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Hyperfine structure interval of the 2s state of hydrogenlike atoms and a constraint on a
pseudovector boson with mass below 1 keV/c2
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A constraint on a spin-dependent interaction, induced by a pseudovector light boson, is presented. The
interaction includes a Yukawa-type contribution α′′(s1 · s2) e−λr/r and a contact spin-spin term. To disentangle
the long-range and contact terms we utilize experimental data on the 1s and 2s hyperfine intervals for light
two-body atoms and construct a specific difference 8 × Ehfs(2s) − Ehfs(1s). That allows one to constrain the
spin-dependent coupling constant α′′ of an electron-nucleus Yukawa-type interaction in hydrogen, deuterium,
and the helium-3 ion at the level below a part in 1016. The derived constraint is related to the range of masses
below 4 keV/c2. The combined constraint including the contact terms is also presented.
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I. INTRODUCTION

A strong constraint from atomic physics can be set on
a spin-dependent long-range interaction induced by a light
pseudovector particle. In principle, a constraint on a light
particle with mass in the keV/c2 range may be derived
by various methods, involving cosmological estimation [1]
and astrophysical phenomena [2]. (For a possible nature of
such a particle see also [1,2], and references therein.) Such
constraints involve a number of parameters, such as particle
mass, its coupling to other particles, lifetime, etc. In contrast
to that, a constraint based on limiting a possible deviation
of the electron-nucleus interaction in the atomic distance
range depends on two parameters only, namely, the particle
mass λ and a strength of the interaction between an electron
and a nucleus, mediated by the intermediate particle under
consideration.

Certain atomic-physics constraints [3–5] are based on
specific interactions, which can be induced by exchange of
a light particle. The previous constraint of this kind on a
spin-dependent Yukawa-type interaction was derived from
data on the hyperfine structure (hfs) interval of the 1s state
in light hydrogenlike atoms [3,5]. The result was for a
particle substantially lighter than 4 keV/c2, and the accuracy
was limited either by the hfs experiment (for muonium and
positronium) or by an uncertainty of the related contribution
of nuclear effects (for hydrogen, deuterium, etc.). (It has also
been extended there to heavier particles but with a reduced
constraining strength.)

In the meantime, the pseudovector exchange produces
not only a long-range spin-spin interaction of Yukawa type,
but also a spin-spin contact term. Here we extend our
previous result [3,5] in two directions. First, we separate the
Yukawa-type contribution and the contact term. Elimination
of the contact contributions should also improve accuracy of
theoretical predictions, because leading contributions to the
nuclear effects are also to be eliminated. That is possible
by including additional experimental data into consideration.
Next, we restore an appropriate contact term and reconsider
the former study of the 1s hfs interval [3,5].
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Here, to disentangle the Yukawa-type and contact-term
contributions and to avoid uncertainties due to nuclear effects,
we consider a specific difference of the 1s and 2s hyperfine
intervals

D21 = 8 × Ehfs(2s) − Ehfs(1s), (1)

which is essentially free of such delta-function-like contri-
butions [6,7]. Experimental data with appropriate accuracy
are available for hydrogen [8,9], deuterium [10,11], and the
helium-3 ion [12,13] for their 1s and 2s hyperfine intervals.
The corresponding data are summarized in Appendix A. For
theoretical results, which are summarized in Appendix B, we
follow [14].

Theory suggests that there is a massive cancellation of
various contributions, which are proportional to the squared
value of the wave function at origin

|�ns(0)|2 ∝ n−3.

Those include various uncertain nuclear-effect terms, and a
theoretical prediction for the difference has a very safe grounds
and has reached high accuracy (see [7] for details). The exotic
contact spin-spin terms also vanish for the difference D21.
The nonleading terms are of reduced importance and can be
neglected.

That is not the only theoretical advantage of using the
difference. The cancellation also happens with the leading
term (see below) and because of that the fractional uncertainty
of measurements of the difference is relatively low. Even with
such a fractional accuracy the difference remains very sensitive
to many higher-order effects.

