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In a recent paper, Bancal et al. [Phys. Rev. Lett. 106, 250404 (2011)] put forward the concept of device-
independent witnesses of genuine multipartite entanglement. These witnesses are capable of verifying genuine
multipartite entanglement produced in a laboratory without resorting to any knowledge of the dimension of
the state space or of the specific form of the measurement operators. As a by-product they found a multiparty
three-setting Bell inequality which makes it possible to detect genuine n-partite entanglement in a noisy n-qubit
Greenberger-Horne-Zeilinger (GHZ) state for visibilities as low as 2/3 in a device-independent way. In this
paper, we generalize this inequality to an arbitrary number of settings, demonstrating a threshold visibility
of 2/π ∼ 0.6366 for number of settings going to infinity. We also present a pseudotelepathy Bell inequality
achieving the same threshold value. We argue that our device-independent witnesses are optimal in the sense that
for n odd the above value cannot be beaten with n-party-correlation Bell inequalities.
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I. INTRODUCTION

Quantum theory allows correlations between remote sys-
tems, which are fundamentally different from classical cor-
relations [1]. Quantum entanglement is in the heart of this
phenomenon [2]. Already two entangled particles give rise
to correlations not reproducible within any local realistic
theory [3]. However, moving to more particles a much
richer structure and various types of entanglement arise [4],
suggesting novel applications such as quantum computation
using cluster states [5], sub-shot-noise metrology [6], or
multiparty quantum networking [7]. In these tasks, genuinely
entangled particles offer enhanced performance. Hence, it is
a central problem to decide whether in an actual experiment
genuinely multipartite entanglement has been produced, or
alternatively, the entangled state prepared in the laboratory
could be explained without requiring the interaction of all
particles. In the latter case, we say that the state created is
biseparable. Focusing on the tripartite case, a biseparable state
ρbs can be written as

ρbs =
∑

i

pi |φi〉〈φi |, (1)

where the pure states φi are separable with respect to one of
the three bipartitions 1|23, 12|3, 13|2, and the weights pi > 0
add up to 1. For more than three parties, the generalization is
straightforward.

Several experiments have been conducted so far generating
multipartite entangled photonic states up to six photons (for
instance, Ref. [8] generated a Dicke state of six photons).
One of the traditional approaches to decide on the existence
of genuine multipartite entanglement consists in performing
a complete state tomography and then deducing the kind of
entanglement directly from the density matrix using witness
operators. Alternatively, the experimentalist may measure
cleverly chosen witness operators, thereby reducing the
number of correlation terms to be measured in the actual
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experiment [9]. However, a common drawback is that in both
cases the experimentalist needs to have a precise control over
the system on which the measurements are performed.

Remarkably, there is another route, avoiding the above
problem, building on the seminal work of John Bell [1]: Bell
expressions are linear functions of joint correlations enabling
one to say important things in a black-box scenario about
the dimension of the systems, the states involved, or the kind
of measurements performed. In particular, it is possible to
decide on the presence of genuine multipartite entanglement
based on merely statistical data (that is, without relying on any
knowledge of the implementation of the devices involved in the
measurement process) [10,11]: If a Bell value, coming from
the statistics of a Bell experiment, is bigger than a certain
value achievable with measurements acting on biseparable
quantum states, then we can be sure that the state in question
is genuinely multipartite entangled. This approach has been
formalized more recently by Bancal et al. [11], coining the
term device-independent witnesses of genuine multipartite
entanglement for such Bell expressions (for more details, we
refer the reader to that paper).

As a simplest illustration of a device-independent witness
of genuine tripartite entanglement, let us represent the Mermin
polynomial [12] in terms of three-party correlators,

I2 ≡ 〈Â0 ⊗ B̂0 ⊗ Ĉ0〉 − 〈Â0 ⊗ B̂1 ⊗ Ĉ1〉 − 〈Â1 ⊗ B̂0 ⊗ Ĉ1〉
− 〈Â1 ⊗ B̂1 ⊗ Ĉ0〉, (2)

where 〈Âα ⊗ B̂β ⊗ Ĉγ 〉 designate the expected value of the
product of three ±1 observables, Âα , B̂β , Ĉγ . It has been
shown in Ref. [10], that I2 � 2

√
2 for biseparable quantum

states (B2 = 2
√

2), whereas the maximum quantum value
saturates the algebraic limit of 4 (Q2 = 4); hence, the violation
of the bound B2 implies genuine tripartite entanglement. Note
that this reasoning holds true independently on the size of
the Hilbert space dimension or on the type of measurements
carried out. Hence, Mermin inequality serves as a device-
independent witness of genuine tripartite entanglement [11].
Let us now take the noisy three-qubit Greenberger-Horne-
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Zeilinger (GHZ) state,

