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Robustness of superposition states evolving under the influence of a thermal reservoir

J. S. Sales1 and N. G. de Almeida2

1UnUCET - Universidade Estadual de Goiás, 75132-903, Anápolis (GO), Brazil
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We study the evolution of superposition states under the influence of a reservoir at zero and finite temperatures
in cavity quantum electrodynamics aiming to know how their purity is lost over time. The superpositions studied
here are composed of coherent states, orthogonal coherent states, squeezed coherent states, and orthogonal
squeezed coherent states, which we introduce to generalize the orthogonal coherent states. For comparison,
we also show how the robustness of the superpositions studied here differs from that of a qubit given by a
superposition of zero- and one-photon states.
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I. INTRODUCTION

Coherent superposition is at the heart of quantum me-
chanics and finds applications in a number of technolog-
ical advances. For example, in quantum information and
quantum computation, coherent superposition is one funda-
mental property of a qubit necessary to perform quantum
Fourier transform, quantum phase estimation, quantum search,
Deutsch algorithm, quantum cryptography, and dense coding
[1]. However, as is well known, it is impossible to completely
isolate a qubit from its environment, which destroys the
coherence and drives the superposition to an incoherent
mixture [2]. Since different superpositions in general will
suffer different effects from the surroundings, it is important
to know which superposition is more robust compared to the
others when the environment is taken into account. In this
paper, we model the qubit by superposition states composed
of several states usually employed in both theoretical [3–6]
and experimental studies [7–9], and then we comparatively
study their robustness against a thermal environment through
the linear entropy. The superposition states studied here are
the squeezed coherent-state superposition (SCSS), coherent-
state superposition (CSS), orthogonal squeezed coherent-
state superposition (OSCS), and orthogonal coherent-state
superposition (OCSS). For comparison, we also plot the linear
entropy of the zero- and one-Fock superposition state, or
qubit (QBIT), since the zero and one states are ordinarily
taken as the computational basis. To study the evolution of
these states, we consider the cavity quantum electrodynamics
(QED) scenario, where important experiments were recently
carried out [8], including the monitoring of purity losses of
a CSS [7]. Statistical properties of an ideal, i.e., lossless
SCSS were widely studied [10], and schemes for engineering
Hamiltonians leading to arbitrary squeezed states in ideal
high-Q cavity QED were discussed in Refs. [11–14]. Different
from these previous works, the SCSS studied here takes
into account the reservoir at finite temperature, and it is
straightforwardly generalized to generate CSS, OSCS, and
OCSS as particular cases.

It is to be noted that robustness of entanglement, which
is also a key property for quantum information tasks, was
introduced for any state of a composite system composed by
any finite number of local subsystems of finite dimension [15].
In Ref. [16], the authors study the robustness of generalized

multiqubit Greenberger-Horne-Zeilinger-type states, and in
Ref. [17], the dynamics of multipartite entanglement under
the influence of decoherence for various environments is
investigated. Recently, an experimental work leading with
robustness of bipartite Gaussian entangled beams propagating
in lossy channels was reported for the simplest case of two light
beams [18]. Entanglement robustness has also been studied by
several authors in the cavity QED domain [19–21].

This paper is organized as follows. In Sec. II we introduce
the model to include the environment and derive the evolution
of the SCSS under a thermal reservoir. In Sec. III we study
the time evolution of the linear entropy considering the initial
states in the superpositions mentioned above, and in Sec. IV
we present our conclusions.

II. THE MODEL

For modeling the system and reservoir, we will use, as
usual, the following Hamiltonian:

H = h̄ωa†a +
∑

k

h̄ωkb
†
kbk +

∑
k

h̄(λka
†bk + λ∗

kab
†
k), (1)

where a† and a are, respectively, the creation and annihilation
operators for the cavity mode of frequency ω, and b

†
k and bk are

the analogous operators for the kth reservoir oscillator mode,
whose corresponding frequency and coupling are ωk and λk ,
respectively.