The theoretical accuracy in QED calculations for the hfs
intervals is strongly affected by the accuracy of our knowledge
of fundamental constants required for the calculations and, in
particular, of the nuclear magnetic moments (see, e.g., [7]).
In the case of the difference the leading contributions have
a large theoretical uncertainty, however, they cancel out in
the difference and, as a result, the theory of the difference is
relatively immune to any problems in a determination of the
magnetic moments and other fundamental constants, which is
indeed quite advantageous for theoretical calculations.
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Returning to the leading term, the cancellation happens
for the leading term to the ns hfs interval, a so-called Fermi
contribution,

EF

n3
= Cs

16α

3πn3
µBµnuclR∞m2

e, (2)

where we apply relativistic units in which h̄ = c = 1,
e2/(4π ) = α is the fine-structure constant, me is the electron
mass, R∞ is the Rydberg constant, µB is the Bohr magneton,
and µnucl is the nuclear magnetic moment. The normalization
constant Cs depends on the nuclear spin. In particular, Cs = 1
for the nuclear spin 1/2 (hydrogen, helium-3 ion), while for
the spin 1 (deuterium) an additional factor Cs = 3/2 appears.

A pseudovector particle, which interacts both with an
electron and a nucleus, induces various spin-dependent in-
teractions (cf. the contributions of the Z boson [15] and a1

meson [16] to the 1s hfs; see also [5]). Only the Yukawa-type
one contributes to the D21 difference1 and, if such an effect is
present, the Coulomb exchange is modified at long distances
by a spin-dependent term

−Zα

r
→ −Z[α + α′′(se · sN) e−λr ]

r
, (3)

where Z is the nuclear charge. Such a term is observable and
may be used to produce a constraint on α′′(λ) while comparing
an actual value of D21 with theory.

In particular, in the limit

λ � Zαme ∼ Z × 3.5 keV,

the energy of each hfs interval is shifted by

�Ehfs(ns) = −Cs

2

n2

α′′

α
(Z2R∞), (4)

and the related contribution to the difference is

�D21 = −2Cs

α′′

α
(Z2R∞) = −0.9 × 1018CsZ

2α′′ Hz, (5)

which should be compared with the difference between the
related experimental and theoretical values. The factor CsZ

2

is unity for hydrogen, 3/2 for deuterium, and 4 for the helium-3
ion.

Consideration of the constraints based on Eq. (3) is present
in Secs. II and III, while reconsideration in Sec. IV of the
constraints from the 1s hfs interval (cf. [3,5]) involves the
contact terms.

II. THE CONSTRAINT ON THE YUKAWA-TYPE
COUPLING CONSTANT α′′

The present situation with experiments and theory of the
D21 difference is summarized in Table I, which covers all
available data on the determination of D21 in light two-body
atoms. We also present there a value of α′′ for an asymptotic
region λ � 1 keV. The result is indeed consistent with zero,
since theory and experiment are in perfect agreement.

1Effects due to the presence of short distance contributions to the
1s hfs interval are considered in Sec. IV.

TABLE I. Comparison of experiment and theory for the D21 value
in light hydrogenlike atoms. A negative sign for the hfs difference
for the 3He+ ion reflects the fact that the nuclear magnetic moment
is negative, i.e., in contrast to other nuclei in the table, its direction
is antiparallel to the nuclear spin. The constraint on α′′ is related to
λ � 1 keV. The confidence level of the constraint corresponds to one
standard deviation.

Atom Experiment (kHz) Theory (kHz) α′′

H 48.923(54) 48.953(3) (3.3 ± 5.9) × 10−17

D 11.280(56) 11.3125(5) (2.4 ± 4.1) × 10−17

3He+ −1189.979(71) −1190.08(15) (−2.8 ± 4.6) × 10−17

If we consider α′′ as a certain universal constant, an average
value over the constraints in Table I is found as

α′′
av = (0.7 ± 2.7) × 10−17. (6)

To consider a constraint on a heavier intermediate particle,
we have to calculate the contribution of the Yukawa correction
in Eq. (3) to the D21 difference. As a result, the correction (5)
should include an additional factor F12(λ/(Zαme)) and the
constraint takes the form

α′′(λ) = α′′
0

F12(λ/(Zαme))
, (7)

where α′′
0 is a constraint for λ/(Zαme) � 1, listed in Table I,

and the profile function

F12(x) = 4

[(
1

1 + x

)2

− 2

(
1

1 + x

)3

+ 3

2

(
1

1 + x

)4
]

