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We show that a parametrically coupled qubit can be used to fully reconstruct the quantum state of a harmonic
oscillator even when both systems are subject to decoherence. By controlling the coupling strength of the qubit
over time, the characteristic function of the oscillator at any phase-space point can be directly measured by
combining the expectation values of two Pauli operators. The effect of decoherence can be filtered out from the
measured data, provided a sufficient number of experimental runs are performed. In situations where full state
reconstruction is not practical or not necessary, the method can still be used to estimate low-order moments of the
mechanical quadratures. We also show that in the same framework it is possible to prepare superposition states
of the oscillator. The model is very general but particularly appropriate for nanomechanical systems.
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I. INTRODUCTION

With an increasing number of experiments bringing meso-
scopic oscillators to the quantum regime, it has become
essential to develop efficient readout methods that are able
to verify quantum effects in such systems. The ultimate goal
is the full reconstruction of the system’s density matrix. Most
of the current schemes to measure nanomechanical motion
consist of weak continuous measurements of the oscillator’s
position (see, e.g., [1]). Even though these techniques are
useful for the monitoring of ground state fluctuations, they are
not easily applicable to arbitrary nonstationary states, where
the relation between the quantum state and the measured data
is extremely complicated. Recently a method that allows full
reconstruction of an arbitrary state of a mechanical oscillator
has been proposed in the context of optomechanics [2],
however it relies on tomography techniques that involve
transformations of the measured data. In both cases it is
challenging to identify an unknown quantum state with high
accuracy.

The idea that a two-level system (or qubit) could be used
as a probe to reconstruct the quantum state of a continuous-
variable system has been initially proposed in the field of cavity
quantum electrodynamics (QED), due to the impossibility to
directly measure the intracavity field [3,4]. Similar ideas have
subsequently been introduced in the field of circuit QED [5],
ion traps [6], and nanomechanical oscillators [7]. In all these
works, information about the initial state of the oscillator is
inferred from the transition probabilities of the qubit after
the two systems have interacted. Typically the value of the
characteristic function [8] of the oscillator at several phase-
space points can be directly extracted from the qubit statistics.

In this paper we report a further advance in this direction.
First, we assume to control the parametric coupling between
the qubit and oscillator as a function of time, a very interesting
possibility opened by some recent experimental and theoretical
works [9–12]. With this choice, any point of the oscillator’s
phase space can be reached by appropriately tailoring the
time dependence of the coupling. The corresponding value
of the characteristic function is then measured by combining
the expectation values of two Pauli operators of the qubit.

Differently from methods involving resonant interactions [3,5,
7], no auxiliary degrees of freedom or additional displacement
operations are required in our scheme.

The second contribution we give to the field is the full
inclusion of decoherence in the treatment, since to the best
of our knowledge the effect of noise on such state recon-
struction procedures has yet to be explored systematically.
The inclusion of decoherence is essential especially when
dealing with mesoscopic systems, where the coupling of both
the qubit and the oscillator to a thermal environment cannot
be neglected. When the environment is described via the
standard Markovian master equation, we obtain the remarkable
result that the characteristic function can still be reconstructed
in full detail. The price to pay is that a larger number of
experimental runs will be needed to extract the same amount
of information as compared to the ideal decoherence-free
case. In practice, decoherence will limit the size of the
phase-space region where the characteristic function can
be measured in a reasonable number of runs. When only the
nearbies of the origin can be accessed, our method still gives
useful information by providing low-order moments of the
mechanical quadratures.

As an addition we show, and examine, how well our system
can be used to prepare superposition states of the oscillator
in the presence of decoherence, and we provide a detailed
analysis of the resulting characteristic function.