A. SCSS evolution under thermal reservoir

The SCSS evolution under a thermal reservoir can be
obtained, using the approach of characteristic functions [22]
for example. Let us delineate the main steps involved. First, we
calculate the characteristic function in the symmetrical order
(C), then we calculate the Wigner function, and finally, we
obtain the linear entropy. For convenience, we first calculate
the characteristic function in the normal order (CN ), which is
related to the symmetrical C function by

C(η,η∗,t) = CN (η,η∗,t)e− |η|
2

2

. (2)

In the Heisenberg picture, CN reads

CN (η,η∗,t) = tr{ρAR(0) exp[ηa†(t)] exp[η∗a(t)]}, (3)

062121-11050-2947/2011/83(6)/062121(6) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.062121


J. S. SALES AND N. G. DE ALMEIDA PHYSICAL REVIEW A 83, 062121 (2011)

where tr denotes trace on both mode and reservoir variables,
η is a c number, and ρAR(0) is the density operator for the
whole system at time t = 0, composed of the cavity mode
field (system A) prepared in the SCSS state,

a|ξ,α〉 + b|ξ, − α〉, (4)

and the reservoir (R). The Wigner W function is given by
the two-dimensional Fourier transform of the characteristic C

function,

W (γ,γ ∗,t) = 1

π2

∫
d2ηeη∗γ−ηγ ∗

C(η,η∗,t). (5)

For the Hamiltonian model given by Eq. (1), the solution of
the Heisenberg equations for a(t) and bk(t) operators can be
obtained in the Wigner-Weisskopf approximation, considering
the reservoir as Markovian [6,22,23], allowing us to write

a(t) = w(t)a(0) +
∑

k

vk(t)bk(0), (6)

where w(t) = exp[−(	
2 + iω)t] and vk(t) =

iλ exp[−( 	
2 +iω)t]−exp(ωkt)

	
2 +i(ωk−ω)

, and with 	 = 2πD(ω)|λ(ω)|2 being

the damping constant of the cavity mode field. Here, D(ω)
is the density of modes inside the cavity taken at the system

frequency ω, and λk → λ(ω) is the coupling between the
system and the reservoir, also taken at the system frequency
ω. For a white-noise reservoir, D(ω)|λ(ω)|2 turns to be a
constant, and for high-Q cavities, 	 is experimentally around
102 s−1, accounting for a cavity Q factor around 108 [7].

Once we have Eq. (6), we can obtain Eqs. (3)–(5) for the
SCSS, whose initial density operator reads

ρ(0) =
2∑

j,k=1

bjk|ξ,αk〉〈ξ,αj |, (7)

where α1 = α, α2 = −α, and the coefficients bjk are obtained
from Eq. (4).

When Eq. (7) is inserted in Eq. (2), the characteristic C

function will contain four terms. To obtain the W function for
the SCSS into a lossy cavity, we focus our attention on the
following representative term of the C function:

Cjk(η,η∗,t) = tr bjk|ξ,αk〉〈ξ,αj | exp[ηa†(t) − η∗a(t)], (8)

which can be used to compose Eq. (2) performing the sum∑2
j,k=1 Cjk(η,η∗,t). If we now substitute a(t) from Eq. (6)

in Eq. (2), and assume the reservoir at a finite absolute
temperature, we obtain

C(η,η∗,t) = tr
[
ρAR(0)eη[w∗(t)a†+∑

k v∗
k (t)b†k ]e−η∗[w(t)a+∑

k vk (t)bk ]e− |η|
2

2]
= e− |η|

2

2

tr
[
ρA(0)eηw∗(t)a†

e−η∗w(t)a
]
tr
[
ρR(0)eη

∑
k v∗

k (t)b†k e−η∗ ∑
k vk (t)bk

]
= e− |η|

2

2

tr
[
ρA(0)eηw∗(t)a†

e−η∗w(t)a
]
tr

[ ∏
k

∫
d2βk

e
−|βk |2
〈nk 〉

π〈nk〉 |βk〉〈βk|eηv∗
k (t)b†k e−η∗vk (t)bk

]

