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processes. Three examples are presented, and the measure of non-Markovianity is calculated and discussed for
these examples. Comparisons with other measures of non-Markovianity are made. The present non-Markovianity
measure has the merit that no optimization procedure is required and it is finite for any quantum process, which
greatly enhances the practical relevance of the proposed measure.
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I. INTRODUCTION

A quantum process is said to be Markovian if the future
states of the process depends only on the state of present
time. In contrast, dependence on past states should then be a
characteristic feature of non-Markovian processes. With the
development of technology to manipulate quantum systems,
the quantum non-Markovian process has attracted increasing
attention in recent years [1–6]. On one hand the inevitable
interaction of a quantum system with its environment leads
to dissipation of energy and loss of quantum coherence, and
on the other hand the quantum system may temporarily regain
some of the previously lost energy and/or information due to
non-Markovian effects in the dynamics. This motivates study
of the non-Markovianity and a measure for the degree of non-
Markovianity is indeed needed.

Several approaches are proposed to quantify non-
Markovianity, including the measure based on the increase
of trace distance [7], the measure by quantifying the in-
crease of entanglement shared between the system and an
isolated ancilla and the measure by the divisibility of the
dynamical map [8], the measure based on the decay rate of
the master equation itself [9], and the measure through the
Fisher information flow [10]. Although several approaches to
quantifying the non-Markovianity are proposed, the definitions
of non-Markovianity still remain elusive and disagreeable [11].

It has been proven that all divisible dynamical maps are
Markovian. This divisibility property holds for a larger class
of quantum processes than those described by the Lindblad
master equation, for example, the time-local master equation
with positive decay rates. This indicates that the divisibility
may be a good starting point to quantify non-Markovianity [8].
In this paper we propose a measure for non-Markovianity
based on the divisibility of dynamical maps that was used
in [8], three dynamical maps are presented, and the cor-
responding non-Markovian measures are calculated. These
results suggest that the measure can capture the feature of
non-Markovian dynamics, providing an easy way to calculate
non-Markovianity.

The paper is organized as follows: In Sec. II we discuss
the nondivisibility of the dynamical map and the non-
Markovianity of this map. In Sec. III we introduce a measure

for non-Markovianity. Three examples are presented and
discussed in Sec. IV. Section V summarizes our results.

II. NON-DIVISIBILITY AND NON-MARKOVIANITY

In a quantum Markovian process, the future state of the
quantum system depends only on the state of present time.
However, writing this statement in a precise mathematical
representation is not an easy task. Instead, we use the following
description for quantum Markovian processes. A quantum
evolution is Markovian if it is an element of any one-parameter
continuous, completely positive semigroup [12]. The quantum
evolution governed by the master equation

dρ

dt
= Lρ (1)

is an example, where L is a time-independent generator of the
well-known Lindblad form,

Lρ = −i[H,ρ]

+
∑

α

γa

(
VαρVα

† − 1

2
Vα

†Vαρ − 1

2
ρVα

†Vα

)
(2)

with γα � 0 at any time t . This generator leads to completely
positive trace-preserving maps �(t) = eLt and it satisfies the
composition law

�(t1 + t2) = �(t2)�(t1). (3)

If a dynamical map can be written in this decomposition with
both �(t2) and �(t1) being completely positive, the dynamical
map is called divisible. This composition law can be extended
to a general case, where the generator in Eq. (2) is time-
dependent, namely,

dρ

dt
= L(t)ρ (4)

with

L(t)ρ = −i[H (t),ρ] +
∑

α

γα(t)

[
Vα(t)ρVα

†(t)

−1

2
Vα

†(t)Vα(t)ρ − 1

2
ρVα

†(t)Vα(t)

]
(5)
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where γα(t) � 0. This is known as a time-dependent Marko-
vian [12]. The solution to Eq. (4) can be written in terms
of the two-parameter family of dynamical maps �(t2,t1)
(t2 � t1 � 0). The composition law corresponding to Eq. (3)
becomes

�(t2,0) = �(t2,t1)�(t1,0), (6)

and the map �(t2,t1) can be written as

�(t2,t1) = T e
∫ t2
t1

L(t ′)dt ′ (t2 � t1 � 0), (7)

where T is the chronological operator. The composition law
(divisibility of the map) implies that the dynamical map
�(t2,t1), transforming a state at t1 into a state at t2 [for
systems governed by time-independent master equation (1),
�(t2,t1) = �(t2 − t1,0) = �(t)], must be trace-preserving and
completely positive, regardless of which dynamics it describes.
Note that the starting time t1 is not zero.