−
(

2

2 + x

)2

satisfies the condition F12(x → 0) → 1.
The related constraints extended to higher λ are presented

in Fig. 1 [3], however, they have sharp λ dependence and are
not efficient above a few-keV level.
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FIG. 1. Constraints on a pseudovector intermediate boson from
D21 in hydrogen, deuterium, and helium-3 ion. The lines present
an upper bound for |α′′|. The confidence level corresponds to one
standard deviation.
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FIG. 2. Constraints on a pseudovector intermediate boson from
the hfs study. The lines present the upper bound for |α′′| from data on
D21 (solid lines; see Fig. 1 for details) and the 1s hfs interval (dashed
lines) in various two-body atoms. The 1s results are from [5]. The
confidence level corresponds to one standard deviation.

III. COMPARISON TO OTHER HFS CONSTRAINTS ON
THE YUKAWA-TYPE COUPLING CONSTANT α′′

Because of the low efficiency of the constraints in Eq. (7)
above the keV region, we have to combine the results of this
paper with the constraint derived previously [5] from the data
on the 1s hfs interval. Those constraints are weaker in the
keV range but they are more suitable for extension to higher
masses.

The overall constraint [3] from a study of the hyperfine
intervals is summarized in Fig. 2. Three low lines are from
D21 (cf. Fig. 1) and the related constraints are much stronger
in the 1 keV region and below. However, the lines related to
the 1s hfs interval [5] produce stronger constraints for above
a few keV.

That is expectable. In the case of the Yukawa radius larger
than atomic distances, the D21 constraints gain in accuracy
because of the cancellation of the nuclear contributions which
have large uncertainties. (The same mechanism turns the D21

difference into a powerful tool to test QED bound states [7].)
However, once the radius is shorter than atomic distances, the
Yukawa contribution becomes proportional to |�ns(0)|2 and it
is canceled out almost completely. Technically, that shows up
as a special behavior of the function F12(x) ∝ x−4 at x → ∞,
while the related behavior for the 1s contribution [5]

F1(x) =
(

2

2 + x

)2

, (8)

which, in particular, determines λ dependence of the 1s

constraints in Fig. 2, is ∝ x−2. That makes the D21 difference
insensitive to shorter-distance Yukawa spin-spin interactions.

For illustration, we present both profile functions in Fig. 3.
Both are equal to unity for low λ and that is the area where
the constraints are the strongest. At large λ, both functions
decrease to zero, which means that the Yukawa correction
vanishes. However, as we mentioned, the behavior at high
λ is different, which produces a different sensitivity for the
high λ region. The results are obtained within a nonrelativistic

F21 F1
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0.0
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0.6

0.8

1.0
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FIG. 3. The profile functions giving the upper bound for |α′′| from
data on D21 and the 1s hfs interval (in various two-body atoms. The
1s results are from [5].

approximation. Taking into account relativistic effects does
not change the sharp-edge behavior of F12.

Thus, it is really fruitful to combine hfs constraints obtained
by both methods: the D21 study for a longer wing of λ and the
1s hfs tests for the shorter one as summarized in Fig. 2. The
constraints derived are complementary to various high-energy
physics constraints reviewed in [17].

To conclude our consideration of the Yukawa-type con-
tributions, we remind one that the vertex for an interaction
of a vector particle with a fermion is −igV γµ, while for the
pseudovector it is −igAγ5γµ. That means that the long-range
interaction for particles x and y mediated by a pseudovector
boson is of the form

αA(xy)(σ x · σ y)

r
,

where αA(xy) = gA(x)gA(y)/(4π ). Comparing with substi-
tution (3), where the spin-dependent coupling constant α′′ is
introduced, we note that αA = α′′/4 (since sx = σ x/2). That is,
rather, the constant αA that is the properly normalized coupling
constant.

We summarize in Fig. 4 the constraints on αA(xe) for
proton, neutron, and muon (i.e., for x = p,n,µ), where we
have taken into account all results derived in [5] and in this
paper. To separate the proton and neutron contributions, we
assume that nuclear binding effects can be neglected, and thus
for the deuteron we find

αA(de) = αA(pe) + αA(ne)

2
,

while the helion constant is assumed to be equal to a
free neutron value [αA(he) = αA(ne)]. Indeed, the binding
effect could add some additional uncertainty, which is to be
estimated. We do not think that would change the general
situation.