= e− |η|
2

2

tr

[
ρA(0)eηw∗(t)a†

e−η∗w(t)a
∏
k

e−|η|2|vk (t)|2〈nk〉
]

= e− |η|
2

2

tr
[
ρA(0)eηw∗(t)a†

e−η∗w(t)ae−|η|2 ∑
k |vk(t)|2〈nk〉], (9)

where we have used ρR(0) = ∏
k

∫
d2βk

e

−|βk |2
〈nk 〉

π〈nk〉 |βk〉〈βk| for the reservoir characterized by the mean number occupation 〈nk〉 in
the kth mode using the coherent states |βk〉 [22,24]. Using Eq. (7), we can write, for the representative term of C(η,η∗,t),

Cjk(η,η∗,t) = bjke
−(ε+ 1

2 )|η|2〈ξ,αj | exp[ηw∗(t)a†] exp[−η∗w(t)a]|ξ,αk〉
= bjke

−(ε+ 1
2 )|η|2〈αj | exp[ηw∗(t) (µ∗a† − ν∗a)] exp[−η∗w(t) (µa − νa†)]|αk〉, (10)

where we have put a(0) = a and
∑

k |vk(t)|2〈nk〉 = ε. Using the Baker-Campbell-Hausdorff formula eA+B = eAeBe− 1
2 [A,B] =

eBeAe
1
2 [A,B], with [A,[A,B]] = 0 , we can write

Cjk(η,η∗,t) = bjke
−(ε+ 1

2 )|η|2 exp
[ − 1

2η2w∗2(t)µ∗ν∗ − 1
2η∗2w2(t)µν + ηw∗(t)µ∗α∗

j

]
× exp[−η∗w(t)µαk]〈αj | exp[−ηw∗(t)ν∗a + η∗w(t)νa†]|αk〉. (11)

Using 〈α|a = ( α
2 + ∂

∂α∗ )〈α| and its conjugate, with |α〉 = exp(− 1
2 |α|2 + αa†)|0〉, we have, after derivation,

Cjk(η,η∗,t) = bjke
−(ε+ 1

2 )|η|2 exp
[ − 1

2η2w∗2(t)µ∗ν∗ − 1
2η∗2w2(t)µν + ηw∗(t)µ∗α∗

j − η∗w(t)µαk

]
× exp

[ − 1
2 (|αj |2 + |αk|2)

]〈0| exp{[−ηw∗(t)ν∗ + α∗
j ]a} exp{[η∗w(t)ν + αk]a†}|0〉, (12)

or, after rearranging the terms and using again |α〉 = exp(− 1
2 |α|2 + αa†)|0〉,

Cjk(η,η∗,t) = bjke
−(ε+ 1

2 )|η|2 exp
[ − 1

2η2w∗2(t)µ∗ν∗ − 1
2η∗2w2(t)µν

]
exp

[
ηw∗(t)µ∗α∗

j − η∗w(t)µαk − 1
2 (|αj |2 + |αk|2)

]
× exp

{
1
2 |[−ηw∗(t)ν∗ + α∗

j ]|2 + 1
2 |[η∗w(t)ν + αk]|2}〈−η∗w(t)ν + αk|η∗w(t)ν + αj 〉. (13)
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Finally, using the identity 〈β|α〉 = exp(− 1
2 |β|2 − 1

2 |α|2 + β∗α), we can write

Cjk(η,η∗,t) = bjke
−(ε+ 1

2 )|η|2 exp
[ − 1

2η2w∗2(t)µ∗ν∗ − 1
2η∗2w2(t)µν

]
exp

[
ηw∗(t)µ∗α∗

j − η∗w(t)µαk − 1
2 (|αj |2 + |αk|2)

]
× exp[−|ηw(t)ν|2 − ηw∗(t)ν∗αk + η∗w(t)να∗

j + α∗
j αk], (14)

which can be written as

Cjk(η,η∗,t) = bjk〈αj |αk〉 exp
{ − 1

2η2w∗(t)2µ∗ν∗ − 1
2η∗2w(t)2µν + ηw∗(t) (µ∗α∗

j − ν∗αk).

