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We develop the partitioning technique for quantum discrete systems. The graph consists of several subgraphs:
a central graph and several branch graphs, with each branch graph being rooted by an individual node on the
central one. We show that the effective Hamiltonian on the central graph can be constructed by adding additional
potentials on the branch-root nodes, which generates the same result as does the the original Hamiltonian on the
entire graph. Exactly solvable models are presented to demonstrate the main points of this paper.
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I. INTRODUCTION

The Schrödinger equation lies at the heart of quantum
mechanics. A secular equation has analytic solutions only
for a few very special cases. Approximation techniques and
computational methods have been developed for treating
such problems. Many of them are rooted in the partitioning
technique [1,2], which was introduced by Feshbach [3]
and Löwdin [4] independently. Discrete models, including
quantum networks, have been a cornerstone of theoretical
explorations due to their analytical and numerical tractability
[5], the availability of exact solutions, and the ability to capture
counterintuitive physical phenomena, such as nonspreading
wave packets [6] and Bloch oscillations [7–9] in linear chains.
In recent years, optical lattices [10,11], photonic crystals
[12,13], etc., have increasingly permitted the experimental
exploration of quantum discrete models.

In this paper, we study the partitioning technique for
quantum discrete systems. The concerned graph consists of
several subgraphs: a central graph and several branch graphs,
with each branch graph being rooted by an individual node on
the central one. Applying the projection theory [4] to such a
graph, we show that the effective Hamiltonian on the central
graph can be constructed by adding additional potentials on
the branch-root nodes, which generates the same result as
does the the original Hamiltonian on the entire graph. As the
demonstration, we present two exactly solvable models, which
correspond to real and imaginary potentials.

This paper is organized as follows. Section II shows a
formalism for the partitioning technique in discrete quantum
systems. Section III is the heart of this paper, which presents
a method to obtain the projection Hamiltonian. Section IV
consists of two exactly solvable examples to illustrate our
main idea. Section V is the summary and discussion.

II. PARTITIONING TECHNIQUE

Löwdin has developed a partitioning technique in the
algebra of matrices, with which various self-consistent field
methods can be nicely formulated. In this procedure, the
original Hamiltonian is simply transformed in a chosen
discrete representation. The entire space is usually divided into
two subspaces, a model space and an orthogonal space. The
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basic idea is to find an effective Hamiltonian which acts only
within the target model space but generates the same result as
the original Hamiltonian acting on the complete space [1,2].
The partitioning technique enables us focus our interest on a
certain part of the system. In general, the effective Hamiltonian
cannot be obtained explicitly, but provides a formalism to
develop the perturbation method.

In the following we will show that, when the technique is
applied to a specific discrete system, the effective Hamiltonian
is of realistic significance. We consider a quantum graph,
which is a collection of nodes and edges. It is also equivalent
to a single-particle tight-binding model. For simplicity, we
partition the complete graph into three subgraphs, a central
part c, and two independent branches a and b. (See Fig. 1.)

The Hamiltonian (or connectivity matrix) of such a graph
has the form

H =
⎛
⎝ Ha Hac 0

Hca Hc Hcb

0 Hbc Hb

⎞
⎠ , (1)

where

Ha = −
Na∑

i,j=1

(
κa

ij |i〉a 〈j | + H.c.
)
, (2)

Hb = −
Nb∑

i,j=1

(
κb

ij |i〉b 〈j | + H.c.
)
, (3)

Hc = −
Nc∑

i,j=1

(
κc

ij |i〉c 〈j | + H.c.
)
. (4)

Here Nγ=a,b,c denotes the dimension of the three subgraphs.
κ

γ=a,b,c

ij denotes the coupling between i and j of the graph γ ,
and reduces to the on-site potential for i = j . The connections
between the subgraphs are

Hca = H †
ac = −

Nc∑
i=1

Na∑
j=1

ga
ij |i〉ca 〈j | , (5)

Hcb = H
†
bc = −

Nc∑
i=1

Nb∑
j=1

gb
ij |i〉cb 〈j | , (6)

where g
γ=a,b

ij is the coupling strength between |j 〉γ and branch-
root nodes |i〉c.
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FIG. 1. (Color online) (a) Schematic illustration of the graph
consisted of two branch graphs a, b (cyan) and a center graph
c (black). The dashed edges (red) represent the connections between
them, with A and B being the branch-root nodes. (b) The Löwdin’s
projection Hamiltonian for the center graph which is composed of
the original Hamiltonian Hc and additional on-site potentials VA and
VB on nodes A and B, respectively.