IV. LONG-RANGE INTERACTIONS AND
CONTACT TERMS

Above we have constrained the long-range spin-dependent
interaction, which takes the form of Eq. (3) in the coordinate
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FIG. 4. Constraints on a pseudovector intermediate boson. The
lines present the upper bound for the coupling constant |αA(xy)| for
xy = pe,ne,µe from data on the hfs intervals in various two-body
atoms. The confidence level corresponds to one standard deviation.

space. The results are also interpreted in terms of an effective
coupling of an electron and a nucleus by exchange of an
intermediate pseudovector particle (see Fig. 4).

Indeed, an exchange by a massive particle is to induce a
certain Yukawa-type potential, but that is not a complete result.
The propagator of a massive pseudovector in the momentum
space has the form

− i

q2 − λ2

[
gµν − qµqν

λ2

]
. (9)

While converting it into the interaction in the coordinate space,
not one kind of an effective interaction, but two should appear.
One is a long-range spin-dependent interaction (3) studied
in [5] and in this paper, while the other is a contact interaction
induced by the term

i

q2 − λ2

qµqν

λ2

in Eq. (9).
The related coupling is similar to the coupling by an

axion exchange with the axion-matter coupling constant ∝√
α′′(mi/λ), where mi is the mass of the matter particle (see,

e.g., [18,19]).
If the mass is below the characteristic atomic momentum

(that is an area of λ � 1 keV for the light two-body atoms
under consideration), the additional term mostly acts as a
nonrelativistic contact term, effectively proportional to the
delta function in the coordinate space (see Appendix C for
details). That leads to a contribution to the ns hfs interval,
which has relative order (Zα)2(me/λ)2 compared to the long-
term contribution. In contrast to the long-range contribution,
which is proportional to n−2 [see Eq. (4)], the contact-term
contribution is proportional to n−3.

Meanwhile, for hydrogen, deuterium, and the helium-3 ion
the results on two hfs intervals, namely, on the 1s and 2s states,
are available (see Appendix A for details). Because of that, in
the area of λ � 1 keV one can separate the long-range and
contact-term contributions since they depend on n differently.
Actually, our treatment of the D21 difference in this paper
is such a procedure. Since the uncertainty caused by the

nuclear-structure effects scales in the same way as the contact
contributions, i.e., as n−3, the procedure not only removes
the contact contributions, but also reduces the uncertainty
dramatically.

The area of λ � 1 keV can be considered as free of contact
contributions for the D21 constraints. That is not only because
of the cancellation of the leading contact-term contributions,
but also because of the theoretical approach to higher-order
nuclear-structure corrections developed in [6]. The approach
considers various nuclear-structure effects as induced by
certain contact terms and, after determination of these terms
by a comparison of the 1s hfs theory with experiment, the
remaining state-dependent tail of the nuclear-structure effects,
due to the higher-order in (Zα), is obtained within an effective
theory (see Appendix B for details and references). That means
that once a certain contact term is present in the 1s hfs interval,
its leading contribution is removed from the D21 difference and
its next-to-leading contribution to D21 is effectively taken into
account.

In principle, we could still apply the results from the 1s

and 2s HFS intervals to constrain the coupling constant αA
eX

by taking into account the contact axionlike interaction. In
particular, evaluating experimental and theoretical data on the
1s and 2s hfs intervals, we find the constraint for the coupling
constant related to the contact term for λ < 1 keV,

αA(contact) = αA(1s)

Z2

(
λ

4.3 keV

)2

,

where αA(1s) is a value of a plateau part of the related 1s

hfs constraint in Fig. 2, which is found [3,5] as α
pe

A (1s) =
±0.4 × 10−15, αne

A (1s) = ±4 × 10−15, and α
µe

A (1s) = (0.4 ±
1.5) × 10−16. The constraints on αA(contact) are stronger than
those on αA from the D21 difference for λ in the eV-keV range.