ρ(V ) = V |GHZ〉〈GHZ| + (1 − V )18 , (3)

where |GHZ〉 = (|000〉 + |111〉)/√2 is the three-qubit GHZ
state [13], and V is the visibility parameter. The measurements
achieving the bounds Q2 and B2 correspond to traceless
observables, entailing the threshold visibility V = B2/Q2 =
1/

√
2. Hence, genuine tripartite entanglement in the noisy

GHZ state (for V > 1/
√

2) can be detected in a device-
independent way.

More recently, however, Bancal et al. [11] managed to
lower the threshold visibility in the noisy three-party GHZ
state to V = 2/3 by considering a three-party, three-setting
Bell inequality, which can be considered as a three-setting
generalization of the two-setting Mermin inequality. Note
that similarly to the Mermin inequality, the Bancal et al.
inequality extends to more than three parties as well [11],
detecting genuine n-partite entanglement in a noisy n-qubit
GHZ state for the threshold visibility V = 2/3. Actually, the
same inequality has already appeared in the literature [14], but
it was used for a different purpose.

In the present paper, we generalize the n-party three-setting
Bancal et al. inequality to an arbitrary number of settings
m, exhibiting the threshold visibility V = 1/[m sin(π/2m)],
which approaches V = 2/π for large number of settings. First,
we discuss the three-party case in Secs. II and III. In particular,
another family of Bell inequalities is given in Sec. III, based on
the extended parity game [15] yielding the same performance
(for m a power of 2) as the Bell inequality of Sec. II. Then, in
Sec. IV, we move on to more than three parties by generalizing
the results of the preceding sections. The paper concludes in
Sec. V with open questions and with a brief summary of the
results.

II. MULTISETTING TRIPARTITE BELL-TYPE
INEQUALITIES

Let us introduce the m-setting tripartite Bell expression,
originally due to Zukowski [16],

Im =
m−1∑

α,β,γ=0

Mαβγ 〈Âα ⊗ B̂β ⊗ Ĉγ 〉, (4)

where the matrix of Bell coefficients is defined by

Mαβγ = cos
[π

m
(α + β + γ − �)

]
, (5)

where indices α, β, and γ may take the values of 0,1, . . . ,m −
1, and � may be any real number. By choosing m = 2 and
� = 0, the Mermin polynomial (2) is recovered. On the other
hand, for m = 3 and � = −1/2, we obtain the polynomial
of Bancal et al. [11] (apart from an irrelevant multiplicative
factor).

We next exhibit a lower bound on the quantum maxi-
mum, Ql

m = m3/2, as a function of number of settings m.
Then an upper bound is given on the biseparable quantum
maximum, which is shown to be attained by von Neumann-
type projective measurements, Bm = m2/[2 sin(π/2m)]. This
implies the threshold visibility V = Bm/Qm � Bm/Ql

m =

1/[m sin(π/2m)] tending to 2/π in the limit of large number
of measurement settings.

We wish to note that Bancal et al. (Appendix C in [11])
presented a biseparable model simulating all the single-party
expectations 〈Â〉, 〈B̂〉, 〈Ĉ〉, two-party correlators 〈Â ⊗ B̂〉,
〈Â ⊗ Ĉ〉, 〈B̂ ⊗ Ĉ〉, and three-party correlators 〈Â ⊗ B̂ ⊗ Ĉ〉,
achievable with von Neumann measurements on the noisy
three-qubit GHZ state (3) of visibility V � 1/2. Within this
biseparable model all of the three parties may share local
random variables, but at most two parties can share a quantum
state at a given time. It is shown in the Appendix that if we
are content with simulating only the three-party correlators,
then the threshold visibility becomes a higher value, V = 2/π .
This implies that it is not possible to detect genuine tripartite
entanglement in the three-qubit GHZ state in the range V �
2/π by considering Bell expressions which are sums of three-
party correlators. In this sense, our family of Bell inequalities
is optimal, giving V → 2/π when m goes to infinity.