A measure for non-Markovianity should quantify the devi-
ation of a dynamical map from Markovian evolution. Noticing
that when a dynamics is non-Markovian, the dynamical map
�(t2,t1) may not be completely positive, we may use the
nondivisibility to quantify the non-Markovianity. In fact, this
is the underlying reason that the trace distance can increase [7],
and the system gains entanglement with an isolated ancilla [8].

It is worth stressing that there is no contradiction between
the requirement of incomplete positivity and that on physics.
Consider a quantum evolution in a time interval (0,t2),
we always have �(t2,0) = �(t2,t1)�(t1,0) due to the time
continuity. For �(t2,0) to be a dynamical map, it is required that
�(t2,0) must be completely positive; however, �(t2,t1) may
not be completely positive. Therefore these two-parameter
maps in non-Markovian dynamics do not generate a quantum
dynamical semigroup. Then one may wonder: Does there exist
a �(t2,t1) that it is not completely positive but �(t2,0) does?
The answer is yes. First, a wide range of non-Markovian
processes can be described by time-local master equations via
a time-convolutionless projection operator [13–18]. Second,
it has been shown that any quantum dynamics described by a
memory kernel master equation may be written in a time-local
form [19]. Note that the decay rates in these time-local master
equations are different from those of Eq. (5), where they
can be negative. With this time-local master equation, the
dynamical map with nonzero starting time in Eq. (7) may
violate the complete positivity due to the negative decay rates.
This implies that the incomplete positivity of the map �(t2,t1)
is an essential feature of the non-Markovian process. The
time-dependent decay rate may be negatively infinite at some
points of time, where the reviving of population or regaining
of quantum coherence happen [7,17]. We call these points of
time singular points ts . When t1 = ts or t2 = ts , �(t2,t1) may
not exist. However, we can use �(t2,t1) in the limit that t1 → ts
instead of �(t2,ts). It is convenient to discuss �(t2,t1) with a
specific time-local master equation, but this is not necessary.

III. MEASURE FOR NON-MARKOVIANITY

To construct a measure for non-Markovianity, we resort
to the Choi-Jamiołkowski isomorphism [20,21], which asserts

that a linear map � : Md → Md is isomorphic to the Choi
matrix,

C� =
d∑

i,j=1

|i〉〈j | ⊗ �(|i〉〈j |), (8)

where |i〉 are orthogonal bases. A familiar form of the Choi
matrix is

ρ� = (� ⊗ I)|φ〉〈φ|, (9)

where |φ〉 is the maximally entangled state |φ〉 = 1√
d∑d

i=1 |i〉 ⊗ |i〉, I is an identity map acting on the ancilla, and
ρ� is the normalized C�. It turns out that � is completely
positive if and only if ρ� is positive semidefinite. In other
words, the sufficient and necessary condition of incomplete
positivity is the negativity of ρ�. Hence, the sum of negative
eigenvalues of ρ� can be taken as a measure for the incomplete
positivity of the dynamical map. However, the summation may
sometimes be an infinite value in some models due to singular
decay rates, which suggests use of a normalized quantity

NCP = arctan
(
−

∑
λk

)
(10)

as a measure for incomplete positivity of map �, where λk is
the kth negative eigenvalue of ρ�. Clearly if ρ� � 0, NCP = 0.
Then we have 0 � NCP � π

2 . Based on the complete positivity
property of the map �(t1,t2), a measure of non-Markovianity
has been proposed [8]. This measure is different from ours
in that we use an averaged negativity of the map �(t1,t2) to
quantify the non-Markovianity. Moreover, insightful examples
are presented to shed light on the non-Markovianity measure.