Having proposed a method to reconstruct the characteristic
function, we remark that it constitutes a very useful description
of a quantum state, even though it is sometimes overlooked in
favor of the Wigner representation [8]. As we emphasize in
this paper, a number of properties such as purity, squeezing,
or the presence of coherent superpositions can be investigated
from it as directly as from the Wigner function. Since any
moment of the mechanical quadratures can be extracted from
it in a straightforward way, the characteristic function is
the ideal representation to investigate statistical properties
such as squeezing or non-Gaussianity [13]. Moreover, an
efficient method to estimate nonclassicality directly from a
finite collection of measured characteristic function values has
been recently proposed [14].
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II. THE MODEL

We consider a qubit with ground state |g〉, excited state |e〉,
bare energy ωq , and tunneling energy δ, coupled to a harmonic
oscillator of frequency �. The coupling strength g(t) is for
now a generic function of time. The Hamiltonian, in units of
h̄ = 1, is

H = �a†a + ωq

2
σz + δ

2
σx + g(t)σz(a + a†), (1)

where the Pauli matrices are σx = |e〉〈g| + |g〉〈e|,σy =
−i(|e〉〈g| − |g〉〈e|),σz = |e〉〈e| − |g〉〈g|, while a is the anni-
hilation operator for the harmonic oscillator. In a later section
we will come back to some possible experimental realizations
of such time-varying coupling. For the purposes of this paper,
we will consider the parametric coupling regime δ = 0. In
an interaction picture with respect to the free Hamiltonian,
we have

HI = g(t)σz(ae−i�t + a†ei�t ). (2)

The open dynamics of the system is described by the master
equation

ρ̇ = −i[HI (t),ρ] + Lmρ + Lqρ + Lpρ, (3)

where the nonunitary contributions to the dynamics are given
by the Lindblad operators

Lmρ = κ

2
(Nm + 1)D[a]ρ + κ

2
NmD[a†]ρ, (4)

Lqρ = �1

2
(Nq + 1)D[σ−]ρ + �1

2
NqD[σ+]ρ, (5)

Lpρ = �2

2
D[σz]ρ. (6)

In the above, σ− = |g〉〈e|, σ+ = |e〉〈g|, D[Â]ρ = 2ÂρÂ† −
Â†Âρ − ρÂ†Â, where Â is a generic operator, κ is the damping
rate of the oscillator, �1 and �2 are, respectively, the damping
and dephasing rates of the qubit, while Nm (Nq) is the number
of thermal excitations of the oscillator’s (qubit’s) environment.

III. CHARACTERISTIC FUNCTION RECONSTRUCTION

To begin our state reconstruction protocol, we assume to be
able to initialize the system in the separable state

ρtot(0) = |+〉〈+| ⊗ ρ0, (7)

where ρ0 is the state of the harmonic oscillator that we
want to reconstruct, and |+〉 = 1√

2
(|g〉 + |e〉) [15]. After an

interaction time t the system evolves to a state ρtot(t) according
to (3). At this point, we measure either the observable σx

or σy , which completes a single “run” of the experiment.
A sufficient number of runs will have to be performed in
order to estimate the average values 〈σj (t)〉 = tr {ρtot(t)σj } to
the desired accuracy. By integrating Eq. (3) as shown in the
Appendix, we get our main result

〈σx(t)〉 + i〈σy(t)〉 = χ (ξ (g,t))e−f (g,t), (8)

where χ (β) = tr {ρ0D(β)} is the characteristic function,
D(β) = eβa−β∗a†

being the displacement operator [8]. The
notation (g,t) indicates that ξ and f are dependent on the

specific realization of the time-dependent coupling g(t), that
is, they are functionals. Their explicit form is

ξ (g,t) = 2i

∫ t

0
dsg(s)ei�s− κ

2 s , (9)

f (g,t) = γ t + �(1 − e−κt )|µ(g,t)|2

+ κ�

∫ t

0
ds|µ(g,s)|2, (10)

µ(g,t) = 2i

sinh κ
2 t

∫ t

0
dsg(s)ei�s sinh

κ

2
s, (11)

with γ = �1(Nq + 1/2) + 2�2 and � = Nm + 1/2. To recon-
struct the characteristic function of the state ρ0, one needs to
“invert” Eq. (9), that is, establish a mapping that associates any
phase-space point β to an appropriate coupling and interaction
time (gβ,tβ), such that ξ (gβ,tβ) = β. One explicit example of
such mapping is given in the next section.