Lower bound on the quantum maximum, Ql
m. If each of the

participants performs a von Neumann projective measurement
on one component of a shared three-qubit GHZ state, the
tripartite correlation of their measurement values can be
written as (see, for instance, Appendix C in Ref. [11])

〈Âα ⊗ B̂β ⊗ Ĉγ 〉 = sin θA
α sin θB

β sin θC
γ cos

(
ϕA

α + ϕB
β + ϕC

γ

)
,

(6)

where the αth, βth, and γ th measurement operators Âα , B̂β ,
and Ĉγ of Alice, Bob, and Cecil, respectively, are given as

Âα = cos ϕA
α sin θA

α σ̂x + sin ϕA
α sin θA

α σ̂y + cos θA
α σ̂z,

B̂β = cos ϕB
β sin θB

β σ̂x + sin ϕB
β sin θB

β σ̂y + cos θB
β σ̂z, (7)

Ĉγ = cos ϕC
γ sin θC

γ σ̂x + sin ϕC
γ sin θC

γ σ̂y + cos θC
γ σ̂z,

where σ̂x , σ̂y , and σ̂z are the Pauli operators.
With the choice of θA

µ = θB
µ = θC

µ = π/2 and ϕA
µ = ϕB

µ =
ϕC

µ = π (µ − �/3)/m each tripartite correlation will take the
same value as the Bell coefficient to be multiplied with, and the
quantum value of the Bell expression will be easy to calculate:

Ql
m =

m−1∑
α=0

m−1∑
β=0

m−1∑
γ=0

Mαβγ 〈Âα ⊗ B̂β ⊗ Ĉγ 〉

=
m−1∑
α=0

m−1∑
β=0

m−1∑
γ=0

cos2
[π

m
(α + β + γ − �)

]

= 1

2

m−1∑
α=0

m−1∑
β=0

m−1∑
γ=0

{
1 − cos

[
2π

m
(α + β + γ − �)

]}

= m3

2
. (8)

This value Ql
m is a lower bound for the maximum quantum

value Qm.
For the maximum of the biseparable value first we give

an upper bound (Bu
m), then we prove that this bound can be

saturated, that is, (Bl
m = Bu

m = Bm).
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Upper bound on the biseparable quantum value, Bu
m. The

value to be calculated is

Bm = max
m−1∑
α=0

m−1∑
β=0

m−1∑
γ=0

Mαβγ Aα〈B̂β ⊗ Ĉγ 〉

= max
m−1∑
β=0

m−1∑
γ=0

M
{A}
βγ 〈B̂β ⊗ Ĉγ 〉, (9)

where we used the fact that Bell inequality (4) is linear in
the correlators and that a biseparable density matrix (1) is
a convex combination of pure states; hence, it is enough to
take the three-party correlators in the form 〈Âα〉〈B̂β ⊗ Ĉγ 〉.
In Eq. (9) each of Aα may take the value of either +1 or
−1, Bob and Cecil may share any quantum state and perform
measurements on them, the operators of their measurement
settings are B̂β and Ĉγ , respectively, and the coefficients of
the two-partite Bell inequality, which depends on the actual
choice of Aα , are

M
{A}
βγ =

m−1∑
α=0

Aα cos
[π

m
(α + β + γ − �)

]
. (10)

We note that due to the symmetry of the Bell expression under
party exchange, it is enough to consider the case when it is
Alice who may not share an entangled quantum object with
the others.

From the work of Ref. [17] it easily follows that for
bipartite correlation type Bell inequalities with an equal
number of measurement settings per party, an upper bound
for the maximum quantum value is the largest of the singular
values of the matrix defined by the Bell coefficients multiplied
by the number of measurement settings. In the present case
the matrix depends on the sum of its indices. Therefore,
M

{A}
(β+1)γ = M

{A}
β(γ+1); that is, each row contains the elements

of the preceding row, shifted to the left. From Eq. (10) it is
also clear that M

{A}
(β+1)m = −M

{A}
β1 ; that is, the last element

of each row is the same as −1 times the first element of
the preceding row. These properties are very similar to the
properties defining circulant matrices [18], whose eigenvectors
are independent of the actual values of its elements and
therefore whose eigenvalues are very easy to derive. There
are just two differences. In the case of the circulant matrices
the elements are shifted not to the left, but to the right.
Furthermore, they do it cyclically; that is, there is no change of
sign when the last element takes the first place in the next row.
The first difference is easily corrected if we rearrange Cecil’s
measurement settings into the opposite order. Fortunately, the
change of sign of the matrix element poses no serious problem
either, because it can be shown that the eigenvectors of these
modified circulant matrices are also independent of the actual
values of the elements of the matrix; they are given as

vj = (
1,ωj ,ω

2
j , . . . ,ω

m−1
j

)T
,

ωj = e
2πi(j+1/2)

m , (11)