Our aim is the solution of the Schrödinger equation

H |fk〉 = Ek |fk〉 , (7)

where

|fk〉 =
∑

γ=a,b,c

Nγ∑
l=1

f
γ

k (l) |l〉γ . (8)

Then the Schrödinger equation can be written in the matrix
form ⎛

⎝ Ha Hac 0
Hca Hc Hcb

0 Hbc Hb

⎞
⎠

⎛
⎝f a

k

f c
k

f b
k

⎞
⎠ = Ek

⎛
⎝f a

k

f c
k

f b
k

⎞
⎠ , (9)

and more explicit form

Haf
a
k + Hacf

c
k = Ekf

a
k , (10)

Hcf
c
k + Hcaf

a
k + Hcbf

b
k = Ekf

c
k , (11)

Hbf
b
k + Hbcf

c
k = Ekf

b
k . (12)

Under the condition of the existence of the inverse matrices
(Ek − Ha)−1 and (Ek − Hb)−1, we have

f a
k = (Ek − Ha)−1 Hacf

c
k , (13)

f b
k = (Ek − Hb)−1 Hbcf

c
k . (14)

Then the Löwdin’s projection Hamiltonian H̄c has the form

H̄c = Hc + H̄a + H̄b, (15)

where

H̄a = Hca(Ek − Ha)−1Hac, (16)

H̄b = Hcb(Ek − Hb)−1Hbc. (17)

Remarkably, the corresponding Schrödinger equation for the
subgraph c [Eq. (11)] is reduced to

H̄cf
c
k = Ekf

c
k , (18)

i.e., formally H̄c can lead the same result as the original
Hamiltonian acted with respect to the whole graph, then is
referred to as the effective Hamiltonian for the central graph.
Nevertheless, in general, one cannot treat Eq. (18) as usual
since it is hard to obtain the explicit matrix form of H̄c.

III. EFFECTIVE HAMILTONIAN FOR CENTRAL GRAPH

It can be seen from Eq. (15) that H̄c is constructed based
on the original subgraph Hc. It indicates that the impact of two
branch graphs can be projected on the target graph as additional
couplings or on-site potentials. In this paper, we investigate a
graph with each independent branch graph connected to the
central graph c via a single node on the central graph. This
is crucial and our conclusion is available for a graph with
arbitrary branches. In the following we will show that H̄a and
H̄b have a concise form and a clear physical meaning.

The connections between the subgraphs are

Hca = H †
ac = −

Na∑
j

ga
j |A〉ca 〈j | , (19)

Hcb = H
†
bc = −

Nb∑
j

gb
j |B〉cb 〈j | . (20)

Note that there is only one branch-root node for each branch,
that is, the unique restriction to the graph.

We note from Eq. (19) that the elements of Hca and H
†
ac are

all zeros except the row connecting to node A, i.e.,

Hca (m,n) = δmAga
n, Hac(m,n) = δnA

(
ga

m

)∗
. (21)

Taking Ma = (Ek − Ha)−1 and assuming its existence for the
considering eigenvalue Ek , we have

H̄a(m,n) =
Na∑

j ′=1

⎡
⎣ Na∑

j=1

Hca(m,j )Ma(j,j ′)

⎤
⎦ Hac(j ′,n)

=
Na∑

j ′=1

⎡
⎣ Na∑

j=1

δmAga
j M

a(j,j ′)

⎤
⎦ δnA

(
ga

j ′
)∗

= δmAδnA

Na∑
j,j ′=1

ga
j

(
ga

j ′
)∗

Ma(j,j ′). (22)

Moreover, from Eqs. (13) and (16) we obtain

Hcaf
a
k = H̄af

c
k (23)

and its explicit form

Na∑
j=1

ga
j f

a
k (j ) = f c

k (A)
Na∑

j,j ′=1

ga
j

(
ga

j ′
)∗

Ma(j,j ′). (24)
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Considering the nontrivial case f c
k (A) �= 0, the effective