As shown in Eq. (8), the quantity that we can directly
measure is given by the characteristic function evaluated at the
phase-space point ξ (g,t) and “damped” by a factor e−f (g,t) due
to decoherence. Remarkably, this is still a valid representation
of the state ρ0, since the functional f (g,t) does not depend on
the state of the oscillator and it is fully known in our theory
once the coupling g(t) is assigned [16]. The actual value of
the characteristic function can thus be recovered even in the
presence of finite decoherence. This however requires that we
measure the expectation values in (8) with an accuracy greater
than e−f . Assuming that the relative error on 〈σj 〉 scales as
M−1/2, where M is the number of experimental runs, M � e2f

is needed to measure the value of the characteristic function at
the point ξ with sufficient accuracy. As we will see, f tends to
increase as |ξ | is increased, meaning that decoherence imposes
practical limits to our “reach” in phase space.

IV. HARMONIC COUPLING

An essential step of the reconstruction protocol is the
inversion of Eq. (9). The realization of such inversion is clearly
not unique and the specific form of g(t) and the choice of the
interaction time can be optimized to best suit the available
experimental apparatus. To give a concrete example, we will
consider a coupling constant that oscillates harmonically at the
mechanical frequency:

gr,φ(t) = �

2π
e

κ
2 t [r0 + r sin(φ − �t)], (12)

where the exponential factor eκt/2 is included to simplify
calculations, r > 0, while r0 is a constant that might be needed
to keep gr,φ(t) inside the experimentally allowed range [e.g.,
the constraint gr,φ(t) > 0 would impose r0 > r]. For simplicity
we restrict the possible interaction times to integer multiples of
the mechanical period. This choice is not mandatory, however
it considerably simplifies the task of inverting Eq. (9), allowing
us to keep the treatment analytical and compact. Evaluating
(9) for tn = n2π/�, with n integer, gives

ξ (gr,φ,tn) = nreiφ. (13)

We see that the amplitude and phase of ξ are now related in
a very simple way to the amplitude and phase of g(t). Had
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we chosen a generic interaction time, the value of ξ would
have depended in a more complicated way on the parameters
(r0,r,φ,t). For high frequency nanomechanical oscillators it is
often the case that gmax � � [9,10], thus the maximum value
rmax of the parameter r will be typically small. A number of
mechanical periods n > 1 could then be used to reach phase-
space points of modulus greater than rmax. A possible inversion
of Eq. (9) is then realized by associating the desired value of
ξ to the corresponding parameters (r,φ,n), where n is the
integer verifying (n − 1)rmax � |ξ | < nrmax, while r = |ξ |/n

and φ = arg ξ . In practice the maximum number of cycles n

and thus the modulus of ξ will be limited due to decoherence, as
we now show by explicit calculation. The damping exponent
f defined in (9) is in this case a complicated function of
(n,r,r0,φ). It is possible to obtain a compact result, valid for
high quality factor oscillators, by approximating f to first
order in κ/�:

f (gr,φ,tn) � γ tn + κ�tn

[
2

r2
0

π2
− r0r

sin φ + 2nπ cos φ

2π2
+

+ r2

(
n2

3
+ cos φ

1 − 2nπ sin φ

4π2

)]
. (14)

If the parameters (r0,r,φ) are kept fixed, it can be shown
that (14) is a strictly increasing function of the number of
periods n, confirming the intuition that decoherence tends
to be more severe for regions of phase space away from
the origin [17]. As an example, if rmax � 0.5,κ� � 0.01�,
γ � 0.01�, we can have n � 7 while still keeping the number
of experimental runs reasonably low, since e2f <∼ 100 (recall
that a number of experimental runs M � e2f is required to
filter out decoherence from the measured data). In a later
section of this paper we will show how this parameter range
is easily achievable for the physical system proposed in [10].
This would allow us to implement our protocol for phase-space
points of modulus |ξ | = nr <∼ 3.5, as we show in Fig. 1 for the
particular case of the Fock state |5〉.