where j = 0, . . . ,m − 1. The difference from the circulant
case [18] is the 1/2 term in the exponent. To calculate the
eigenvalues we only need the first row of the matrix. Therefore,

we get the upper bound for the biseparable value as

Bu
m = max m

∣∣∣∣∣∣
m−1∑
α=0

m−1∑
γ=0

Aα cos

[
π (α − �′ − γ )

m

]
ω

γ

j

∣∣∣∣∣∣ , (12)

where we introduced the notation �′ ≡ � − m + 1. By sub-
stituting the ωj from Eq. (11) and using identity

cos
π (α − �′ − γ )

m

= cos
π (α − �′)

m
cos

πγ

m
+ sin

π (α − �′)
m

sin
πγ

m
, (13)

we arrive at

Bu
m = max m

∣∣∣∣∣
m−1∑
α=0

Aα

[
cos

π (α − �′)
m

(
D

j

1 + iD
j

2

)

+ sin
π (α − �′)

m

(
D

j

3 + iD
j

4

)]∣∣∣∣∣, (14)

where

D
j

1 =
m−1∑
γ=0

cos
πγ

m
cos

2π (j + 1/2)γ

m
,

D
j

2 =
m−1∑
γ=0

cos
πγ

m
sin

2π (j + 1/2)γ

m
,

(15)

D
j

3 =
m−1∑
γ=0

sin
πγ

m
cos

2π (j + 1/2)γ

m
,

D
j

4 =
m−1∑
γ=0

sin
πγ

m
sin

2π (j + 1/2)γ

m
.

However,

D
j

2 ± D
j

3 =
m−1∑
γ=0

sin
2π (j + 1/2 ± 1/2)γ

m
= 0; (16)

therefore, D
j

2 = D
j

3 = 0, and

D
j

1 ± D
j

4 =
m−1∑
γ=0

cos
2π (j + 1/2 ∓ 1/2)γ

m
, (17)

from which it follows that D
j

1 = D
j

4 = 0 for 1 � j � m −
2, D0

1 = D0
4 = m/2, and Dm−1

1 = −Dm−1
4 = m/2. To get the

maximum we must take either j = 0 or j = m − 1. For j = 0
we get

Bu
m = max

m2

2

∣∣∣∣∣
m−1∑
α=0

Aαe
iπ(α−�′ )

m

∣∣∣∣∣ . (18)

If we have taken j = m − 1 instead of j = 0, we would have
gotten the complex conjugate of the numbers whose absolute
value has to be taken, which would have given the same result.
In Eq. (18) we have to add m vectors on the complex plane,
each pointing toward corners of a regular polygon of 2m sides,
and then we have to take the length of this vector. Each vector
lies on a different diagonal of the polygon, but may point
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toward either direction depending on the value of Aα . It can
be shown that we get the largest value if the vectors taken
in some order point toward consecutive corners. All such
arrangements give obviously the same result. We get one of
those arrangements if we take Aα = 1. The result does not
depend on �′, as changing �′ means only an overall rotation
of the arrangement. Let us take �′ = −1/2. Then the set of
numbers will be symmetric with respect to the imaginary axis;
therefore, the real part of the sum will be zero, while the
imaginary part will be positive. Then we get

Bu
m = m2

2

m−1∑
α=0

sin
π (α + 1/2)

m

= m2

2 sin π
2m

m−1∑
α=0

(
sin

π (α + 1/2)

m
sin

π

2m

+ cos
π (α + 1/2)

m
cos

π

2m

)

= m2

2 sin π
2m

m−1∑
α=0

cos
πα

m
= m2

2 sin π
2m

. (19)

Here we have used that
∑m−1

α=0 cos[π (α + 1/2)/m] = 0 and
that cos(πα/m) = − cos[π (m − α)/m].

Now we show that this upper bound can be saturated.
Lower bound on the biseparable quantum value, Bl

m. If∑m−1
β=0

∑m−1
γ=0 M̄βγ


Bβ · 
Cγ is a certain number, where 
Bβ and

Cγ are Euclidean unit vectors, then there exist measurement
operators giving the same number as the quantum value of
the bipartite correlation type Bell inequality of coefficients
M̄βγ , applied on the maximally entangled state [19]. In case
of two-dimensional vectors pairs of real qubits are sufficient.
Let M̄βγ ≡ M

