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A Bethe-Salpeter equation for the three-particle correlation function is derived, representing a second-order
response generalization of the usual Bethe-Salpeter equation. The equation can be solved formally, giving the
three-particle correlation function in terms of the two-particle correlation function and many-body interaction
kernels. The similarity to second-order response time-dependent density-functional theory can be used to improve
the understanding of the higher-order exchange and correlation kernels of this theory. An exact expression for
such a kernel is derived.
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I. INTRODUCTION

The Bethe-Salpeter equation (BSE) describing two-particle
bound states within quantum field theory [1,2] can be consid-
ered as one of the fundamental equations of modern physics.
It has a vast spectrum of applications, ranging from nuclear
physics [3], atomic physics [4], to solid-state physics [5] and
physical chemistry [6]. Apart from being a fundamental equa-
tion, its success comes from the fact that in its formulation in
terms of the two-particle correlation functions [1,7,8], the non-
interacting correlation function can be readily written down in
many cases and the interaction enters via a kernel that is the
variation of the self-energy and thus is suitable for intuitive
physical approximations within many-body theory. As pointed
out by Baym and Kadanoff [7], however, the two-particle
correlation function describes only phenomena in a linear
response regime, i.e., to first order in an external perturbation.

A comprehensive understanding of second-order pertur-
bation processes under many-body conditions is, however,
important in many fields, such as atomic physics [9], nonlinear
optics [10,11], solid-state physics [12], to statistical physics
[13]. Second-order responses are intimately linked to three-
particle correlations, which in analogy to the linear case,
contain all second-order properties, and thus represent the
basic quantity describing these processes.

A generalization of the BSE to the regime of nonlinear
response phenomena has, to the best of my knowledge, not yet
been undertaken. Such a generalization amounts to formulate a
connection between the noninteracting and interacting three-
particle correlation functions. As such, a second-order BSE
describes the physics of second-order response phenomena
with the same level of generality as the (linear) Bethe-Salpeter
and should therefore be the natural starting point for systematic
approximations for the many-body physics of second order
phenomena. Formally the BSE is a Dyson equation that
includes the interaction to infinite order and thus gives an
interacting linear response quantity. Likewise, a second-order
BSE should contain the three-particle interaction to infinite
order and give a second-order interacting response quantity.
(It is important to note that in this context “second order”
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refers to the external perturbation and not to an expansion
in the interaction, as carried out by diagrammatic expansion,
which is here always contained up to infinite order.)

In solid-state physics and physical chemistry linear
response functions are routinely calculated within time-
dependent density-functional theory (TDDFT) [14,15]. In this
framework there does exist a relation that can be considered the
second-order generalization of the Dyson equation. It relates
the interacting second-order density response to its noninter-
acting one via the exchange and correlation kernels fxc and gxc,
which are the first- and second-order variations of the exchange
and correlation potential of TDDFT [16,17]. The exact form
of the linear interaction kernel fxc is, however, unknown and
finding good approximations to them remains one of the major
challenges of the field [18–20]. The second-order kernel gxc,
being the variation of the linear one, is even less known and
it has been virtually never used in practical calculations so
far. The second-order TDDFT Dyson-like equation where this
kernel features has been published some time ago [16] but
has also never been applied until recently [17,21,22], arguably
because of the lack of knowledge about gxc.

On the other hand, some progress has been made regarding
the linear interaction kernel fxc by comparing the TDDFT
Dyson equation with the BSE. Given that they have the
same structure and that the two-particle correlation function
can be contracted to yield a response function, an exact
expression for fxc can be obtained, describing two-particle
many-body processes [18,19,23–26]. It is the underlying
structure of the Dyson equation that both have in common
and makes this comparison possible. In the same way, there is
a correspondence of the structure between the known second-
order TDDFT Dyson-like equation [16,17] and a second-order
generalization of the BSE. Such a correspondence can not only
guide the derivation of such an equation but also can serve to
yield an expression for gxc in terms of many-body quantities.

The aim of this paper is thus twofold: First, to establish the
second-order BSE, which is a general expression applicable
to many different physical phenomena in second-order pertur-
bation regimes, just as the BSE does for the linear regime.
Second, to demonstrate how this equation can be used to
improve the existing understanding of second-order response
TDDFT, in the sense that it gives an exact expression for the
thus far largely unknown second-order interaction kernel gxc.
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The outline of this paper follows these two aims. In
Sec. II, I show how the known derivation of the linear BSE
in many-body perturbation theory can be readily generalized
to second order. This amounts to a rather straightforward
second functional derivative. I also show how, given that the
solution of the linear BSE is known, the second-order BSE
can be solved formally, without an additional inversion step,
in Sec. II A. Having established the form and solution of the
second-order BSE, I relate it to the second-order TDDFT
Dyson-like equation in Sec. III, which has the same form
and solution. The combination of both equations yield an
exact equation for gxc, including all second-order many-body
interactions as shown in Sec. IV.