V. MEASURING LOW-ORDER MOMENTS

It is often the case that full state reconstruction is not
possible and only the characteristic function in the vicinity
of the origin is available. This might still be sufficient to
evaluate low-order moments of the quadrature operators X̂θ =
ae−iθ + a†eiθ . To show this, we expand the right-hand side of
(8) in powers of r = |ξ |. Separating real and imaginary parts,
we have a direct connection between the oscillator moments
and the expectations of Pauli operators:

〈σx(t)〉ef (g,t) = 1 − 1
2 r2

〈
X̂2

θ

〉 + 1
24 r4

〈
X̂4

θ

〉 + · · · , (15)

〈σy(t)〉ef (g,t) = −r〈X̂θ 〉 + 1
6 r3

〈
X̂3

θ

〉 + · · · , (16)

where θ = arg{ξ} + π/2. Low-order moments of an arbitrary
quadrature can therefore be obtained by first correcting the data
for decoherence and subsequently performing a polynomial fit
with respect to the variable r . The number of moments that
can be reliably estimated with this method will depend on the
available range of the parameter r . Useful information can be
extracted even from the first few moments: while second order

FIG. 1. (Color online) (a) Characteristic function of the Fock
state |5〉. (b) Phase-space representation of the same state as
directly measured from the qubit, according to Eq. (8). (c) Value
of e2f as a function of the phase-space point β, giving a lower
bound to the number M of required experimental runs. (b) and
(c) are obtained with the damping exponent of Eq. (14), using the
parameters r0 = 0,r � 0.5, � = 2π × 100 MHz, κ = 2π × 50 kHz,
γ = κ� = 2π × 1 MHz (these parameters are derived from [10]
in the implementations section of this paper). We can notice how
the damping factor e−f affects more significantly the characteristic
function away from the origin, resulting in a larger number of required
experimental runs. Discontinuities in (b) and (c) are due to the discrete
nature of the number of periods n in Eq. (14). As emphasized in the
text, the characteristic function of (a) can be fully recovered from the
measured data of (b), provided M � e2f runs are performed at each
point β.

moments are sufficient to test squeezing, third and higher order
moments can be used to investigate non-Gaussianity.

VI. SUPERPOSITION STATES

One of the goals in experiments with nanomechanical
oscillators is the preparation and verification of coherent
superpositions of classically distinct states, in order to explore
the validity of the superposition principle for macroscopic
objects. In the previous sections we fully addressed the
problem of verification for arbitrary states. Here we show
that the preparation of motional superposition states can be
achieved in the same framework. These possibilities together
make our system a powerful toolbox for the investigation of
nonclassical states of motion. We can prepare a superposition
state in our system by following a few simple steps, similarly
to what has been proposed in [6] and [18]. We suppose that the
system is initialized in the state (7), and we assume that the
oscillator has been precooled to the ground state ρ0 = |0〉〈0|.
At t = 0 the cooling mechanism is switched off so that the time
evolution of the system is described by (3). We let the coupled
system evolve for a time t , then we measure the qubit in the
basis |ϕ±〉 = 1√

2
(|g〉 ± eiϕ|e〉). In the absence of decoherence,

the oscillator would be projected in the superposition state

|ψ±
α,ϕ〉 ∝ |α〉 ± e−iϕ| − α〉, (17)
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where | ± α〉 are coherent states with α = i
∫ t

0 dsg(s)ei�s . The
characteristic function is

χ±
α,ϕ(β) = e− 1

2 |β|2 cos(2 Im{αβ∗})
1 + e−2|α|2 cos ϕ

± e−iϕ− 1
2 |β−2α|2 + eiϕ− 1

2 |β+2α|2

2 + 2e−2|α|2 cos ϕ
. (18)