{A}
βγ with all Aα = +1 [see Eq. (10)], let Cecil’s

vectors be


Cγ =
(

cos πγ

m

sin πγ

m

)
, (20)

and let us choose 
Bβ optimally, that is, 
Bβ =∑m−1
γ=0 M̄βγ


Cγ /| ∑m−1
γ=0 M̄βγ


Cγ |. Then the corresponding
quantum value is

Bl
m =

m−1∑
β=0

∣∣∣∣∣∣
m−1∑
γ=0

M̄βγ

Cγ

∣∣∣∣∣∣
=

m−1∑
β=0

∣∣∣∣∣∣
m−1∑
α=0

m−1∑
γ=0

cos
π (α + β + γ − �)

m

(
cos πγ

m

sin πγ

m

)∣∣∣∣∣∣ .
(21)

Now if we follow analogous steps to the ones we have taken
calculating the value of Bu, we will arrive at the same result.
We can also easily see this if we compare Eq. (21) to Eq. (12).
The maximum value of the latter expression has been attained
with Aα = 1 and j = 0. By substituting these values, and also
ω0 from Eq. (11), we get almost the same formula as Eq. (21),
indeed. The ω

γ

0 complex numbers correspond to the same
vectors on the complex plane as the two-dimensional vectors

appearing in Eq. (21). From the calculation of Bu it turns out
that the value does not depend on �′, so the absolute value in
Eq. (21) does not depend on � − β either; therefore, we may
replace the summation in terms of β for a multiplicative factor
of m. The only remaining difference is the opposite sign of γ

in the cosine, but that will not affect the result either.
As the upper and lower bound for the biseparable case are

equal, the biseparable value itself is given by Eq. (19). For
the quantum value we have only proven a lower bound [see
Eq. (8)]. Therefore, for this family of Bell inequalities the ratio
of the quantum and the biseparable values (which equals the
visibility threshold) satisfies

V = Bm

Qm

� 1

m sin π
2m

. (22)

We believe that the lower bound Ql
m we have given in

(8) is actually the quantum maximum itself, and the above
expression is valid as an equality.

III. BELL-TYPE INEQUALITIES BASED ON THE
EXTENDED PARITY GAME

Now we define another family of multisetting tripartite
inequalities giving the same ratio of Bm/Qm as the right-hand
side of Eq. (22), at least when m is a power of 2.

The Bell coefficients may only take the values of 0, 1, and
−1, namely,

Mαβγ =

⎧⎪⎨
⎪⎩

0 if (α + β + γ ) mod m �= 0,

1 if (α + β + γ )/m is even,

−1 if (α + β + γ )/m is odd,

(23)

and α,β,γ = 1, . . . ,m − 1. These Bell coefficients correspond
to the so-called extended parity game considered in Ref. [15].
An equivalent definition, more similar to the definition of the
Bell inequality (5) treated in Sec. II, is that Mαβγ = cos[π (α +
β + γ )/m], whenever the absolute value of this expression is
1, and Mαβγ = 0 otherwise.

Maximum quantum value, Q̆m. We get a lower bound
for the quantum value with measurement operators given in
Eq. (7) applied to components of a three-qubit GHZ state, with
θA
µ = θB

µ = θC
µ = π/2 and ϕA

µ = ϕB
µ = ϕC

µ = πµ/m. Using
Eq. (6) it is clear that each nonzero Bell coefficient will be
multiplied by the same value as itself; therefore, the quantum
value will be equal to the sum of the absolute values of the
Bell coefficients, that is with the no-signaling limit, which
is an upper bound for the quantum value. Hence, it has the
property of pseudotelepathy [20]. From this it follows, that the
quantum value will be nothing else than the number of nonzero
Bell coefficients, which is actually m2. To see this, it is enough
to note that however we slice up the m × m × m arrangement,
each resulting m × m matrix will have exactly one nonzero
number (+1 or −1) in each of its rows and columns. We can
get such a row or column by fixing two of the indices of Mαβγ .
The sum of the indices we get this way are m consecutive
numbers; exactly one of them will be divisible by m. Such a
matrix will have m nonzero elements; the m slices together
will contain m2 such elements. Therefore, the quantum value
and the no-signaling limit will be Q̆m = m2.
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We now place an upper bound on the maximum of the
biseparable value (B̆l

m), and then we prove that this bound can
be saturated, that is, (B̆l

m = B̆m).
Upper bound on the biseparable quantum value, B̆u

m. A
further property of the slices of the present m × m × m

arrangement is that they are modified circulant matrices like
in the case of the previous family, which can be shown
exactly the same way as we have shown there. To get the
matrices relevant to the biseparable value, we have to add
up the slices with different signs. If it is Alice who is
not allowed to share entangled state with the others, this
sum is M