II. DERIVATION OF THE SECOND-ORDER BSE

The Bethe-Salpeter equation provides an approach to
many-body excitations within the framework of many-body
perturbation theory [27]. More precisely it is an equation for
the correlation part L2 of the two-particle Green’s function
that can be written as [here and in the following I use the
notation G1 = G(•,•), G2 = G(•, • , • ,•), etc., i.e., whether
a quantity is second order, of two particles, of three particles,
etc., is determined by the number of variables]

iL(1,2,3,4) = −G(1,3,2,4) + G(1,2)G(3,4), (1)

where the product of the one-particle Green’s functions
G1G1 describes the independent propagation of the two
particles. Thus, the two-particle correlation function describes
those parts of two-particle processes that go beyond their
independent propagation that is represented by G1G1. In
many-body perturbation theory, this quantity is also defined
as the variation of the one-particle Green’s function under
the presence of a perturbing potential using Schwinger’s
functional derivative [27,28]

L(1,2,3,4) = −i
δG(1,2)

δVper(3,4)
, (2)

while the single particle G is determined by the Dyson equation

G−1(1,2) = G−1
H (1,2) − Vper(1,2) − �(1,2), (3)

where � is the self-energy and GH is the Hartree Green’s
function [27,29]. Combining the two equations and carrying
out the functional derivative yields the BSE in the form [2]

L(1,2,3,4) = L0(1,2,3,4) +
∫

d5 d6 d7 d8 L0(1,2,5,6)

× �̃(5,6,7,8)L(7,8,3,4), (4)

where the many-body interaction kernel �̃ is defined as

�̃(5,6,7,8) = v(5,7)δ(5,6)δ(7,8) + i
δ�(5,6)

δG(7,8)
(5)

and the noninteracting part of the correlation function is

L0(1,2,3,4) = −iG(1,3)G(4,2). (6)

For second-order processes in response formulation, one is
interested in the quadratic response, i.e., the response to two

perturbing fields. Thus, generalizing Eq. (2) to second order,
one finds the corresponding three-particle correlation function

L(1,2,3,4,5,6) = −i
δ2G(1,2)

δVper(5,6)δVper(3,4)
= δL(1,2,3,4)

δVper(5,6)
.

(7)

This quantity can be interpreted as the correlation part of the
three-particle Green’s function, which is obtained from Eq. (1)
by taking the functional derivative with respect to an additional
nonlocal perturbing potential

iL(1,2,3,4,5,6) = −G(1,3,5,2,4,6) − G(1,3,2,4)G(5,6)

−G(1,5,2,6)G(3,4) − G(3,5,4,6)G(1,2)

+ 2G(1,2)G(3,4)G(5,6). (8)

There are not only the free propagations of three particles
represented by the G1G1G1 term but also the fully interacting
propagation of pairs of particles with an independent third one
represented by G2G1. One can thus see from this equation that
L3 indeed represents the three-particle correlation part of G3.

A second-order BSE is now readily obtained by carrying
out an additional functional derivative of Eq. (4)—the steps
involved are straightforward but cumbersome because of the
amount of indices involved, so that the details are given in the
Appendix A. The final result reads [cf. Eq. (A7) for indices]

L3 = L03 + L03�̃2L2 + L03�̃2L2 + L03�̃2L2�̃2L2

+L02�3L2L2 + L02�̃2L3, (9)

where the noninteracting part L03 is defined as

iL0(123456) = G(1,5)G(6,3)G(4,2) + G(1,3)G(4,5)G(6,2)

(10)

and the second-order many-body interaction kernel reads

�(1,2,3,4,5,6) = i
δ2�(1,2)

δG(5,6)δG(3,4)
. (11)

Equation (9) is an equation for the second-order quantity L3 but
it also contains the first-order correlation function and L2 and
interaction kernel �2, i.e., there are contributions that depend
only on two-particle interaction. The structure of Eq. (9) can be
seen as the second-order equivalent of the Dyson equation and
it is the same encountered in second-order response TDDFT
[16,17].

A. Formal solution

An important feature of the second-order Dyson-like
equation is that if the solution of the corresponding first order is
known, its solution can be formally written down. Again, this
involves rather cumbersome indices, so here I will show only
a shorthand version, while I give the full index dependence in
Appendix A.

Equation (9) can be rearranged to

[1 − L02�̃2]L3 = L03[1 + �̃2L02][1 + �̃2L02] + L02�3L2L2

(12)

and the first-order BSE (4) can be written as

[1 − L02�̃2] = L02L
−1
2 (13)
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and

[1 + �̃2L02] = L2L
−1
02 . (14)

Inserting these last two expressions in Eq. (12) and multiplying
from the left with L−1

02 L2 solves the second-order BSE:

L3 = L2L
−1
02 L03L

−1
02 L2L

−1
02 L2 + L2�3L2L2, (15)

or alternatively

L3 = [1 + L2�̃2]L03[1 + �̃2L2][1 + �̃2L2] + L2�3L2L2.