Hamiltonian H̄a can be expressed as

H̄a (m,n) = δmAδnA

f c
k (A)

Na∑
j=1

ga
j f

a
k (j ) . (25)

By a similar procedure we obtain the expression for the
effective Hamiltonian H̄b

H̄b (m,n) = δmBδnB

f c
k (B)

Nb∑
j=1

gb
j f

b
k (j ) . (26)

Surprisingly, matrix H̄a (H̄b) contains only one nonzero
element H̄a(A,A) [H̄b(B,B)], which can be regarded as an
effective on-site potential at the branch-root node A (B).
Actually, this is caused by the unique restriction. Then
the physics of the projection Hamiltonian is very clear:
the original target Hamiltonian with additional potentials
at the joint sites. The effective potential is a weighted summa-
tion of the coupling strength {gγ=a,b

j } and the corresponding
amplitudes {fk(j )}. It would be noted that this conclusion can
be generalized into graphs with more independent branches
d,e, . . ..

One can simply classify the branch graph as finite or
infinite. For a finite graph without flux, we have {gγ=a,b,...

j }
and the corresponding {fk(j )} are all real, then the effective
on-site potentials are real. In contrary, for an infinite graph,
when dealing with the scattering problem, the effective on-
site potentials could be complex. For a broader perspective
concerning the resulting complex potentials, see the review in
Ref. [14] and references therein.

IV. ILLUSTRATIVE EXAMPLES

In this section, two typical examples, which consist of finite
and infinite branch graphs, are respectively investigated to
exemplify the formalism developed above.

A. Finite chain

We first take a finite chain N as an example, with the
Hamiltonian in the form

HChain = −J

N−1∑
i=1

(|i〉 〈i + 1| + H.c.) .

It is well known that the eigenvalue Ek and the corresponding
eigenvector fk are

Ek = −2J cos k, (27)

fk(j ) =
√

2

N + 1
sin(kj ), (28)

k = nπ

N + 1
, n ∈ [1,N ].

Now we divide the chain N as the central part Nc and two
branches Na ,Nb as mentioned above. The two branch-root
nodes are located at the (Na + 1)th and (Na + Nc)th sites.

From Eqs. (25) and (26), the projection Hamiltonian can be
obtained as

H̄c = −J

Na+Nc−1∑
i=Na+1

(|i〉〈i + 1| + H.c.) + VA|Na + 1〉〈Na + 1|

+VB |Na + Nc〉〈Na + Nc|, (29)

where the on-site potentials are

VA = −J
sin(kNa)

sin[k(Na + 1)]
, (30)

VB = −J
sin[k(Na + Nc + 1)]

sin[k(Na + Nc)]
. (31)

In Appendix Aa, it is shown that Ek is always the eigenvalue
of H̄c and the corresponding eigenvector of H̄c is in accord
with that of HChain within the central chain c. It is noted that
potential VA (VB) does not exists in the case sin[k(Na + 1)] =
0 (sin[k(Na + Nc)] = 0). Actually, the corresponding eigen-
function has a vanishing amplitude at node A (B), and Ek

is also the eigenvalue of the branch Hamiltonian Ha (Hb)
simultaneously. From the viewpoint of the projection theory,
the corresponding inverse matrix (Ek − Ha)−1 or (Ek − Hb)−1

does not exist.
Now we look at a concrete example in order to give

a sense of the conclusion. Consider a 15-site chain with
Na = 5, Nc = 4, and Nb = 6. Taking k = π/4 as an exam-
ple, the corresponding eigenvalues and eigenvectors for the
entire chain are Eπ/4 = −√

2J , fπ/4(j ) = (
√

2/4) sin(jπ/4),
on the central chain c, (f c

π/4)† = −(
√

2,1,0, − 1)/4. On
the other hand, from Eqs. (27), (28), (30), and (31), we
have VA = −J sin(5k)/ sin(6k) = −(

√
2/2)J and VB =

−J sin(10k)/ sin(9k) = −√
2J . Then the corresponding ef-

fective Hamiltonian is

H eff
c = −J

8∑
i=6

(|i〉〈i + 1| + H.c.) − J

(√
2

2
|6〉〈6|

+
√

2|9〉〈9|
)

, (32)

and to solve H eff
c , we use Eq. (A6) derived in Appendix Aa. It

becomes

sin(4κ)

(
2 cos κ − 3

√
2

2

)
= 0, (33)

which has the solutions Eκ = −2J cos κ = √
2J , 0, −√

2J ,
and −3

√
2/2J . The corresponding eigenvector for Eκ =

−√
2J can be obtained as (f eff

π/4)† ∝ (
√

2,1,0, − 1), which is
in accord with the wave function of whole system within the
chain c, f c

π/4.