We can see that the diagonal terms | ± α〉〈±α| correspond
to a sinusoidally modulated Gaussian peak centered in zero,
while the interference terms | ± α〉〈∓α| yield two Gaussian
peaks centered at β = ±2α. The complex phase of these
peaks is controlled by the relative phase ϕ. If we take into
account finite decoherence, the described protocol yields an
imperfect superposition state (related calculational details can
be found in the Appendix). In particular, we can expect a
steepening of the central peak due to heating (i.e., the state
becomes mixed) as well as a reduction in the height of the
interference peaks due to dephasing. This is shown in Fig. 2
where the characteristic functions obtained with our protocol in
the ideal and finite-decoherence cases are compared. To con-
clude the present section, we point out the dual behavior of the
characteristic function as compared to the Wigner function [8].
In the latter representation, interference terms appear as
oscillations, while diagonal terms yield noncentered Gaussian
peaks. Moreover, in the Wigner function heating results in
broadening of the Gaussian peaks rather than steepening.
These observations are all consistent with the fact that the
two representations are connected by a symplectic Fourier
transform.

VII. POSSIBLE IMPLEMENTATIONS

Being rather general, our reconstruction method can be
applied to any experimental setup in which the qubit-oscillator
coupling can be coherently tuned over time. We shall give some
examples of realistic settings in which such level of control can
be achieved.

As our main example, we consider the theoretical proposal
by Fei Xue et al. in the field of nanomechanics [10]. In
their paper the coupling between a flux qubit [19] and a
nanomechanical resonator is controlled via the amplitude of
an external magnetic field, according to

g(t) = ηB(t), (19)

where η is a constant that depends on the specific system
realization, while B(t) is the magnetic field amplitude along an
appropriate direction. They estimate η � 2π × 0.8 MHz/mT
for a realistic choice of parameters, emphasizing how the
control of such coupling can be achieved without interfering
with the noninteracting part of the system Hamiltonian. From
the form of Eq. (19), we see that both the magnitude and
sign of the coupling can be controlled over time by tuning
the external magnetic field. Still referring to [10], we assume
that the oscillator has a frequency � � 2π × 100 MHz,
ground state spread x0 � 2.6 × 10−13 m, and quality factor
Q � 2 × 104, resulting in κ � 2π × 50 kHz and κ� �
2π × 1 MHz at a temperature T ∼ 100 mK. Assuming a
maximum magnetic field intensity Bmax � 10 mT, we get
gmax � 2π × 8 MHz. With such parameters, in (12) we can set

FIG. 2. (Color online) Comparison of the characteristic functions
relative to the ideal superposition state and the prepared state.
(a) and (b) show, respectively, the real and imaginary parts of χ

for the superposition state |ψ+
α,ϕ〉 with α = 1,ϕ = π

2 . In (c) and
(d) the same quantities are shown for the state prepared in the
presence of decoherence, using the harmonic coupling of Eq. (12) and
the parameters r0 = 0, r = 0.5, n = 4, � = 2π × 100 MHz, κ =
2π × 50 kHz, γ = κ� = 2π × 1 MHz. With the choice ϕ = π/2,
the in-diagonal and off-diagonal terms of the density matrix are
represented separately in the real and imaginary parts of χ . (c) shows
that the state prepared with our method reproduces well the incoherent
features of the superposition state, even though a slight steepening of
the central peak due to heating can be seen in comparison to (a). On
the other hand, the interference terms are more significantly damaged
by decoherence, as it can be seen by comparing the imaginary parts
(b) and (d).

