB̂e− t2

2 [Â,B̂]e
t3

6 (2[B̂,[Â,B̂]]+[Â,[Â,B̂]]) . . . ,
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〈β|T̂ e
ic
√

KG
h̄

∫ t

0 dt ′(ϕ1+ϕ2)Ô(t)|α〉 = 〈β|T̂ exp

{
f b†

∫ t

0
dt ′(ϕ1 + ϕ2)γ (t)

}
exp

{
f b

∫ t

0
dt ′(ϕ1 + ϕ2)γ ∗(t)

}
× exp

{
f 2

2

(∫ t

0
dt ′(ϕ1 + ϕ2)γ (t)

)(∫ t

0
dt ′(ϕ1 + ϕ2)γ ∗(t)

)}
|α〉 exp

{
f

∫ t

0
dt ′(ϕ1 + ϕ2)(t)

}
= efβ∗ ∫ t

0 dt ′(ϕ1+ϕ2)γ (t)ef α
∫ t

0 dt ′(ϕ1+ϕ2)γ ∗(t)e
f 2

2 (
∫ t

0 dt ′(ϕ1+ϕ2)γ (t))(
∫ t

0 dt ′(ϕ1+ϕ2)γ ∗(t))ef
∫ t

0 dt ′(ϕ1+ϕ2)(t)〈β|α〉(
f ≡ ic

h̄

√
KG

)
.

A similar result holds on for the other amplitude by making the following substitutions: (ϕ1 + ϕ2) → (ϕ1 − ϕ2), β∗ →
β̃∗,  → ̃. We get then

KNAÑA(β,β̃; α; t) = lim
N→∞
�t→0

∫∫
. . .

∫ N∏
i=1

dϕ2,i

∫∫
. . .

∫ N∏
i=1

dϕ1,i exp

{
− i c2

h̄

N∑
i=1

�t
(
ϕ2

1,i − ϕ2
2,i

)

+ f

N∑
i=1

�t(ϕ1,i + ϕ2,i)(β
∗γi + αγ ∗

i + i) + f 2

2

N∑
i,j=1

(�t)2(ϕ1,i + ϕ2,i)γiγ
∗
j (ϕ1,j + ϕ2,j )

}

× exp

{
f

N∑
i=1

�t(ϕ1,i − ϕ2,i)(β̃
∗γi+αγ ∗

i +̃i) + f 2

2

N∑
i,j=1

(�t)2(ϕ1,i − ϕ2,i)γiγ
∗
j (ϕ1,j − ϕ2,j )

}
〈β|α〉〈β̃ |̃α〉

= exp

[
−|β|2

2
− |α|2

2
+ β∗α − |β̃|2

2
− |α|2

2
+ β̃∗α

]

× lim
N→∞
�t→0

∫ ∫
. . .

∫ N∏
i=1

dϕ2,i exp

{
N∑

i=1

[
ic2

h̄
�tδi,j + f 2

2
(�t)2γiγ

∗
j

]
ϕ2,iϕ2,j

+ f

N∑
i=1

�t(β∗γi+i−β̃∗γi − ̃i)ϕ2,i

}∫∫
. . .

∫ N∏
i=1

dϕ1,i exp

{ N∑
i,j=1

[
− ic2

h̄
�tδi,j+f 2

2
(�t)2γiγ

∗
j

]
ϕ1,iϕ1,j

+ f

N∑
i=1

�t(β∗γi + 2αγ ∗
i + i + β̃∗γi + ̃i)ϕ1,i

}

= e− |β|2
2 − |α|2

2 +β∗αe− |β̃|2
2 − |α|2

2 +β̃∗α × lim
N→∞
�t→0

√
(2π )2N

det A(N)
e− 1

2 JT (A(N))−1J

= e− |β|2
2 − |α|2

2 +β∗αe− |β̃|2
2 − |α|2

2 +β̃∗α × lim
N→∞
�t→0

(2π )N√
det A(N)

1 det A(N)
2

e− 1
2 JT

1 (A(N)
1 )−1J1− 1

2 JT
2 (A(N)

2 )−1J2

= �(t) e− |β|2
2 − |α|2

2 +β∗αe− |β̃|2
2 − |α|2

2 +β̃∗α

× e
− KG

2h̄2

∫ t

0

∫ t

0 dt ′dt ′′[β∗γ (t ′)+2αγ ∗(t ′)+(t ′)+β̃∗γ (t ′)+̃(t ′)]A−1
1 (t ′,t ′′)[β∗γ (t ′′)+2αγ ∗(t ′′)+(t ′′)+β̃∗γ (t ′′)+̃(t ′′)]