{A}
βγ = ∑m−1

α=0 AαMαβγ . Due to the property of the
arrangement, for each matrix element, all terms of the sum but
one will be zero. Therefore, each entry of M

{A}
βγ will either be 1

or −1. Moreover, this matrix will also be a modified circulant
one, and its first line, which determines all the others, may
contain any combination of +1 and −1 values, depending
on Aα . Let am−1−γ ≡ ∑m−1

α=0 AαMα0γ , that is, the first line of
M

{A}
0γ written in opposite order. Then an upper bound for the

biseparable value may be written as

B̆u
m = max m

∣∣∣∣∣∣
m−1∑
γ=0

aγ e
iπ(2j+1)γ

m

∣∣∣∣∣∣ . (24)

Let us consider the case of j = 0. Then what we get is the
same as Eq. (18) but with �′ = 0 (which is irrelevant), and a
prefactor of m instead of m2/2. Then, according to Eq. (19),
the result is m sin(π/2m). We show that this actually is the
upper bound, whenever m is a power of two. As we have
discussed earlier, exp(iπγ /m), which corresponds to j = 0,
will point toward consecutive corners of a regular polygon
of 2m edges on the complex plane while γ takes all values
between zero and m − 1. If m is a power of two, then for any
j , exp[iπ (2j + 1)γ /m] will point toward different corners
for the different γ values; moreover, if one of them will point
toward one corner, there will be none pointing toward the
opposite corner. The reason is that (2j + 1)γ is never divisible
with m in this case. Choosing aγ appropriately one can achieve
that the terms to be added point toward consecutive corners,
if taken in some order, which maximizes the absolute value of
the sum. This is not true if m is divisible with an odd number.
When 2j + 1 is equal to this number, for γ = m/(2j + 1) the
value of exp[πi(2j + 1)γ /m] = −1, which lies opposite to
+1, the value for γ = 0. In this case not all corners can be
reached with appropriate choices of aγ , and the other corners
can be reached more than once, and B̆u

m may be larger than
what we have calculated. If m is odd, for 2j + 1 = m with
aγ = −1γ we even reach the no-signaling limit.

Now we show that we can actually reach the value of B̆u
m =

m/ sin(π/2m).
Lower bound on the biseparable quantum value, B̆l

m. The
coefficients of the reduced Bell inequality are the elements of
the modified circulant matrix M̃βγ whose entries in the first
line are all +1. The appropriate Euclidean vectors 
Cγ are the
same as the ones already defined in Eq. (20), and analogously

to Eq. (21) we may write

B̆l
m =

m−1∑
β=0

∣∣∣∣∣∣
m−1∑
γ=0

M̃βγ

(
cos πγ

m

sin πγ

m

)∣∣∣∣∣∣ . (25)

For β = 0, M̃0γ = 1, and we have to sum m unit vectors
pointing toward consecutive corners of a polygon of 2m

sides, the usual formation, the length of the resulting vector is
1/ sin(π/2m). For β = 1 only the last element of the row will
be −1. However, if we change the sign of just the last vector of
the formation, we get the same formation rotated by an angle
of π/2m. This formation will give the same result. The next
line will give a formation rotated further by π/2m, and so on;
therefore, the result is m/ sin(π/2m). This is a lower bound
for the biseparable value, which is equal to the upper bound
if m is a power of 2. In this case the ratio of the quantum and
the biseparable limits is Q̆m/B̆m = m sin(π/2m), resulting in
the threshold visibility V = B̆mQ̆m = 1/[m sin(π/2m)]. This
is the same visibility obtained under Eq. (22) by means of the
Bell inequality (5) of Sec. II.

However, we would like to mention that this family
of inequalities is more economical than our previous one.
Namely, the number of joint measurements involved in Bell
inequality (5) scales as m3, whereas the present Bell inequality
defined by (23) consists of only m2 joint measurements.
Even for smaller number of measurements, the case which is
more relevant to experiments, the difference is not negligible:
Inequality (5) (or equivalently the Bancal et al. inequality [11])
gives the threshold visibility V = 0.666, requiring 18 joint
correlation terms. On the other hand, the inequality defined by
(23) yields for three settings the lower threshold V = 0.653,
using only 16 joint terms.