−η∗w(t) (µαk − να∗
j ) − |η|2[|w(t)ν|2 + ε + 1

2

]}
. (15)

1. W function

For obtaining the Wjk representative term of the W function,
we must solve the integral in Eq. (5) with the aid of Eq. (15)
as

Wjk(γ ∗,γ,t)

= bjk

π2
〈ξ,αj |ξ,αk〉

∫
d2η exp

{
−1

2
η2w∗2(t)µ∗ν∗

−1

2
η∗2w2(t)µν + η[w∗(t) (µ∗α∗

j − ν∗αk) − γ ∗]

− η∗[w(t) (µαk − να∗
j ) − γ ] − |η|2

[
|w(t)ν|2 + ε + 1

2

]}
,

(16)

which can be integrated using [25,26]∫
d2λe−K|λ|2− 1

2 L1λ
∗2− 1

2 L2λ
2−M1λ

∗−M2λ

= π√
K2 − L1L2

exp

[
KM1M2 − 1

2

(
L1M

2
2 + L2M

2
1

)
K2 − L1L2

]
,

(17)

whose result is a real function provided that K2 − L1L2 > 0.
If we now identify K = |w(t)ν|2 + ε + 1

2 , L1 = w2(t)µν ≡
L, L2 = L∗, M1 = w(t)(µαk − να∗

j ) − γ ≡ Mkj , and M2 =
−M∗

jk , then the representative term of the W function can be
written as

Wjk(γ,γ ∗,t) = bjk

π

〈ξ,αj |ξ,αk〉√
K2 − LL∗

× exp

[
− KMjkM

∗
kj + 1

2

(
LM

∗2
kj + L∗M2

jk

)
K2 − LL∗

]
,

(18)

which can be used to write W = ∑2
j,k=1 Wjk(η,η∗,t). Note

that the condition K2 − LL∗ > 0 is always satisfied for the
Wigner function.

2. OSCS and OCSS

The squeezed coherent states |ξ,α〉 and |ξ, − α〉 are not
orthogonal to each other. However, we can define a state
|ξ,α〉⊥ = A|ξ,α〉 + B|ξ, − α〉 which is orthogonal to |ξ,α〉.
Keeping A and B real numbers, we must have

(〈ξ,α|A + 〈ξ, − α|B)|ξ,α〉 = 0, (19)

thus resulting in A = − 1
2

exp(−|α|2)√
sinh(|α|2) cosh(|α|2)

and B =
− 1

2
exp(|α|2)√

sinh(|α|2) cosh(|α|2)
, such that

|ξ,α〉⊥ = − exp(−|α|2)|ξ,α〉 + exp(|α|2)|ξ, − α〉
2
√

sinh(|α|2) cosh(|α|2)
, (20)

which can be rewritten as Eq. (4) with a similar density operator
given by Eq. (7). Note that the OCSS emerges as a particular
case when ξ = 0, i.e., |ξ = 0,α〉⊥ = |α〉⊥, which is orthogonal
to the coherent state |α〉 [27].