×e
− KG

2h̄2

∫ t

0

∫ t

0 dt ′dt ′′[β∗γ (t ′)+(t ′)−β̃∗γ (t ′)−̃(t ′)]A−1
2 (t ′,t ′′)[β∗γ (t ′′)+(t ′′)−β̃∗γ (t ′′)−̃(t ′′)]

,

where

ϕ1,1 = ϕ1(t = 0), ϕ1,N = ϕ1(t), ϕ2,1 = ϕ2(t = 0), ϕ2,N = ϕ2(t); �t = t

N
, τ = ω∗

mt ,

and

A(N) =
(

A(N)
1 0

0 A(N)
2

)
, J(N) =

(
J(N)

1

J(N)
2

)
,
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[
A(N)

1

]
ij

= ω∗−2
m (�τ )2

[
2iω∗

m

h̄

δi,j

�τ
+ KG

h̄2 Re[γi · γ ∗
j ]

]
,

[
A(N)

2

]
ij

= ω∗−2
m (�τ )2

[
−2iω∗

m

h̄

δi,j

�τ
+ KG

h̄2 Re[γi · γ ∗
j ]

]
,

[
J(N)

1

]
i
= 1

h̄

√
KG

�τ

ω∗
m

[(β∗ + β̃∗)γi + 2αγ ∗
i + 

NAÑA+ ],
[
J(N)

2

]
i
= 1

h̄

√
KG

�τ

ω∗
m

[(β∗ − β̃∗)γi + 
NAÑA− ];

here with Re[x] we indicate the real part of x and


NAÑA+ = (t) + ̃(t) and 

NAÑA− = (t) − ̃(t).

We take now the continuous limit as

ω∗2
m A(N)

1[2] −→
N→∞
�τ→0

A1[2](τ
′,τ ′′),

J(N)
1

�τ
−→
N→∞
�τ→0

J1(τ ) = 1

h̄ω∗
m

√
KG[(β∗ + β̃∗)γ (τ ) + 2αγ ∗(τ ) + 

NAÑA+ (τ )],

J(N)
2

�τ
−→
N→∞
�τ→0

J2(τ ) = 1

h̄ω∗
m

√
KG[(β∗ − β̃∗)γ (τ ) + 

NAÑA− (τ )],

� ≡ lim
N→∞
�τ→0

(2π )N

c2
√

det A1 det A2
, with c2 = 2πh̄ω∗

m

�τ
.

Alternatively, the function �(t) can also be obtained from the normalization condition 〈〈
(t)||
(t)〉〉 = 1. Defining now, for
general functions f (τ ) and g(τ ),

Ff,g

1[2] (τ ) =
∫ τ

0

∫ τ

0
dτ ′dτ ′′f (τ ′)A−1

1[2](τ
′,τ ′′)g(τ ′′), (B.3)

we get

KNAÑA (β,β̃; t)

= � (t) e− |β|2
2 − |α|2

2 +β∗αe− |β̃|2
2 − |α|2

2 +β̃∗α

× e
− 1

2h̄2 KG

∫ ω∗
mt

0

∫ ω∗
mt

0 dτ ′dτ ′′[(β∗+β̃∗)γ (τ ′)+2αγ ∗(τ ′)+
NAÑA+ (τ ′)]A−1

1 (τ ′,τ ′′)[(β∗+β̃∗)γ (τ ′′)+2αγ ∗(τ ′′)+
NAÑA+ (τ ′′)]

× e
− 1

2h̄2 KG

∫ ω∗
mt

0

∫ ω∗
mt

0 dτ ′dτ ′′[(β∗−β̃∗)γ (τ ′)+
NAÑA− (τ ′)]A−1

2 (τ ′,τ ′′)[(β∗−β̃∗)γ (τ ′′)+
NAÑA− (τ ′′)]

= �(t) e− |β|2
2 − |α|2

2 +β∗αe− |β̃|2
2 − |α|2

2 +β̃∗α

× e
− 1

2h̄2 KG

{
(β∗+β̃∗)2 ∫ ω∗

mt

0

∫ ω∗
mt

0 dτ ′dτ ′′γ (τ ′)A−1
1 (τ ′,τ ′′)γ (τ ′′)+4α(β∗+β̃∗)

∫ ω∗
m t

0

∫ ω∗
m t

0 dτ ′dτ ′′γ ∗(τ ′)A−1
1 (τ ′,τ ′′)γ (τ ′′)

}

× e
− 1

2h̄2 KG

{
2(β∗+β̃∗)

∫ ω∗
mt

0

∫ ω∗
mt

0 dτ ′dτ ′′γ (τ ′) A−1
1 (τ ′,τ ′′)NAÑA+ (τ ′′)

}

× e
− 1

2h̄2 KG

{
(β∗−β̃∗)2 ∫ ω∗

mt

0

∫ ω∗
mt

0 dτ ′dτ ′′γ (τ ′)A−1
2 (τ ′,τ ′′)γ (τ ′′)+2(β∗−β̃∗)