To calculate Eq. (10) with a given time-local master
equation, the exact form of �(t1,t2) is not necessary. What
we need is to extend the time-local master equation from one
system to two systems, taking an isolated ancilla attached to
the system. The Hilbert space is extended from Hd to Hd ⊗ Hd

accordingly. All operators, say Ô, are replaced by Ô ⊗ I. By
this extension we get a new master equation which describes
the system and the ancilla. The system evolves in the same
manner as before, while the ancilla is isolated from both the
system and environment. The master equation can be solved
starting from |φ〉 at time t1 and the state at time t2 (t2 > t1) can
be obtained.

We aim at finding a measure NM for non-Markovianity
which captures the feature of incomplete positivity of all
possible �(t2,t1). Note that NCP is a function of t1 and t2.
Let S count the number of NCP in all time intervals with NCP

> 0, i.e.,

S =
∫ ∞

0
dt1

∫ ∞

t1

dt2 c(t2,t1), c =
{

1, if NCP > 0

0, if NCP = 0.
(11)

If S = 0, i.e., all �(t2,t1) (for any t1 and t2, as long as t2 > t1)
are completely positive, the non-Markovinity NM should be
defined as zero. If S > 0, we define

NM = lim
T →+∞

∫ T

0 dt1
∫ T

t1
dt2 NCP (t2,t1)∫ T

0 dt1
∫ T

t1
dt2 c(t2,t1)

(12)

as a measure of non-Markovianity. This can be under-
stood as an averaged incomplete positivity of all the
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non-completely-positive maps in interval t = (0, + ∞).
Therefore, from 0 � NCP � π

2 , we have 0 � NM � π
2 .

The upper limit of the integral T in the definition Eq. (12) is
taken to be infinite. However, the distribution of NCP in space
spanned by (t1,t2) is often periodic or is limited in a small area,
which suggests that the integration can be taken merely in one
period of time or taken in a finite area. When NCP is neither
periodic nor limited in a small region, the upper limit T in
Eq. (12) should be large enough to get a convergent NM . The
definition can be written into a simple form,

NM = E[NCP(�N)], (13)

where �N represents all the incompletely positive maps and
E the expectation value. Therefore NM can be numerically
calculated by averaging a large number of incompletely
positive maps with equal weight (or randomly) in the time
region discussed above.

To illustrate the measure of non-Markovianity, we present
three examples in the next section. We work in the interaction
picture for simplicity to calculate the measure, since unitary
transformation does not change the eigenvalues of ρ� as well
as NCP of �(t2,t1); hence the non-Markovianity measure under
unitary transformation remains unchanged.

IV. EXAMPLES

A. Damping J-C model

The first example is a two-level system coupling to a
reservoir at zero temperature. The reservoir consists of an
infinite number of harmonic oscillators that is also referred
to in the literature as the spin-boson model. This model is
exactly solvable [17]. The Hamiltonian for such a system
reads

H = H0 + HI (14)

with H0 = h̄ω0σ+σ− +
∑

k

h̄ωkb
†
kbk, (15)

HI = σ+B + σ−B†, (16)

where B = ∑
k gkbk . The Rabi frequency of the two-level

system and the frequency for the kth harmonic oscillator are
denoted by ω0 and ωk, respectively. b

†
k and bk are the creation

and annihilation operators of the kth oscillator, which couples
to the system with coupling constant gk .

Assuming the system and the reservoir are initially uncor-
related, we can obtain a time-dependent master equation in the
interaction picture,

ρ̇ = −i
s(t)

2
[σ+σ−,ρ]

+ γ (t)

(
σ−ρσ+ − 1

2
σ+σ−ρ − 1

2
ρσ+σ−

)
, (17)

where s(t) = −2Im[ ċ(t)
c0(t) ] and γ (t) = −2Re[ ċ(t)

c0(t) ]. 
(t) plays
the role of Lamb shift and γ (t) is the decay rate.
Both 
(t) and γ (t) are time dependent, and c(t) is
determined by ċ(t) = − ∫ t

0 f (t − τ )c(τ )d(τ ), where f (t −
τ ) = ∫

dωJ (ω) exp[i(ω0 − ω)(t − τ )] is the environmental
correlation function. In the derivation of the master equation,
the reservoir is assumed in its vacuum at t = 0.