B. Scattering problem

In the above example, we can see that all the potentials
are real. It was predicted that the infinite branches could
induce the imaginary potentials. Here we are interested in the
scattering solution of an infinite system. Quantum scattering
and transport properties in quantum networks are important
features in quantum information science [6,15,16]. Now we
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FIG. 2. (Color online) Schematic illustration of the concrete
configuration for a scattering system. A ring as the scattering center
connects to two semi-infinite chains L and R as waveguides with
coupling −g. The wave function within the scattering center for a
scattering state of the whole system is identical to an equal-energy
eigenfunction of the projection Hamiltonian, which is constructed by
the center ring with additional on-site potentials VA and VB added at
the joint sites A and B.

consider an exactly solvable but nontrivial system to illustrate
the main idea of this paper.

The graph is constructed by a uniform ring system and
two semi-infinite chains as the input and output leads, which
is schemed in Fig. 2. It is worthy to point out that a
well-established Green’s function technique [16–18] can be
employed to obtain the reflection and transmission coefficients
for a given incoming plane wave. The corresponding wave
function within the scattering center should be obtained via
the Bethe ansatz method. The Hamiltonian can be written as

Hs = Ha + Hb + Hc

−
√

2J (| − 1〉ac〈1| + |1〉bc〈N + 1| + H.c.), (34)

where Ha (Hb) represents a uniform input (output) waveguide
as

Ha = −J

−∞∑
i=−1

(|i − 1〉a〈i| + H.c.), (35)

Hb = −J

+∞∑
i=1

(|i〉b〈i + 1| + H.c.), (36)

and the uniform ring as the scattering center is described as

Hc = −J

2N∑
i=1

(|i〉c〈i + 1| + H.c.)

−V (|1〉c〈1| + |N + 1〉c〈N + 1|), (37)

where |2N + 1〉c ≡ |1〉c.
There are on-site potentials V at the sites |1〉c and |N +

1〉c, which are the two branch-root nodes, i.e., |A〉c = |1〉c
and |B〉c = |N + 1〉c. The corresponding Löwdin’s projection
Hamiltonian depends on the energy Ek of the incident plane
wave as well as the parameter V . To be concise, as an
illustrative example, we would like to present the exactly
solvable model, which is helpful to demonstrate our main
idea. Therefore, we will focus on this case: The incident wave

has energy Ek = V ∈ (−2J,2J ) . For such an incident plane
wave, the scattering wave function can be obtained by the
Bethe ansatz method. The wave function has the form

f a
k (l) = eik(l+1), l ∈ (−∞, − 1], (38)

f c
k (l) = eikl/

√
2, l ∈ [1,N + 1], (39)

f b
k (l) = eik(l+N+1), l ∈ [1,∞), (40)

where f c
k (l) ≡ f c

k (2N + 2 − l). Then the effective Hamilto-
nian H̄a , H̄b can be obtained directly from Eqs. (25) and (26),
which have the form

H̄a(A,A) = −
√

2Jf a
k (−1)

f c
k (1)

= −2Je−ik, (41)

H̄b(B,B) = −
√

2Jf b
k (1)

f c
k (N + 1)

= −2Jeik. (42)

The projection Hamiltonian H̄c (H̄c = Hc + H̄a + H̄b) is

H̄c = −J

2N∑
i=1

(|i〉c〈i + 1| + |i + 1〉c〈i|) + 2iJ sin k|1〉c〈1|

− 2iJ sin k|N + 1〉c〈N + 1|. (43)

It is a PT -symmetric non-Hermitian Hamiltonian. Since
the seminal discovery by Bender [19], it is found that the
non-Hermitian Hamiltonian with simultaneous unbroken PT
symmetry has an entirely real quantum mechanical energy
spectrum and has profound theoretical and methodological
implications. Many schemes aiming at a physical realization
of the PT -symmetric system in optical structures have been
proposed—for example, see Ref. [20]. In Appendix A2, it is
shown the spectrum {ε} of H̄c consists of a band