∫ ω∗
mt

0

∫ ω∗
mt

0 dτ ′dτ ′′γ (τ ′) A−1
2 (τ ′,τ ′′) 

NAÑA− (τ ′′)
}

× e
− 1

2h̄2 KG

{
4α

∫ ω∗
mt

0

∫ ω∗
mt

0 dτ ′dτ ′′γ ∗(τ ′) A−1
1 (τ ′,τ ′′) 

NAÑA+ (τ ′′)
}

× e
− 1

2h̄2 KG

{
4α2

∫ ω∗
mt

0

∫ ω∗
mt

0 dτ ′dτ ′′γ ∗(τ ′)A−1
1 (τ ′,τ ′′)γ ∗(τ ′′)+

∫ ω∗
mt

0

∫ ω∗
mt

0 dτ ′dτ ′′NAÑA+ (τ ′)A−1
1 (τ ′,τ ′′)NAÑA+ (τ ′′)

}

× e
− 1

2h̄2 KG

{∫ ω∗
mt

0

∫ ω∗
mt

0 dτ ′dτ ′′NAÑA− (τ ′)A−1
2 (τ ′,τ ′′) 

NAÑA− (τ ′′)
}
.

Finally,

KNAÑA(β,β̃; t) = � (t) e− |β|2
2 − |β̃|2

2 +β∗α+β̃∗α−|α|2e− 1
2h̄2 KG

{
4α

[
Fγ ∗,+

1 +αFγ ∗,γ ∗
1

]
+F+ ,+

1 +F− ,−
2

}

× e
− 1

2h̄2 KG

{
Fγ,γ

1 (β∗+β̃∗)2+Fγ,γ

2 (β∗−β̃∗)2+2(β∗+β̃∗)
[
2αFγ ∗ ,γ

1 +Fγ,+
1

]
+2Fγ,−

2 (β∗−β̃∗)
}
. (B.4)
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Inverse operators A−1
1 ,A−1

2 have been evaluated numerically. Note that the dependence on β,β̃ is present only in the second

factor (second and third row), while the dependence on photon states is hidden in 
NAÑA+ ,

NAÑA− . Schrödinger state at time t is
then given by Eq. (4.1).

APPENDIX C : INTEGRALS OF VISIBILITY

Integrals (I) and (II) appearing in Eq. (4.2) are given by

(I ) = 1

4π4
eiκ2(ω∗

mt−sin ω∗
mt)K10 (t)K00 ∗ (t)

×
∫ ∫

d2βd2β ′eiκIm[β(1−e−iω∗
mt )]L(β,β ′)h(β,β ′)K10

1 (β) K00
3 (β ′)

∫ ∫
d2β̃d2β̃ ′K10

2 (β̃)K00
4 (β̃ ′)g(β̃,β̃ ′)Hc(β̃,β̃ ′),

(II ) = 1

4π4
eiκ2(ω∗

mt−sin ω∗
mt)K11 (t)K01 ∗ (t)

×
∫ ∫

d2βd2β ′eiκIm[β(1−e−iω∗
mt )]L(β,β ′)h(β,β ′)K11

1 (β) K01
3 (β ′)

∫ ∫
d2β̃d2β̃ ′K11

2 (β̃)K01
4 (β̃ ′)ε(β̃)δ(β̃ ′)g(β̃,β̃ ′)Hl(β̃,β̃ ′).

APPENDIX D: CALCULATION OF THE WIGNER FUNCTION

In the following, we present the details of the calculation of the Wigner function. Let’s start by computing ρm (t) . Defining

||
 (t)〉〉ϕ = 〈ϕ| ⊗ 〈ϕ| ||
 (t)〉〉

= 1

2π2

∫ ∫ ∞

−∞
d2βd2β̃[K00(β,β̃) |βc〉 |β̃c〉 + K01(β,β̃)f (β̃)e−iθ |βc〉 |β̃l〉

+K10(β,β̃)f (β)e−iθ |βl〉 |β̃c〉 + K11(β,β̃)f (β)f (β̃)e−2iθ |βl〉 |β̃l〉]
and

ρϕ(t) = ‖
(t)〉〉ϕ〈〈
(t)‖,
the density matrix of the physical mirror is:

ρm (t) = Tr[ρϕ (t)] = 1

π

∫
d2χ̃ 〈χ̃ | ρϕ |χ̃〉

= 1

4π4

∫
d2(β,β̃,β ′,β̃ ′)(α1 |βc〉 〈β ′

c| + α2 |βl〉 〈β ′
l | + α3 |βc〉 〈β ′

l | + α4 |βl〉 〈β ′
c|),

where

α1(β,β̃,β ′,β̃ ′) = K00(β,β̃)K∗00(β ′,β̃ ′)eβ̃cβ̃
′∗
c − 1

2 |β̃c|2− 1
2 |β̃ ′

c|2 + K00(β,β̃)K∗01(β ′,β̃ ′)eiθf ∗(β̃ ′)eβ̃cβ̃
′
l

∗− 1
2 |β̃c|2− 1

2 |β̃ ′
l |2

+K01(β,β̃)K∗00(β ′,β̃ ′)e−iθ f (β̃) eβ̃l β̃
′∗
c − 1

2 |β̃l |2− 1
2 |β̃ ′

c|2 + K01(β,β̃)K∗01(β ′,β̃ ′)f (β̃)f ∗(β̃ ′)eβ̃l β̃
′
l

∗− 1
2 |β̃l |2− 1

2 |β̃ ′
l |2 ,

α2(β,β̃,β ′,β̃ ′) = K10(β,β̃)K∗10(β ′,β̃ ′)f (β)f ∗(β ′) eβ̃cβ̃
′∗
c − 1

2 |β̃c|2− 1
2 |β̃ ′

c|2

+K10(β,β̃)K∗11(β ′,β̃ ′)f (β)f ∗(β ′)eiθf ∗(β̃ ′) eβ̃cβ̃
′
l

∗− 1
2 |β̃c|2− 1

2 |β̃ ′
l |2

+K11(β,β̃)K∗10(β ′,β̃ ′)e−iθ f (β)f ∗(β ′)f (β̃) eβ̃l β̃
′∗
c − 1

2 |β̃l |2− 1
2 |β̃ ′

c|2

+K11(β,β̃)K∗11(β ′,β̃ ′)f (β)f (β̃)f ∗(β ′)f ∗(β̃ ′)eβ̃l β̃
′
l

∗− 1
2 |β̃l |2− 1

2 |β̃ ′
l |2 ,

α3(β,β̃,β ′,β̃ ′) = K00(β,β̃)K∗10(β ′,β̃ ′)eiθf ∗(β ′) eβ̃cβ̃
′∗
c − 1

2 |β̃c|2− 1
2 |β̃ ′

c|2

+K00(β,β̃)K∗11(β ′,β̃ ′)e2iθ f ∗(β ′)f ∗(β̃ ′) eβ̃cβ̃
′
l

∗− 1
2 |β̃c|2− 1

2 |β̃ ′
l |2

+K01(β,β̃)K∗10(β ′,β̃ ′)f (β̃)f ∗(β ′) eβ̃l β̃
′∗
c − 1

2 |β̃l |2− 1
2 |β̃ ′

c|2

+K01(β,β̃)K∗11(β ′,β̃ ′)eiθf (β̃)f ∗(β ′)f ∗(β̃ ′)eβ̃l β̃
′
l

∗− 1
2 |β̃l |2− 1

2 |β̃ ′
l |2 ,

α4(β,β̃,β ′,β̃ ′) = K10(β,β̃)K∗00(β ′,β̃ ′)e−iθ f (β) eβ̃cβ̃
′∗
c − 1

2 |β̃c|2− 1
2 |β̃ ′

c|2

+K10(β,β̃)K∗01(β ′,β̃ ′)f (β)f ∗(β̃ ′) eβ̃cβ̃
′
l

∗− 1
2 |β̃c|2− 1

2 |β̃ ′
l |2

+K11(β,β̃)K∗00(β ′,β̃ ′)e−2iθ f (β)f (β̃) eβ̃l β̃
′∗
c − 1

2 |β̃l |2− 1
2 |β̃ ′

c|2

+K11(β,β̃)K∗01(β ′,β̃ ′)e−iθ f (β)f (β̃)f ∗(β̃ ′)eβ̃l β̃
′
l

∗− 1
2 |β̃l |2− 1

2 |β̃ ′
l |2 .
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By taking the trace

Tr[ρm (t) eλb†−λ∗b] = 1

π

∫
d2χ 〈χ | ρm (t) eλb†−λ∗b |χ〉

= 1

4π5

∫
d2(β,β̃,β ′,β̃ ′)

∫
d2χe−|χ |2−λ∗χ− 1

2 |λ|2 (α1e
βcχ

∗− 1
2 |βc|2− 1

2 |β ′
c|2+β ′∗

c χ+β ′∗
c λ

+α2e
βlχ

∗− 1
2 |βl |2− 1

2 |β ′
l |2+β ′∗

l χ+β ′∗
l λ + α3e

βcχ
∗− 1

2 |βc|2− 1
2 |β ′

l |2+β ′∗
l χ+β ′∗

l λ

+α4e
βlχ

∗− 1
2 |βl |2− 1

2 |β ′
c|2+β ′∗

c χ+β ′∗
c λ),

we finally obtain Eq. (5.2).
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