IV. MORE THAN THREE PARTIES

Both families of tripartite inequalities considered in Secs. II
and III are easy to generalize to more than three parties. The
m-setting n-partite Bell expression can be written as [16,21,22]

I n
m =

m−1∑
α1,...,αn=0

Mα1,...,αn

〈
Â1

α1
⊗ . . . ⊗ Ân

αn

〉
, (26)

which corresponds to Eq. (4). The Ai
α denotes the αth

measurement operator of the ith participant, and each index αi

(1 � i � n) may take the values of 0,1, . . . ,m − 1. For both
families the Bell coefficients given by Eqs. (5) and (23) depend
only on the sum of their indices α + β + γ . For more parties
we simply keep the same functional dependences on the sum
of all indices

∑n
i=1 αi . Now we show that Eq. (22) for the ratio

of the maximum quantum and biseparable values will hold in
the case of more than three parties as well.

First we give lower bounds for the maximum quantum
values. Like in the tripartite case, let each participant perform
a von Neumann projective measurement on one component of
a shared n-qubit GHZ-like state (|00 · · · 0〉 + |11 · · · 1〉)/√2.
Then the n-partite correlation of their measurement values may
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be written as〈
Â1

α1
⊗ . . . ⊗ Ân

αn

〉
=

n∏
i=1

sin θAi

αi
cos

(
n∑

i=1

ϕAi

αi

)
+ (n + 1 mod 2)

n∏
i=1

cos θAi

αi
,

(27)

where the operators are characterized by the angles θ and
φ the same way as in Eq. (7). Let us choose the same set
of measurement operators for each party. Let all θ angles
be π/2, then the product of the sines will be 1, while the
product of the cosines appearing for even numbers of parties
will become 0. If we choose the angle ϕµ characterizing the
µth measurement operator of each party to be ϕµ = π (µ −
�/n)/m, the correlator will become

〈
Â1

α1
⊗ . . . ⊗ Ân

αn

〉 = cos

[
π

m

(
n∑

i=1

αi − �

)]
. (28)

For the case of the first family this expression is the same
as the Bell coefficient to be multiplied with. For the second
family let us choose � = 0; then the correlator will again be
equal to the corresponding Bell coefficient whenever the latter
has a nonzero (that is ±1) value. Therefore, for both families
the lower quantum bound will be the sum of the squares of all
Bell coefficients.

For the first family the bound may be calculated the same
way as in Eq. (8). The only difference is that instead of three
summations for three indices there will be n ones for n indices,
with the result of mn/2. In the case of the second family the
absolute value of each Bell coefficient is either one or zero;
therefore, the sum of their squares is equal to the sum of their
absolute value, that is, the no-signaling limit, which is an upper
bound. Therefore, here the lower bound is actually the exact
quantum maximum, and these multipartite Bell inequalities
also have the property of pseudotelepathy. It is easy to see
that this quantum maximum will be nothing else than mn−1.
For the same reason as in the tripartite case, if we fix n − 1
indices, the resulting column, that is, the m numbers we get
while varying the remaining index, will contain exactly one
nonzero number. We may fix the n − 1 indices in mn−1 ways;
therefore, there are mn−1 such columns, each contributing one
to the sum. We note that for both families the lower bound for
the quantum maximum is multiplied by m when the number
of participants is increased by one.

To give upper bounds for the maxima of the biseparable
values we may use the argument given by Bancal et al. in
the Appendix B in Ref. [11]. The argument does not use the
actual form of their inequality, only that the elements of the
Bell matrix depend only on the sum of their indices, and this
dependence is given by a function whose absolute value is
periodic in the number of measurement settings per party,
which is three in their case. Their argument may be repeated
for larger numbers of measurement settings by replacing three
for m appropriately. If we do that, we get that the maximum
of the biseparable value for n + 1 participants will be at
most m times the maximum for n participants. Our families
of inequalities satisfy the conditions of the proof; therefore,
the result is readily applicable. As the lower bound for the
quantum maximum and the upper bound for the biseparable

maximum are multiplied by the same factor when the number
of participants n is increased, their ratio will not depend on n.

Taking together the above results on upperbounding the
biseparable value and lowerbounding the true quantum max-
imum on n-qubit GHZ states, we have that their ratio (and
hence the visibility) can achieve the value of 1/[m sin(π/2m)]
for any number of parties n > 2. In particular, when m goes
to infinity the ratio becomes 2/π . We argue that for odd
number of parties n this value is the smallest possible one
if the witness is based on a Bell inequality which consists
of only n-party correlators. Indeed, it is straightforward to
extend the biseparable model of Appendix A to more than three
parties. This results in a biseparable model for the particular
bipartition of 1 and n − 1 parties, which simulates equatorial
von Neumann measurements on the noisy n-qubit GHZ state
for visibility 2/π . However, looking at the form of Eq. (27),
von Neumann measurements which are not on the equator
cannot increase the quantum Bell value for any odd n (similarly
to the case of three parties). This proves the optimality of our
threshold visibility 2/π for number of settings going to infinity
and for odd number of parties.