(16)

While obtaining this solution appears formally rather trivial,
it is an important point to notice that to evaluate this solution
one does not need to invert the second-order quantities, which
are in this case six-point quantities and thus very demanding
to handle numerically. The three-particle correlation function
thus just needs to be evaluated using the linear result, the
noninteracting three-particle propagator L03, and the three-
particle interaction kernel �3. Still, such an evaluation is
numerically challenging because first one needs to construct
L03, which is a six-point quantity as well, and second, as shown
in Eq. (A12), it involves the integral (or sum) over 12 indices,
which leads to very unfavorable scaling properties.

B. The second-order many-body kernel �3

The linear many-body interaction kernel is the variation
of the self-energy with respect to a single-particle Green’s
function. In practical applications in solid-state physics of the
BSE this self-energy is taken in Hedin’s GW approximation
[30,31], so that the kernel reads

�(5,6,7,8) = −δ[G(5,6)W (5,6)]

δG(7,8)

= −δ(5,7)δ(6,8)W (5,6) − G(5,6)
δW (5,6)

δG(7,8)
.

(17)

Additionally, one assumes that the functional derivative of the
screening W with respect to the Green’s function δW/δG,
which describes the change of the screening due to the
excitation, is small and can thus be neglected, as shown
by Hanke and Sham [32]. This assumption is, however, an
ad hoc approximation and mainly justified pragmatically. In
this approximation the second-order kernel that is defined as

�(1,2,3,4,5,6) = i
δ2�(1,2)

δG(5,6)δG(3,4)
= δ�(1234)

δG(5,6)
(18)

obviously vanishes as well. It does, however, not vanish a
priori if one considers other approximations for the first-order
kernel—cf. Ref. [7], for example.

Furthermore, even in GW , the assumption δW/δG = 0
could mean that one is missing important contributions and
it might not be a good approximation when one is interested
in second-order processes. Especially, since the second-order
BSE is describing second-order processes, this term that is
second order in W and is describing the change of the screening
due to the excitation can be important.

In atomic physics and chemistry one usually only considers
a Hartree-Fock self-energy of the form � = iGv, for which

the second-order interaction kernel vanishes as well. We will
see below, however, that even if the kernel vanishes, there
are still finite second-order processes beyond the independent
propagation remaining.

III. RELATION TO TDDFT

The time-dependent density-functional theory in response
formulation relates the interacting density responses χ to the
noninteracting Kohn-Sham responses χ0 via the exchange and
correlation kernels fxc [14],

χ (1,2) = χ0(1,2) +
∫

d3 d4χ0(1,3)fvxc(3,4)χ (4,2), (19)

where fvxc = v + fxc. This is in the same way as the BSE
relates correlation function L2 to the noninteracting part
via the many-body interaction kernel �2. The underlying
common structure is the Dyson equation. A second-order
response equivalent of the TDDFT Dyson equation is given
in Refs. [16,17,21] and reads

χ2 = χ02 + χ02fvxcχ1 + χ02fvxcχ1 + χ02fvxcχ1fvxcχ1

+χ01gxcχ1χ1 + χ01fvxcχ2 (20)

and yields exactly the same structure as the second-order
BSE, Eq. (9). This seems to be the general structure of how
second-order quantities are related to their “noninteracting”
counterparts via interaction kernels and as such can be regarded
as second-order Dyson equations.

The second-order TDDFT Dyson equation can also be
solved formally in the same way as the second-order BSE.
One finds

χ2 = χ1χ
−1
01 χ02χ

−1
01 χ1χ

−1
01 χ1 + χ1gxcχ1χ1 (21)

and equivalently

χ2 = [1 + χ1fvxc]χ02[1 + fvxcχ1][1 + fvxcχ1] + χ1gxcχ1χ1.

(22)

These are again shorthand versions, the full indexed versions
of which are given in Appendix B.

Having established the formal similarities between the
second-order TDDFT and BSE, it is important to note their
fundamental differences. As already pointed out above, the
fundamental quantity of the BSE is the one-particle Green’s
function and its variation with respect to a perturbing potential
yields the two-particle correlation function according to
Schwinger’s relation. The fundamental quantity of TDDFT
is the density and its variation with respect to a perturbing
potential yields the density response function. By definition,
the Green’s function is nonlocal in space and time, since
it describes the propagation of a particle, while, also by
definition, the density is a local property. Formally, this
means that the BSE is an equation of four-point (or six-point)
quantities and TDDFT of two-point (or three-point) quantities.
The two are connected, however, by the fact that the contraction
of the Green’s function yields the density iG(1,1′) = ρ(1).
In this sense all the properties of the density response χ1

(or χ2) are contained in the two-particle correlation L2 (or
three-particle correlation L3) and can be accessed by
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contraction, i.e.,

L(1,1′,2,2′) = −i
δG(1,1′)

δVper(2,2′)
= δρ(1)

δVper(2)
= χ (1,2) (23)

and

L(1,1′,2,2′,3,3′) = −i
δG(1,1′)

δVper(2,2′)δVper(3,3′)

= δ2ρ(1)

δVper(2)δVper(3)
= χ (1,2,3). (24)

This does not, however, mean that the TDDFT Dyson equation
is a trivial contraction of the BSE, which is not the case [5,18].
Indeed, in the linear case one first has to solve the four-point
BSE to obtain L2 that then can be contracted to give the linear
density response.