For the higher mass range above 4 keV, the situation is more
complex and the contact term is even more singular and has
an additional suppression compared to lighter masses λ. The
long-range contribution also shrinks to a contact term but this
is only (Zα)2(me/λ)2 in respect to the long-range non-Yukawa
Coulomb-like contribution [i.e., a contribution where we put
unity instead of exp(−λr)]. One can see that the contribution
of the contact term is not competitive and may be neglected.

The typical constraints for αA(µe) and αA(pe), which
follow from taking into account the longitudinal terms in
the complete propagator (9) of the pseudovector boson, are
presented in Fig. 5. The muonium case is for a constraint,
where only data on the 1s hfs interval are available, while the
hydrogen constraints are for an atom with two hfs intervals
measured. The other constraints, which can be derived from
the hyperfine structure in deuterium and the heliun-3 ion (from
the 1s and 2s hfs intervals) and from positronium and tritium
(from the 1s hfs), are similar to those from hydrogen (1s and
2s) and muonium (1s), while the latter are the most accurate.

Nevertheless, in this paper we do not intend to separate
the contact-term and long-range contributions. A reason for
that is that, generally speaking, the contact term could appear
from different sources. It may produce certain theoretical
problems and because of that in certain theories it may be
canceled out. Meanwhile we do not expect such a cancellation
for the long-range force (3), e.g., due to an exchange by a
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FIG. 5. Constraints on a pseudovector intermediate boson from
data on the hfs structure of muonium and hydrogen. The solid lines
represent the upper bound for the coupling constant |αA(xy)| for
xy = pe and µe ignoring the longitudinal term, while the dashed
lines are for the constraints taking those terms into account. The
confidence level corresponds to one standard deviation.

pseudovector. The relation between the eventual contact term
and the long-range interaction is not necessarily completely
determined by the propagator (9). Because of that we prefer
the interpretation of our results in Fig. 4 as a conservative
constraint on a pseudovector particle from the long-range
interaction (3) with the understanding that it may happen
that a constraint due to an axionlike contact interaction could
produce an even stronger limitation (as seen in Fig. 5).

V. CONCLUSIONS

In conclusion, we have improved a model-independent
limitation on spin-spin Yukawa-type interactions as compared
with our previous paper [5] (see Fig. 2). Such an interaction can
be mediated by a light pseudovector boson. The improvement
relates to the mass range below 1 keV. The constraint concerns
electron-proton, electron-neutron, and electron-muon interac-
tions (see Fig. 4).

The constraints for the intermediate boson are derived
ignoring the longitude term in its propagator, however, various
consequences of taking this term into account are considered
in detail (see, e.g., Fig. 5).
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APPENDIX A: SUMMARY ON EXPERIMENTAL DATA
ON THE 1s AND 2s HFS INTERVALS IN LIGHT

TWO-BODY ATOMS

The experimental results on the metastable 2s state are
available for only three hydrogenlike atoms, namely, for

TABLE II. All results on the 2s hfs interval in light hydrogenlike
atoms obtained up until now. A negative sign for the 3He+ ion reflects
the fact that the nuclear magnetic moment is negative and thus its
direction is antiparallel to the nuclear spin.

Atom EHFS (expt.) (kHz) Ref.

Hydrogen 177 556.8343(67) [9]
177 556.860(16) [23]
177 556.785(29) [24]
177 556.860(50) [20]

Deuterium 40 924.454(7) [11]
40 924.439(20) [21]

3He+ ion −1083 354.980 7(88) [13]
−1083 354.99(20) [22]

hydrogen, deuterium, and the helium-3 ion. Only a few
measurements have been performed for over 50 years since
the 1950s when the first results on the 2s hfs interval in
hydrogen [20] and deuterium [21] atoms and the helium-3
ion [22] were obtained. We summarize in Table II all obtained
results.

Since only these three atoms are important for calculations
of a specific difference of the hfs intervals in the 1s and 2s

states, in Table III we collect the experimental results on the
1s hfs interval for involved atoms.

The results on the difference D21, based on the most
accurate experimental data, are presented in Table I of the
paper.