V. CONCLUSION

In this paper, we extend the n-party three-setting inequality
of Bancal et al. [11], which serves as a device-independent
genuine multipartite entanglement witness, to an arbitrary
number of settings. In particular, in the case of three parties our
Bell inequalities are defined by Eqs. (5) and (23), which can
detect genuine tripartite entanglement in the noisy three-qubit
GHZ state with a visibility threshold of V = 1/[m sin(π/2m)],
where m denotes the number of settings per party. This is
generalized in Sec. IV to any number of parties (n > 3) and
can detect genuine multipartite entanglement in the noisy
n-qubit GHZ state with the same visibility threshold of
V = 1/[m sin(π/2m)]. For m = 2,3 our result recovers the
threshold values corresponding to the Mermin inequality [12]
and the Bancal et al. inequality [11], respectively. Numerical
optimization suggests that in case of three parties these
threshold values are optimal for m = 2 and m = 3. However, it
is still an open question whether by considering inequalities as
a sum of full-n-party correlators, our family of inequalities
[defined by Eq. (5) and its straightforward generalization
to more than three parties] is optimal for any values of m

and n. The optimality of these inequalities for any n,m > 2
is supported by the fact that for m going to infinity the
visibility V of the noisy n-qubit GHZ state approaches the
value of 2/π , achievable by a biseparable model simulating
n-party correlators arising from equatorial von Neumann
measurements. It would also be desirable to generalize our
families to more than two outcomes in case of n-qudit GHZ
states. One may also wonder whether the inequalities presented
in this work are optimal for important states different from
the n-qubit GHZ state. Furthermore, it would be of interest
to find a Bell inequality, which is not the sum of n-party
correlators, giving a threshold visibility lower than 2/π for
the noisy n-qubit GHZ state.

Note added. Recently, very similar inequalities have been
found as well by Bancal and his collaborators, giving the same
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threshold visibilities in number of settings and parties as our
inequalities [23].
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APPENDIX: BISEPERABLE MODEL FOR THREE-PARTY
CORRELATORS ON THE NOISY THREE-QUBIT GHZ

STATE

The biseparable model based on the model of
Appendix C of Bancal et al. [11] looks as follows. There
are three parties, Alice, Bob, and Cecil; each of them receives
the respective inputs 
x ∈ S1, 
y ∈ S1, and 
z ∈ S1, which can
be considered as the measurement directions of a planar von
Neumann measurement.

On the other hand, the source provides Alice and Bob with
a quantum state,

|ψ〉 = (|00〉 + e−iβ |11〉)/
√

2, (A1)

in which case the bipartite correlation is

〈ψ |Â(
x) ⊗ B̂(
y)|ψ〉 = cos(φx + φy + β), (A2)

where Â(
x) and B̂(
y) are ±1 observables and φx,φy,φz are the
angles corresponding to the two-dimensional Euclidean unit
vectors 
x,
y,
z.

At the same time, the source also provides Cecil with a
vector 
λ = (cos β, sin β) picked uniformly from S1, and as
a result Cecil outputs the binary value C = sgn(
λ · 
z). By
averaging over λ we obtain the following expression for the
three-partite correlator,

〈ABC〉 = 1

2π

∫ 2π

β=0
sgn[
λ(β) · 
z] cos(φx + φy + β)dβ

= 2

π
cos(φx + φy + φz). (A3)

Here we used the fact that 
λ(β) · 
z = cos(β − φz), and
therefore the integration over β can be performed in two
parts depending on the sign of cos(β − φz). Note that apart
from a factor of 2/π this correlation reproduces Eq. (6) with
θA = θB = θC = π/2. This corresponds to correlations where
the parties carry out equatorial von Neumann measurements
on a noisy three-qubit GHZ state with visibility V = 2/π .

Now we argue that for any Bell inequality which is the sum
of three-party correlators, the maximum quantum violation can
be attained by equatorial von Neumann measurements. This
is due to the fact that in Eq. (6) the non-π/2 angles θA,θB,θC

arising in a nonequatorial von Neumann measurement have
only a shrinking effect on the correlators, which can only
decrease the quantum Bell value. Therefore, the biseparable
model presented above guarantees that a threshold visibility
lower than 2/π for noisy three-qubit GHZ states is not possible
for any genuine tripartite entanglement witness based on three-
party-correlator Bell inequalities.
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