This contraction property also holds for the noninteracting
quantities, which means that the independent (quasiparticle-
corrected) density response can be written as

χ0(1,2,3) = L0(1,1′,2,2′,3,3′)
= −iG(1,2)G(2,3)G(3,1) − iG(1,3)G(3,2)G(2,1).

(25)

This is also the second-order generalization of the lin-
ear random phase approximation (RPA) polarizability P1 =
−iG1G1. We note that for second order two separate terms are
necessary to assure symmetry in the indices of the perturbation,
i.e., 2 ↔ 3.

Another way of interpreting Eq. (25) is that it represents a
particle-particle-hole and a particle-hole-hole process. Note
that this depends on contraction chosen here, and other
contractions imply different time ordering and thus can yield,
e.g., hole-hole-hole processes, etc.

In this paper we only discuss density responses, but L2 and
L3 contain much more information than that. They can, for
example, also be used to give the current response, as shown
by Gatti [33] for the linear case.

IV. A gxc FROM MANY-BODY PERTURBATION THEORY

The similarity between the BSE and the fact that the
contraction of L2 yields the linear density response has
been used to derive an exact expression for the two-particle
correlation part of the TDDFT kernel fxc [18]. This derivation
uses the fact that the kernel can be written as consisting
of two parts, fxc = f (1)

xc + f (2)
xc , where f (1)

xc accounts for the
quasiparticle corrections and f (2)

xc for other many-body effects
[25]. Following the derivation of Gatti et al. [20] for the first
order, I will here sketch how the second-order BSE can be
used to derive a similar expression for gxc.

Since the Coulomb interaction v is known and does not
contribute directly to fxc and gxc, it is convenient to compare
only the irreducible quantities, here denoted P and L̃, in
TDDFT and BSE, respectively. The relations connecting the
irreducible polarizabilities P with the reducible response
functions χ are

P1 = χ1 + χ1vP1, (26)

P2 = [1 − P1v]χ2[1 − vP1][1 − vP1] (27)

= P1χ
−1
1 χ2χ

−1
1 P1χ

−1
1 P1, (28)

and similar for L and L̃. The solutions of the second-order
Dyson equations for these quantities read

P2 = P1P
−1
01 P02P

−1
01 P1P

−1
01 P1 + P1gxcP1P1, (29)

L3 = L̃2L
−1
02 L03L

−1
02 L̃2L

−1
02 L̃2 + L̃2�3L̃2L̃2. (30)

Here I only give the shorthand notation, but it is understood
that L̃2 and L̃3 are four- and six-point quantities, while P1 and
P2 are two- and three-point quantities.

The two equations can be combined by exploiting the
similarity of the two independent particle responses L03 and
P02. As shown in Sec. III, the three-point contraction of L03

equals the independent density response and thus also P02.
Since the BSE cannot be contracted to yield the TDDFT Dyson
equation, one has to generalize instead Eq. (29) to six points,
thus making all P and P0 trivially contractible four- (4P ) and
six-point (6P ) quantities—cf. Appendix C.

Now, using L03 = 6P 02 and L02 = 4P 01, the two equations
can be combined and solved for the kernels

�3 − 6gxc = L̃−1
2 L̃3L̃

−1
2 L̃−1

2 − 4P
−1
1

6P 2
4P

−1
1

4P
−1
1 . (31)

At this point we already note that even in the cases where
�3 = 0, cf. Sec. II B, the second-order TDDFT kernel gxc is
still finite. Indeed, it only vanishes if additionally 6P 2 = L̃3

and 4P 1 = L̃2, which is generally false and can only be
achieved in oversimplified models. In particular, this means
that in the GW approximation with the additional assumption
of δW/δG = 0, where �3 = 0, the second-order TDDFT
kernel gxc generally does not vanish. That means that gxc has
not only to account for interactions that are purely of second
order in the sense of the Bethe-Salpeter interactions kernels,
i.e., three-particle interaction, but also has to account for some
nontrivial coupling of linear quantities.

This is, for example, the case in the Hartree-Fock approx-
imation, because it does not consider correlation but only
accounts for exchange which is by definition a two-particle
process. Still, in this approximation gxc is nonzero, which
clearly shows that the folding of many-body processes into the
effective kernels fxc and gxc reduces the intuitivity of TDDFT
for higher-order processes. It also means that in TDDFT
calculations that let gxc = 0 not only three-particle correlations
are neglected, but also one misses exchange effects.