εj = −2J cos(jπ/N )
(44)

(j ∈ [1,N − 1],twofold degeneracy)

and two additional levels

ε± = ±V. (45)

The eigenstates with eigenvalue εj can be decomposed into two
kinds: symmetric and antisymmetric with respect to the spatial
reflection symmetry about the axis along the waveguides. For
the scattering problem, only the symmetric states are involved.
It shows that among the eigenvalues, the eigenvalue ε+ = V

from the spectrum {ε} matches the energy Ek (Ek = V ) of the
incident wave. Moreover, at the end of Appendix A, it is shown
that the corresponding eigenvector for ε+ is in accord with f c

k .
Thus it is in agreement with the conclusion of the partitioning
technique that there always exists a solution of the projection
Hamiltonian to match the incident wave energy.

V. SUMMARY

In summary, we apply Löwdin’s projection theory to the
specified network, which consists of a central graph and several
branch graphs. It is shown that the effective Hamiltonian on
the central graph can be constructed by adding additional
potentials on the branch-root nodes, which can be expressed as
a weighted summation of the corresponding wave function and
generates the same result as does the the original Hamiltonian
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on the entire graph. It indicates that the impact of the branch
graph to the central one is local and takes the role of the
on-site potential. Finite and infinite exactly solvable models
are presented to demonstrate our conclusion.
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APPENDIX: BETHE ANSATZ SOLUTION

In this Appendix, we will derive the central formula for
studying the eigenproblem of the projection Hamiltonian
introduced in Sec. IV.

1. N-site uniform chain

We consider a uniform chain with potentials at ends. The
projection Hamiltonian is

H eff
c = −J

Nc−1∑
i=1

(|i〉〈i + 1| + H.c.) + VA|1〉〈1|

+VB |Nc〉〈Nc|, (A1)

where VA and VB are defined in Eqs. (30) and (31). The Bethe
ansatz eigenvector has the form

fκ = Aκe
iκj + Bκe

−iκj , j ∈ [1,Nc]. (A2)

The Schrödinger equation H eff
c |fκ〉 = Eκ |fκ〉 can be written

in the explicit form

VAfκ (1) − Jfκ (2) = Eκfκ (1),

−Jfκ (j − 1) − Jfκ (j + 1) = Eκfκ (j ),
(A3)

j ∈ [2,Nc − 1],

−Jfκ (Nc − 1) + VBfκ (Nc) = Eκfκ (Nc).

Substituting Eq. (A2) into Eq. (A3), we obtain

J 2 sin[κ(Nc + 1)] + J (VA + VB) sin(κNc)

+VAVB sin[κ(Nc − 1)] = 0, (A4)

Eκ = −2J cos κ. (A5)

Equation (A4) determines the solution of κ , while Eq. (A5) is
the corresponding spectrum. Substituting Eqs. (30) and (31)
into Eq. (A4), we have

sin k/{sin[k(Na + 1)] sin[k(Na + Nc)]}
× {sin[k(Nc − 1)] sin(κNc) − sin(kNc) sin[κ(Nc − 1)]}
+ 2 sin(κNc)(cos κ − cos k) = 0, (A6)

which seems difficult to solve. However, it can be simply
proved by straightforward algebra that κ = k is a solution for
the equation. Accordingly, Eκ = −2J cos κ = −2J cos k is
an eigenvalue of the effective Hamiltonian of Eq. (A1). Now
we try to find the corresponding eigenvector of Eκ . From
Eq. (A2), the first equation of Eq. (A3), and the expression of
VA Eq. (30), we obtain

Bκ

Aκ

= −e−2ikNa , (A7)

and it indicates

fκ (j ) ∝ sin[k(Na + j )], (A8)

which is in accord with the eigenfunction Eq. (28) inside the
central chain Nc.

2. Uniform ring as a scattering center

The projection Hamiltonian on a uniform ring is PT
symmetric and can be expressed as

H eff
c = −J

2N∑
j=1

(|j 〉〈j + 1| + H.c.)