r0 = 0 and r � 2πgmax/� � 0.5. The implementation of the
harmonic time dependence of (12) requires manipulation of
the magnetic field source currents at radio frequency, which
can be achieved with modest technology. For the flux qubit we
take �1 = �2 = 2π × 0.4 MHz and Nq � 0, yielding a total
dephasing rate γ = �1/2 + 2�2 � 2π × 1 MHz. Inserting
these parameters in Eqs. (13) and (14), considering rmax �
0.5, n = 7, and assuming the Markovian approximation to be
valid, we are able to reach phase-space points up to a distance
|ξ | � 3.5 with a relatively low number of experimental runs,
since e2f <∼ 100 as shown in Fig. 1. This parameter range is
already sufficient to identify a large variety of states, including
Fock states of low order, coherent states, and superposition
states with |α| <∼ 1. To measure states with a thermal excitation,
even smaller values of |ξ | could be sufficient, since finite
temperature induces localization of the characteristic function
around the origin. As the number of mechanical periods is
increased, further regions of phase space become available,
however the number of required runs blows up rapidly for
n > 7, and already for n = 10 we have e2f ∼ 105. With the
above parameters it is also possible to prepare superposition
states with |α| � 1, as shown in Fig. 2.

As a second example we consider the recent experimental
work of Srinivasan et al. [12]. In it, the authors demonstrate
a novel circuit-QED architecture, in which both the internal
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levels splitting of a qubit and its dipolar coupling to a
microwave cavity mode can be independently tuned over
a wide range of parameters. The system was theoretically
proposed in [11]. By controlling external bias voltages, the
authors are able to continuously vary g in the range ∼2π ×
200 kHz–46 MHz. The harmonic oscillator is in this case
a microwave cavity mode of frequency � ∼ 2π × 5 GHz, so
that the ratio g/� varies between a negligible value and ∼0.01.
Recent results from the same group suggest the possibility to
reach g ∼ 2π × 300 MHz, which would push the ratio up
to ∼0.06. Even though the experiment by Srinivasan focuses
on the Jaynes-Cummings regime, we argue that there is no
fundamental reason why the same ideas should not work in
the dispersive regime required by our protocol, and we hope
to see experimental confirmations in this direction in the near
future.

The application of our scheme to systems based on
charge qubits [9] is more problematic at the actual state of
technology, essentially due to fast qubit dephasing. Moreover,
the background charge noise acting on the qubit is usually not
well described by a Markovian master equation of the form
(3). However, the situation might be improved by combining
our protocol with charge-echo techniques [20], which we leave
for future investigations.

VIII. CONCLUSIONS

Before concluding, we emphasize that estimating decoher-
ence through Eq. (3) is in general an approximation, since
many environments are not exactly Markovian. For environ-
ments that show non-negligible deviations from Markovianity,
we can expect the predictions of our model to get progressively
worse as the interaction time is increased. To correct this,
non-Markovian effects could be included numerically in the
model.

Even when decoherence is accurately modeled by the
master equation (3), in a real experiment unavoidable errors
will arise due to random fluctuations in the coupling strength g

and a limited accuracy in the control of the interaction time t .
Similarly, the decoherence parameters appearing in the master
equation might be known with a non-negligible uncertainty.
However, such errors can be bounded, due to the continuity of
the functionals in Eqs. (9)–(11) with respect to (g,t) and the
decoherence parameters.

To summarize, we presented a scheme in which a paramet-
rically coupled qubit can be used to measure the characteristic
function of a nanomechanical oscillator. By introducing the
possibility of a time-varying coupling, we have shown how
the characteristic function can be measured just by exploiting
the system’s time evolution, while the effect of Markovian
decoherence can be filtered out by increasing the number of
experimental runs.
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APPENDIX: SOLUTION METHODS

We solve the master Eq. (3) by using phase-space methods
similar to those used in [21]. We consider a representation in
which a matricial characteristic function is used to describe the
state of the coupled system. We decompose the total density
matrix at time t as

ρtot(t) = ρe(t) ⊗ |e〉〈e| + ρg(t) ⊗ |g〉〈g|
+ ρ+(t) ⊗ |e〉〈g| + ρ−(t) ⊗ |g〉〈e|. (A1)

By defining the characteristic function for each element
as χj (β,t) = tra{ρj (t)D(β)}, we can define the matricial
characteristic function as

χtot(β,t) = χe(β,t)|e〉〈e| + χg(β,t)|g〉〈g|
+χ+(β,t)|e〉〈g| + χ−(β,t)|g〉〈e|. (A2)

At this point, we have to convert (3) to a system of coupled
partial differential equations for the functions χj , which can
be done by using standard techniques [8,21].