To get an exact expression for gxc, we can now use the
fact that P2 is the three-point contraction of L̃3 and thus
let 6P 2

∣∣
6→3 = P2 = L̃3

∣∣
6→3. By solving Eq. (31) for L3,

contracting the free indices and making this substitution, we
obtain

P2 = (
L̃2

4P
−1
1

6P 2
4P

−1
1 L̃2

4P
−1
1 L̃2

)∣∣
6→3

+ (
L̃2(�3 − 6gxc)L̃2L̃2

)∣∣
6→3, (32)

where 6 → 3 indicates the pairwise contraction of the six free
indices to three. This constitutes a generalized Sham-Schlüter
equation [20,29] for the kernels that now can be solved for
gxc. To keep track of the contracted quantities, it is necessary
to explicitly account for the indices while proceeding—cf.
Appendix C. Therefore, the resulting expression (C9) lacks
readability, so that here I give again only a shorthand,
indicating left-hand or right-hand-sided contractions of four-
point quantities as 3|• and •|3, respectively. Thus, Eq. (32)
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solved for gxc reads

gxc = P −1
1

[ ∣∣
3 L̃2

4P
−1
1

∣∣
3P2

∣∣
3

4P
−1
1 L̃2

∣∣
3

∣∣
3

4P
−1
1 L̃2

∣∣
3 − P2

]
×P −1

1 P −1
1 + P −1

1 3

∣∣L̃2�3L̃2

∣∣
3L̃2

∣∣
3P

−1
1 P −1

1 . (33)

In comparison, the corresponding expression of the linear fxc

derived in this framework (cf. Refs. [20] and [29]) reads in this
notation

fxc = P −1
1

∣∣
3

4P 1�2L2

∣∣
3P

−1
1 . (34)

To illustrate the notation in Eq. (33), we have, for example,
quantities as∣∣

3
4P

−1
1 L̃2

∣∣
3 = 4P

−1
(1,1,3,4)L̃(4,3,2,2), (35)

from which we can see again that only if 4P 1 = L̃2, one
can follow gxc = �3|6→3. Instead, Eq. (33) gives the exact
expression for a TDDFT kernel that reproduces a P2 such that
P (1,2,3) = L̃(1,1,2,2,3,3,), i.e., a second-order irreducible
polarizability that accounts for all three-particle many-body
interactions. The advantage is that one does not have to solve
the six-point second-order BSE but can keep the three-point
formalism of second-order response TDDFT.

The downside is that, apart from having to perform a linear
BSE calculation first to obtain L̃2, the actual knowledge of
the kernel gxc as in Eq. (33) implies knowledge of P2 and
is therefore not possible. For calculation purposes one has
to make an approximation on this equation, particularly on
this instance of P2. The most straightforward would be to let
P2 → P02.

One can also use this result to deduce some general
properties a gxc should have. For optical applications, for
example, the behavior of this kernel in the optical limit q → 0
could be of interest. This limit can be readily obtained by
realizing that in the exact expression of gxc, Eq. (C9), the
only free indices are those of P −1

1 . The q dependence of these
quantities is known to be ∼1/q2, and since one of the two
indices of these three P −1

1 is integrated, the overall dependence
of gxc in the optical limit is

lim
q→0

gxc(q,q,q) ∼ 1

q3
. (36)

The factor of proportionality can be seen as a material-
dependent coefficient and Eq. (33) as the prescription on how
to calculate it. In this sense the second-order BSE can improve
the understanding and design of TDDFT kernels.

V. CONCLUSION

In this paper I have shown how a Bethe-Salpeter equation
for the nonlinear response regime can be derived and that

it can be solved formally for the three-particle correlation
function, provided the two-particle correlation is known. This
result is general in the sense that is does not make any
assumption on the underlying physical system, i.e., it should be
applicable to the range of physical processes where many-body
effects determine the nonlinear response of a system. Even
more general, it provides in principle a prescription on how
the three-particle correlation function can be obtained from
the corresponding two-particle correlation functions. Physical
approximations enter this solution mainly via the many-body
self-energy, for which a vast amount of approximations and
theories exist that could be directly applied to this equation.

Formally, this equation has the same structure as the second-
order response TDDFT Dyson equation. This similarity points
to some underlying general structure for second-order quanti-
ties in Dyson-like equations. It can also be systematically ex-
ploited to improve the current understanding of TDDFT as far
the second-order exchange and correlation kernel is concerned.
It turns out that there is no direct correspondence between this
kernel and the three-particle interaction kernel of the BSE,
but the comparison of TDDFT and BSE makes it possible to
disentangle the many-body effects that are contained in gxc, as
shown, for example, in the Hartree-Fock approximation, where
gxc contains two-particle exchange effects. Furthermore, one
can derive an exact expression for a gxc that reproduces
a polarizability with the same many-body features as the
three-particle correlation function. This expression provides
the possibility to deduce some general properties of gxc, such
as its q dependence in the optical limit, so that it can be a
starting point for systematic approximations for this kernel.