III. LINEAR ENTROPY

To study purity loss in the above-mentioned states, we focus
our attention on time evolution of the linear entropy for the
SCSS, since the other states result as particular cases. The
linear entropy in quantum information theory is defined as
E = 1 − tr ρ2(t), where ρ(t) is the density operator for the
system at time t . According to its definition, linear entropy
has a minimum for pure states, ρ = ρ2, and it is expected,
therefore, that states evolving in time such that their entropy
remains minimum are more useful for quantum processing
tasks. For our purposes, we rewrite the linear entropy using
the Wigner function W as

E = 1 − π

∫
d2γW 2(γ,t). (21)

The linear entropy for the SCSS is obtained by solving Eq. (21)
using Eq. (18):

E = 1 −
2∑

j,k=1

2∑
r,s=1

bjkbrs

〈ξ,αj |ξ,αk〉〈ξ,αr |ξ,αs〉
2
√

D

× exp

[
− 2K|w(t)|2(BjkB

∗
kj + BrsB

∗
sr ) + Lw(t)∗2

(
B∗2

kj + B∗2
sr

) + L
∗
w(t)2

(
B2

jk + B2
rs

)
2D

]

× exp

{
− [L(Rjk + Rsr )2 + L

∗
(Qjk + Qrs)2] − K(Qjk + Qrs) (Rjk + Rsr )

2D2

}
, (22)
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where D = K2 − LL
∗
, Bkj = (µαk − να∗

j ), Qjk + Qrs =
Kw(t)Bjk + Lw(t)∗B∗

kj + Kw(t)Brs + Lw(t)∗B∗
sr , and Rjk +

Rrs = L
∗
w(t)Bjk + Kw(t)∗B∗

kj + L
∗
w(t)Brs + Kw(t)∗ B∗

sr .
Note that when t → ∞, then w(t) → 0 and√

D = K = (ε + 1
2 ), with ε → 〈nk〉. Therefore,

large times E → 1 − 1
2(〈nk〉+ 1

2 )
= 2〈nk〉

2〈nk〉+1 . By writing

〈nk〉 = 1
exp(βh̄ω)−1 , with β being the inverse of the

reservoir temperature, we obtain E = 2
exp(βh̄ω)+1 , which

is the entropy for a thermalized Gibbs state [28], as
expected.

3. QBIT

For comparison, we also plot the linear entropy for an
equally weighted superposition of a qubit (QBIT) which lies
in a two-dimensional Hilbert space. The linear entropy for the
QBIT is quickly obtained correctly from the density operator
[22]. If we define |�〉 = 1√

2
(|0〉 + |1〉), then

ρ(t) = 1

2

{[
e−(2n̄+1)	t + (1 − e−(2n̄+1)	t )

2n̄ + 1

]
|0〉〈0| +

[
2 − e−(2n̄+1)	t − 2n̄(1 − e−(2n̄+1)	t )

2n̄ + 1

]
|1〉〈1| + e−(n̄+ 1

2 )	t (|0〉〈1| + |1〉〈0|)
}
,

(23)

where 	 is the damping constant of the cavity mode field appearing in Eq. (6), such that from E = 1 − tr ρ2(t) we get

ρ2(t) = 1

4

[{
e−(n̄+ 1

2 )	t +
[
e−(2n̄+1)	t + 2n̄(1 − e−(2n̄+1)	t )

2n̄ + 1

]2}
|0〉〈0|

+
{
e−(n̄+ 1

2 )	t+
[

2 − e−(2n̄+1)	t−2n̄(1 − e−(2n̄+1)	t )

2n̄ + 1

]2}
|1〉〈1| + f (t)(|0〉〈1| + g(t)|1〉〈0|)

]
, (24)

where f (t) is an unimportant function for our purposes, since tracing out the density operator variables, we find

E = 1 − 1

4

{
2e−2(n̄+ 1

2 )	t +
[
e−(2n̄+1)	t + 2n̄(1 − e−(2n̄+1)	t )

2n̄ + 1

]2

+
[

2 − e−(2n̄+1)	t − 2n̄(1 − e−(2n̄+1)	t )

2n̄ + 1

]2}
. (25)

From the above equation, we note that for n̄ = 0, the linear
entropy is null for either t = 0 or t → ∞. This is explained by
noting that the linear entropy will be null whenever the state
is a pure one. As we are beginning with pure states at t = 0,
the linear entropy starts from zero, and since at zero absolute