APPENDIX B: SUMMARY ON THEORY OF THE D21

DIFFERENCE IN LIGHT TWO-BODY ATOMS

A detailed review on theory of the D21 difference in
hydrogen, deuterium, and the helium-3 ion can be found
in [6,7]. The results are summarized in Table IV. “QED3”
and “QED4” stand for pure QED corrections in units of the
Fermi energy EF , defined in Eq. (2).

There are three small parameters in QED theory: α stands
for QED loops and is for the QED perturbation effects, Zα

is for the Coulomb strength and describes binding effects,
while the mass ratio m/M (electron-to-nucleus) is for the
recoil effects in two-body atoms. Theoretical evaluations have
a certain history, which started in [25–27], shortly after the
first results on the 2s hfs interval were achieved [20–22].

The QED3 term involves various combinations of these
three parameters up to the third order, which were mainly
calculated a long time ago. A more recent development was due
to the fourth-order contributions (QED4) and due to higher-
order nuclear effects.

TABLE III. The most accurate results for the 1s hfs interval in
those light hydrogenlike atoms, for which the results on the 2s hfs
interval are available.

Atom Ehfs (expt.) (kHz) Ref.

Hydrogen 1 420 405.751 768(1) [8]
Deuterium 327 384.352 522(2) [10]
3He+ ion −8 665 649.867(10) [12]
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TABLE IV. Theory of the specific difference D21 in light
hydrogenlike atoms [14]. The numerical results are presented for
the related frequency D21/h. QED3 and QED4 stand for the third-
and fourth-order QED corrections in units of the Fermi energy EF

(see [6,7] for details).

Contribution Hydrogen Deuterium 3He+ ion
to D21 (kHz) (kHz) (kHz)

D21(QED3) 48.937 11.305 6 −1 189.253
D21(QED4) 0.018(5) 0.004 4(10) −1.13(14)
D21(nucl.) −0.002 0.002 6(2) 0.307(35)
D21(total) 48.953(5) 11.312 5(10) −1 190.08(15)

As we mentioned above, there is a substantial cancellation
of the nuclear-structure contribution in difference D21. The
leading term, which takes into account the nuclear charge and
magnetic moment distribution, cancels completely. However,
certain higher-order nuclear-effect contributions survive the
cancellations and they are denoted as “nucl”. Those higher-
order terms were found in [14].

For QED3 terms and for higher-order nuclear effects we
follow [7], while for the QED4 terms we apply the results
of [14], a recent correction in which follows a reexamination of
the former QED4 calculation in [6] and numerical medium-Z
calculation of one-loop effects in [28] (cf. [29]).

After the result was already published [3], I learned about
new results for the one-loop self-energy contribution [30],
which shifts the helium ion theory to −1190.14(5) kHz and
marginally affects our constraint for the related upper bound
in Fig. 1.

APPENDIX C: CONTRIBUTION OF THE LONGITUDINAL
TERM OF THE PSEUDOVECTOR PROPAGATOR

The longitudinal term

i

q2 − λ2

qµqν

λ2

of the propagator of the pseudoscalar boson in Eq. (9) induces
a certain contact potential. The related coupling is proportional
to

α′′

4
γ

(e)
5 γ (e)

µ γ
(N)
5 γ (N)

ν

1

q2 − λ2

qµqν

λ2
,

where we consider the case of the nuclear spin I = 1/2.
The dominant spin-spin interaction appears from the term

with µ = ν = 0. Taking into account only large components
of the spinors, we arrive at an effective spin-spin potential,
which can be presented in terms of an effective substitution in
the momentum space

(se · sN)

q2 + λ2
→ (se · sN)

q2 + λ2

(
1 + 1

3

q2

λ2

)
,

where q is momentum transfer. In the coordinate space instead
of Eq. (3) we arrive at

−α

r
→ −

[
α

r
+ 2

3

α′′(se · sN)e−λr

r
+ 4π

3λ2
α′′(se · sN)δ(r)

]
,

where α′′ = 4αA.
For λ below atomic momenta, the potential, as a non-

relativistic potential, produces corrections of the order of
(Zα)2(me/λ)2 in units of the long-range term, which scales
as n−3 for the ns states. A calculation of relativistic ef-
fects produces various corrections which are of the order
of (Zα)3(me/λ)2 and (Zα)4(me/λ)2. Only the latter has n

dependence different from n−3 and can thus contribute to D21.
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