The extensive discussion of the relation between the
second-order BSE and the TDDFT formalism is, however, only
one of many possible fields where this equation can provide
further insight into higher-order physics.

Note added in proof. Recently, I have become aware of a
work [34] that deals with a similar formulation.
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APPENDIX A: DETAILS OF DERIVATION OF THE
SECOND-ORDER BSE

To obtain a Bethe-Salpeter-like equation for the three-
particle correlation function L3, we simply have to derive the
first-order BSE, Eq. (4):

δL(1,2,3,4)

δVper(5,6)
= δ

δVper(5,6)
[−iG(1,3)G(4,2)] + δ

δVper(5,6)

{∫
d7 d8 d9 d10(−i)G(1,7)G(8,2)

×
[
v(7,9)δ(7,8)δ(9,10) + i

δ�(7,8)

δG(9,10)

]
(−i)

δG(9,10)

δVper(3,4)

}
= (−i)

δG(1,3)

δVper(5,6)
G(4,2) + (−i)G(1,3)

δG(4,2)

δVper(5,6)

+
∫

d7 d8 d9 d10(−i)
δG(1,7)

δVper(5,6)
G(8,2)

[
v(7,9)δ(7,8)δ(9,10) + i

δ�(7,8)

δG(9,10)

]
(−i)

δG(9,10)

δVper(3,4)
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+
∫

d7 d8 d9 d10 (−i)G(1,7)
δG(8,2)

δVper(5,6)

[
v(7,9)δ(7,8)δ(9,10) + i

δ�(7,8)

δG(9,10)

]
(−i)

δG(9,10)

δVper(3,4)

+
∫

d7 d8 d9 d10(−i)G(1,7)G(8,2)i
δ

δVper(5,6)

[
δ�(7,8)

δG(9,10)

]
(−i)

δG(9,10)

δVper(3,4)

+
∫

d7 d8 d9 d10(−i)G(1,7)G(8,2)

[
v(7,9)δ(7,8)δ(9,10) + i

δ�(7,8)

δG(9,10)

]
(−i)

δ2G(9,10)

δVper(5,6)δVper(3,4)
. (A1)

We note the repeated occurrence of first-order quantities known from first-order BSE. The only new term is the second derivative
of the self-energy in the second last line. In this term we use the chain rule and get

δ

δVper(5,6)

[
δ�(7,8)

δG(9,10)

]
=

∫
d11 d12

δ

δG(11,12)

[
δ�(7,8)

δG(9,10)

]
δG(11,12)

δVper(5,6)
. (A2)

Using the definitions of the two-particle and three-particle many-body kernels, Eqs. (5) and (11), and inserting the known
first-order quantities we can write

δL(1,2,3,4)

δVper(5,6)
= L(1,3,5,6)G(4,2) + G(1,3)L(4,2,5,6) +

∫
d7 d8 d9 d10L(1,7,5,6)G(8,2)�̃(7,8,9,10)L(9,10,3,4)

+
∫

d7 d8 d9 d10G(1,7)L(8,2,5,6)�̃(7,8,9,10)L(9,10,3,4) +
∫

d7 . . . d12L0(1,2,7,8)�(7,8,9,10,11,12)

×L(11,12,5,6)L(9,10,3,4) +
∫

d7 d8 d9 d10L0(1,2,7,8)�̃(7,8,9,10)
δL(9,10,3,4)

δVper(5,6)
. (A3)

This is in principle already a second-order BSE. We note that at this point we do not need any six-point quantities other than the
kernel.

To make the connection to the TDDFT Dyson equation and to avoid explicit reference to the one-particle Green’s function G,
we define

iL′
0(1,2,3,4,5,6) = G(1,3)G(4,2)G(5,6) (A4)

and insert the full first-order expressions for the L2 [Eq. (4)] in the above equation. Recalling the definition for L3 = δL2/δV

we have (to keep the equation readable I drop the separating commas between variables, relying on the readers’ goodwill to
distinguish)

L(123456) = L′
0(135642) + L′

0(425613) +
∫

d7 d8 d9 d10L′
0(137842)�̃(78910)L(9 10 56)

+
∫

d7 d8 d9 d10L′
0(427813)�̃(78910)L(9 10 56) +

∫
d7 d8 d9 d10L′

0(175682)�̃(789 10)L(9 10 34)

+
∫

d7 d8 d9 d10L′
0(825617)�̃(789 10)L(9 10 34) +

∫
d7 d8 d9 d10 d11 d12 d13 d14L′

0(17 11 12 82)