FIG. 1. (Color online) Linear entropy at zero and finite temper-
ature for CSS, OCSS, SCSS and OSCS. The parameters α and ξ

were chosen to ensure that all the states have the same mean photon
number n = 0.8.

temperature, the final state is the (pure) vacuum state, the
entropy becomes zero. However, for large n̄, the final state is no
longer the vacuum state, and the entropy no longer vanishes. To
compare the linear entropy evolving in time for these different
states, we adopt the following criteria. Since the coherence of a

FIG. 2. (Color online) Linear entropy at zero temperature for
OCSS and CSS with α = 1, considering the different amplitude of
probabilities for CSS. For OCSS, B/A = 7. 389 1 (solid line), and
for CSS, b/a = 7.4 (dash-dotted line), b/a = 10 (dashed line), and
b/a = 20 (dotted line).
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FIG. 3. (Color online) Linear entropy considering the reservoir
with a mean occupation number nω = 1.0 for an equally weighted
CSS (dot) and for CSS with b/a = 7.4 (dash) and OCSS with B/A =
7.3891 (solid). Here we used α = 1.

superposition is sensitive to the mean photon number, we first
fixed the same initial mean photon number for each superpo-
sition state. In Fig. 1 we plot the linear entropy for the SCSS,
OSCS, OCSS, and CSS for zero and finite temperatures. As ex-
pected, temperature effects drastically reduce purity, although
not at the same rate for each superposition. Actually, these
figures show that the OCSS loses purity more slowly compared
to the others, thus suggesting that it is more advantageous
to encode information on this state when the environment
cannot be neglected. However, a more accurate study reveals
why the slower rate happens: since the probability amplitudes
for OCSS are defined as A = − exp(−|α|2)

2
√

cosh(|α|2) sinh(|α|2)
and B =

exp(|α|2)

2
√

sinh(|α|2) cosh(|α|2)
, then for large mean photon number |α|2,

the amplitude A vanishes, and hence the initial state is nearly
the coherent state. As is well known, coherent states are robust
under thermal-reservoir evolution, mainly at zero temperature,
when it loses excitation coherently.

This point is made clear in Figs. 2 and 3, which compare
the linear entropy for OCSS with that of a CSS at zero
and finite temperature, considering the different amplitude of
probabilities. Note from these figures that when B/A → 0, the
behavior of the linear entropy for both OCSS and CSS becomes
similar. Figure 4 includes the time dependence of the linear
entropy at zero and finite temperature for an equally weighted
qubit, which has initially a mean photon number 0.5. Note
that the equally weighted qubit possesses more robustness
compared to the other equally weighted superposition states
studied here, provided that all superposition states start with
the same mean photon number.

FIG. 4. (Color online) Linear entropy at zero and finite tempera-
ture for SCSS, CSS, and QBIT. The parameters α and ξ were chosen to
ensure that all the states have the same mean photon number n = 0.5
and are equally weighted.

IV. CONCLUSION

In this paper, we investigate the robustness of several
superposition states when evolving under a thermal reservoir
at zero and finite temperature by means of the linear entropy.
The superpositions studied here were the coherent state, the
orthogonal coherent state (OCSS), the squeezed coherent state,
and the orthogonal squeezed coherent state, which we have
introduced to generalize the OCSS, and the qubit given by the
zero- and one-photon state. Through the analysis of the linear
entropy, we show that, fixing the same mean photon number for
initial superposition states, the OCSS is the most robust against
the unavoidable interaction with the surrounding, losing purity
at a rate much slower than the other states even when the finite
temperature is taken into account. This slower rate shown by
the OCSS, although impressive at first sight, is explained when
we look at the corresponding probability amplitudes: since
one component of the superposition contributes very little,
the OCSS is nearly a coherent state, which loses excitation
coherently at zero temperature, and at lower rates at finite
temperatures.
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