+ 2iJ sin k(|1〉〈1| − |N + 1〉〈N + 1|), (A9)

where |j 〉 = |2N + j 〉. The parity operator P is defined by
P : j → N + 2 − j and the time-reversal operator T by T :
i → −i. We note that the Hamiltonian H eff

c also possesses
the mirror symmetry with respect to the axis through the
1th and (N + 1)th sites. This leads to the symmetric and
antisymmetric solutions of the system. The symmetric Bethe
ansatz eigenfunction fκ has the form

fκ (j )

=
{

Aκe
iκj + Bκe

−iκj , j ∈ [1,N + 1],

Aκe
iκ(2N+2−j ) + Bκe

−iκ(2N+2−j ), j ∈ [N + 2,2N ].

(A10)

Substituting the above wave function into the following
Schrödinger equation

2i sin kfκ (1) − fκ (2) − fκ (2N ) = Eκfκ (1)/J,

−fκ (j − 1) − fκ (j + 1) = Eκfκ (j )/J,
(A11)

j ∈ [2,N ] ∪ [N + 2,2N ],

−fκ (N ) − fκ (N + 2) − 2i sin kfκ (N + 1) = Eκfκ (N + 1)/J,

after simplification, we obtain(
D− D+

eiκND− e−iκND+

)(
Aκe

iκ

Bκe
−iκ

)
= 0, (A12)

Eκ = −2J cos κ, (A13)

where D± = sin k ± sin κ .
The existence of the solution requires

sin(κN )(sin2 κ − sin2 k) = 0. (A14)

The solution is

κ = nπ/N, n ∈ [1,N − 1], κ = k,π − k. (A15)

the corresponding eigenvalue is Eqs. (44) and (45).
Obviously, Eκ = −2J cos κ = −2J cos k is an eigenvalue

of the effective Hamiltonian Eq. (A9) and the corresponding
eigenvector is

fκ (j ) =
{

eikj , j ∈ [1,N + 1],

eik(2N+2−j ), j ∈ [N + 2,2N ].
(A16)

Therefore, the above eigenfunction fκ is in accord with
Eq. (39).
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[13] U. Grüning, V. Lehmann, and C. M. Engelhardt, Appl. Phys.
Lett. 66, 3254 (1995).

[14] J. G. Muga, J. P. Palao, B. Navarro, and I. L. Egusquiza, Phys.
Rep. 395, 357 (2004).

[15] L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, Phys.
Rev. Lett. 101, 100501 (2008).

[16] L. Jin and Z. Song, Phys. Rev. A 81, 022107 (2010).
[17] S. Datta, Electronic Transport in Mesoscopic Systems

(Cambridge University Press, Cambridge, UK, 1995).
[18] S. Yang, Z. Song, and C. P. Sun, e-print arXiv:0912.0324v1.
[19] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243

(1998).
[20] A. Ruschhaupt, F. Delgado, and J. G. Muga, J. Phys. A 38, L171

(2005).

062118-6

http://dx.doi.org/10.1016/0003-4916(62)90221-X
http://dx.doi.org/10.1063/1.1724312
http://dx.doi.org/10.1103/PhysRevB.74.205120
http://dx.doi.org/10.1103/PhysRevB.74.205120
http://dx.doi.org/10.1007/BF01339455
http://dx.doi.org/10.1098/rspa.1934.0116
http://dx.doi.org/10.1088/1367-2630/6/1/002
http://dx.doi.org/10.1088/1367-2630/6/1/002
http://dx.doi.org/10.1038/nphys138
http://dx.doi.org/10.1016/j.aop.2004.09.010
http://dx.doi.org/10.1103/PhysRevLett.67.2295
http://dx.doi.org/10.1103/PhysRevLett.67.2295
http://dx.doi.org/10.1063/1.113395
http://dx.doi.org/10.1063/1.113395
http://dx.doi.org/10.1016/j.physrep.2004.03.002
http://dx.doi.org/10.1016/j.physrep.2004.03.002
http://dx.doi.org/10.1103/PhysRevLett.101.100501
http://dx.doi.org/10.1103/PhysRevLett.101.100501
http://dx.doi.org/10.1103/PhysRevA.81.022107
http://arXiv.org/abs/0912.0324v1
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1088/0305-4470/38/9/L03
http://dx.doi.org/10.1088/0305-4470/38/9/L03