× �̃(11 12 13 14)L(13 14 56)�̃(789 10)L(9 10 34) +
∫

d7 d8 d9 d10 d11 d12 d13 d14L′
0(82 11 12 17)

× �̃(11 12 13 14)L(13 14 56)�̃(789 10)L(9 10 34) +
∫

d7 d8 d9 d10 d11 d12L0(1278)�(789 10 11 12)

×L(11 12 56)L(9 10 34) +
∫

d7 d8 d9 d10L0(1278)�̃(789 10)L(9 10 3456). (A5)

We note that the eight first terms are in fact pairs of terms with the same structure. This is due to the symmetry in the perturbing
fields, i.e., itdoes not make a physical difference if the Vper(5,6) field is applied before the Vper(3,4) field or vice versa. We can
see that by exchanging the indices 3 ↔ 5 and 4 ↔ 6 in the equation. We therefore define an L0 such that it accounts for these
two possibilities:

iL0(123456) = iL′
0(135642) + iL′

0(425613) = G(1,5)G(6,3)G(4,2) + G(1,3)G(4,5)G(6,2) (A6)

with this the second order BSE reads

L(123456) = L0(123456) +
∫

d7 d8 d9 d10L0(123478)�̃(78910)L(9 10 56) +
∫

d7 d8 d9 d10L0(127856)�̃(789 10)L(9 10 34)

+
∫

d7 d8 d9 d10 d11 d12 d13 d14L0(1278 11 12)�̃(11 12 13 14)L(13 14 56)�̃(789 10)L(9 10 34)

+
∫

d7 d8 d9 d10 d11 d12L0(1278)�(789 10 11 12)L(11 12 56)L(9 10 34)

+
∫

d7 d8 d9 d10L0(1278)�̃(789 10)L(9 10 3456). (A7)
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To formally solve the second-order BSE we rearrange it to∫
d7 d8 d9 d10

[
δ(1,7)δ(7,9)δ(2,8)δ(8,10) − L0(1278)�̃(78910)

]
L(9 10 3456)

=
∫

d7 . . . d14L0(1278 11 12)
[
δ(7,3)δ(8,4) + �̃(78910)L(9 10 34)

] [
δ(5,11)δ(6,12) + �̃(11 12 13 14)L(13 14 56)

]

+
∫

d7 d8 d9 d10 d11 d12L0(1278)�(789 10 11 12)L(11 12 56)L(9 10 34). (A8)

Now we can use the linear BSE to write for the factor on the left-hand side,∫
d7 d8

[
δ(1,9)δ(2,10) − L0(1278)�̃(78910)

] =
∫

d7 d8L0(1278)L−1(8710 9) (A9)

as well as to rewrite the two linear factors on the right-hand side according to∫
d5 d6

[
δ(3,1)δ(4,2) + �̃(1256)L(5634)

] =
∫

d5 d6L−1
0 (2165)L(5634), (A10)

so that the second-order BSE can be written as∫
d7 d8 d9 d10L0(1278)L−1(8710 9)L(9 10 3456)

=
∫

d7 . . . d14L0(1278 11 12)L−1
0 (87 10 9)L(9 10 34)L−1

0 (12 11 14 13)L(13 14 56)

+
∫

d7 d8 d9 d10 d11 d12L0(1278)�(789 10 11 12)L(11 12 56)L(9 10 34). (A11)

Now multiplying from the left with
∫

d12 d15 d16L(17 18 15 16)L−1
0 (16 15 21) and renaming the indices 17 ↔ 1 and 18 ↔ 2

we have the final result:

L(123456) =
∫

d7 . . . d18L(12 15 16)L−1
0 (16 15 18 17)L0(17 18 78 11 12)L−1

0 (8,7 10 9)L(9 10 34)L−1
0 (12 11 14 13)L(13 14 56)

+
∫

d7 d8 d9 d10 d11 d12 d15 d16L(12 15 16)�(15 16 9 10 11 12)L(11 12 56)L(9 10 34).

(A12)

APPENDIX B: TDDFT EQUATIONS

The full index-dependent versions of Eqs. (20)–(22) read

χ (1,2,3) = χ0(1,2,3) +
∫

d4 d5χ0(1,4,3)fvxc(4,5)χ (5,2) +
∫

d4 d5χ0(1,2,4)fvxc(4,5)χ (5,3)

+
∫

d4 d5 d6 d7χ0(1,5,4)fvxc(5,6)χ (6,2)fvxc(4,7)χ (7,3)

+
∫

d4 d5 d6χ0(1,4)gxc(4,5,6)χ (6,3)χ (5,2) +
∫

d4d5χ0(1,4)fvxc(4,5)χ (5,2,3), (B1)

χ (1,2,3) =
∫

d4 . . . d9χ (1,8)χ−1
0 (8,9)χ0(9,5,4)χ−1

0 (5,6)χ (6,2)χ−1
0 (4,7)χ (7,3) +

∫
d4 d5 d6 d7χ (1,7)gxc(7,5,6)χ (6,2)χ (5,3),

(B2)