The expectation values required for our state reconstruction
protocol are

〈σx(t)〉 = tr{ρtot(t)σx} = χ+(0,t) + χ−(0,t), (A3)

〈σy(t)〉 = tr{ρtot(t)σy} = i[χ+(0,t) − χ−(0,t)], (A4)

therefore for the time being we only need to compute the
evolution of the off diagonal elements χ±(β,t). The equations
for χ± are already in diagonal form:

∂tχ± = ±2ig(t)(e−i�t ∂β∗ − ei�t∂β)χ±
+Lmχ± − γχ±, (A5)

where the differential form of the mechanical Lindblad oper-
ator is Lmχj = − κ

2 (β∂β + β∗∂β∗ + 2�|β|2)χj . The solution
of Eq. (A5) is

χ±(β,t) = χ±(βe− κ
2 t ∓ ξ,0)e−�(1−e−κt )|β∓µ|2−ν, (A6)

where ν = γ t + κ�
∫ t

0 ds|µ(g,s)|2, and ξ,µ are the function-
als defined in (9) and (11). Now, Eq. (8) follows by considering
the initial conditions corresponding to the initial state (7), that
is, χ+(β,0) = χ−(β,0) = 1

2χ (β). Note that the factorization
of the effect of decoherence on the right-hand side of Eq. (8)
is in strong analogy with the beamsplitter model for the
decoherence of a bosonic mode [22].

To treat the superposition state preparation, we begin
by calculating the characteristic function at time t after
postselection of the outcome |ϕ±〉,

〈ϕ±|χtot(β,t)|ϕ±〉 = χe(β,t) + χg(β,t)

± e−iϕχ+(β,t) + ±eiϕχ−(β,t). (A7)

After normalization we get the characteristic function of the
imperfect superposition state

χ± = χe(β,t) + χg(β,t) ± e−iϕχ+(β,t) ± eiϕχ−(β,t)

2 ± e−iϕχ+(0,t) ± eiϕχ−(0,t)
. (A8)

We see from the above equations that we need to compute
the evolution of the remaining elements χe,g . For simplicity
we neglect thermal excitations in the qubit bath and take
Nq � 0. This is justified by the fact that the qubit frequency
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can be several orders higher than the oscillator’s. With this
approximation, the equations of motion are

∂tχg = −ig(t)(e−i�tβ + ei�tβ∗)χg + Lmχg + �1χe, (A9)

∂tχe = ig(t)(e−i�tβ + ei�tβ∗)χe + Lmχe − �1χe. (A10)

Equation (A10) is homogeneous and can be readily solved

χe(β,t) = e−�1t−�(1−e−κt )|β|2+λβ∗−λ∗βχe(βe− κ
2 t ,0), (A11)

where λ = ie− κ
2 t

∫ t

0 dsg(s)ei�s+ κ
2 s (note that this is also

a functional depending on g and t). Equation (A9) is

nonhomogeneous due to the presence of the term �1χe,
therefore yielding a more involved solution

χg(β,t) = χ̄g(β,t)

[
1 + �1

∫ t

0
ds

χe(βe
κ
2 (s−t),s)

χ̄g(βe
κ
2 (s−t),s)

]
, (A12)

where χ̄g is the homogeneous solution of Eq. (A9),

χ̄g(β,t) = e−�(1−e−κt )|β|2+λ∗β−λβ∗
χg(βe− κ

2 t ,0). (A13)

Since we supposed that the oscillator is initialized in the
ground state, the initial conditions are now given by χj (β,0) =
1
2e− 1

2 |β|2 for j = e,g, + ,−.
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