χ (1,2,3) =
∫

d4 . . . d9 [δ(1,9) + χ (1,8)fvxc(8,9)] χ0(9,5,4) [δ(2,5) + fvxc(5,6)χ (6,2)] [δ(3,4) + fvxc(4,7)χ (7,3)]

+
∫

d4 d5 d6 d7χ (1,7)gxc(7,5,6)χ (6,2)χ (5,3). (B3)

APPENDIX C: DETAILS OF DERIVATION OF gxc

In this appendix I will give some details concerning the derivation of the second-order many-body exchange and correlation
kernel gxc as described in Sec. IV. To combine the second-order BSE and the TDDFT Dyson-like equation we have to represent
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the TDDFT equation in terms of four- and six-point quantities, written as 4P and 6P . The Dyson-like equation for the irreducible
polarizability reads

6P (1,2,3,4,5,6) =
∫

d7 . . . d19 4P (1,2,7,8) 4P
−1
0 (8,7,10,9) 6P 0(9,10,11,12,13,14) 4P

−1
0 (12,11,16,17) 4P (16,17,3,4)

× 4P
−1
0 (14,13,19,18) 4P (18,19,5,6) +

∫
d7 . . . d12 4P (1,2,7,8) 6gxc(7,8,9,10,11,12)

× 4P (9,10,3,4) 4P (11,12,5,6), (C1)

where

6gxc(7,8,9,10,11,12) = δ(7,8)δ(9,10)δ(11,12)gxc(7,9,11) (C2)

and the linear quantities obey the four-point Dyson equation, as

4P (1,2,3,4) =
∫

d5 d6 d7 d8 4P 0(1,2,5,6) [δ(3,5)δ(4,6) + δ(5,6)δ(7,8)f (5,7)P (7,8,3,4)] (C3)

so that ∫
d12 4P

−1
0 (10,9,2,1) 4P (1,2,3,4) =

∫
d7 d8 [δ(3,9)δ(4,10) + δ(9,10)δ(7,8)f (9,7)P (7,8,3,4)] , (C4)

and when one takes the contraction P (1,1,2,2,3,3) of Eq. (C1) it collapses to

P (1,2,3) =
∫

d4 d5 d6 d7 d8 d9P (1,4)P −1
0 (4,5)P0(5,6,7)P −1

0 (6,8)P (8,2)P −1
0 (7,9)P (9,2)

+
∫

d4 d5P (1,4)gxc(4,5,6)P (5,2)P (6,3). (C5)

With these definitions the “Sham-Schlüter” equation (32) reads

�(123456) − 6gxc(123456) =
∫

d7 . . . d12L̃−1(1278)L̃(789 10 11 12)L̃−1(10 9 34)L̃−1(12 11 56)

−
∫

d7 . . . d12 4P
−1

(1278) 6P (789 10 11 12) 4P
−1

(10 9 34) 4P
−1

(12 11 56), (C6)

and can be solved for L̃3 to yield

L̃(13 14 15 16 17 18) =
∫

d1 . . . d12L̃(13 14 21) 4P
−1

(1278) 6P (789 10 11 12) 4P
−1

(10 9 34)L̃(43 15 16) 4P
−1

(12 11 56)

× L̃(65 17 18) +
∫

d1 . . . d6L̃(13 14 21)
[
�(123456) − 6gxc(123456)

]
L̃(43 15 16)L̃(65 17 18). (C7)

Now, to use the property L̃(13 13 15 15 17 17) = P (13,15,17) we carry out this contraction, as well as collapsing all redundant
indices and obtain

P (13,15,17) =
∫

d1 . . . d12L̃(13 13 21) 4P
−1

(1277)P (79 11) 4P
−1

(9 9 34)L̃(43 15 15) 4P
−1

(11 11 56)L̃(65 17 17)

+
∫

d1 . . . d6L̃(13 13 21)�(123456)L̃(43 15 15)L̃(65 17 17)

−
∫

d1 d3 d5L̃(13 13 11)gxc(135)L̃(33 15 15)L̃(55 17 17). (C8)

The diagonal L̃2 in the last term are in fact two-point P1 quantities, so that we obtain, solving this equation for gxc,

gxc(1,2,3) =
∫

d4 . . . d15P −1(1,4)[L̃(4456) 4P
−1

(6577)P2(7,8,9) 4P
−1

(88 11 10)L̃(10 11 12 12)

× 4P
−1

(99 14 13)L̃(13 14 15 15) − P2(4,12,15)]P −1(12,2)P −1(15,3)

+
∫

d4 . . . d12P −1(1,4)L̃(4456)�(6587 10 9)L̃(78 11 11)L̃(9 10 12 12)P −1(12,2)P −1(12,3). (C9)
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