Consider the following spectral density

J (ω) = 1

π

γ0λ
2

(ω0 − ω)2 + λ2
, (18)

where γ0 represents the coupling constant between the system
and reservoir, and λ defines the spectral width of the coupling
at the resonance point ω0. For the spectral density (18),
we have s(t) = 0, c(t) = c0e

−λt/2[cosh( dt
2 ) + λ

d
sinh( dt

2 )], and

γ (t) = 2γ0λ sinh(dt/2)
d cosh(dt/2)+λ sinh(dt/2) with d =

√
λ2 − 2γ0λ. Note that

Eq. (17) is derived without any approximations; hence it is
non-Markovian and it exactly describes the dynamics of the
open system.

It is well known that λ characterizes the correlation time
τR of the reservoir through τR = λ−1. The time scale τS on
which the state of the system changes is given by τS = γ −1

0 , so
the degree of non-Markovianity should be relevant to the rate
R = τR/τS . Namely, when R is very small, the evolution is
Markovian, and when τR is comparable with τS , the memory
effect of the reservoir should be taken into account and the
dynamics of the open system is then non-Markovian.

Let us first analyze the non-Markovianity of the dynamics
by examining γ (t). For R < 1

2 , γ (t) is always positive and it
is a monotonically increasing function of time; all �(t2,t1) are
completely positive, and hence the dynamics is Markovian.
When R > 1

2 , γ (t) is a periodic function of time, it takes
negative values sometimes. In particular, γ (t) has discrete
singular points where the upper level gains population, which
is a typical feature of non-Markovianity.

Now we see if our measure can capture all these features of
non-Markovianity. In order to apply our measure, we have to
extend the time-local master equation to the compound system,
i.e., the operators σ± in Eq. (17) are replaced by σ± ⊗ I, with
I being the ancilla’s 2 × 2 identity operator. For a given time
interval (t1,t2), a straightforward calculation yields

NCP(t1,t2) =
⎧⎨
⎩

arctan
[

1
2

(
c(t2)2

c(t1)2 − 1
)]

, c(t2)2

c(t1)2 > 1

0, c(t2)2

c(t1)2 � 1,
(19)

where c(t) was defined below Eq. (17) and t2 � t1 � 0.
For a typical non-Markovian case (R = 5), we plot NCP as

a function of t1 and �t in Fig. 1(a) (�t = t2 − t1, since t2 � t1,
we use �t instead of t2 for convenience). This plot shows the
nonzero area and its value of NCP versus t1 and t1 − t2. As NCP

is a periodic function of t1 and the area where NCP > 0 decays
very fast with �t, NM can be given by averaging all NCP in
one period, yielding NM = 0.835.

As expected, when R < 0.5, NM = 0, and when R > 0.5
the non-Markovianity is finite. We plot the measure of non-
Markovianity with different R in Fig. 1(b). Here R is chosen
from 0.5 to 10. Note that when R = 0.5, γ (t) does not exist
due to the zero denominator. Our result for R = 0.5 is obtained
at R = 0.5 + ε, with ε an infinitesimal positive number.
Intuitively, the larger R is, the stronger the non-Markovianity.
The results in Fig. 1(b) demonstrate that this is indeed the
case.

B. J-C model with detuning

The second example is similar to the first one, but here
we consider the system in a cavity whose center frequency is
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FIG. 1. (Color online) NCP and non-Markovianity in the damping
J-C model. (a) NCP versus t1 and �t at R = 5. Three oscillations
are shown. (b) NM as a function of R. Clearly, NM monotonically
increases with R.

detuned from the system Rabi frequency ω0. The dynamics in
the interaction picture is governed by Eq. (17), but s(t) and
γ (t) are determined by the Lorenz spectral density

J (ω) = 1

2π

γ0λ
2/2

(ω0 − � − ω)2 + λ2
, (20)

where � denotes the detuning.
We extend Eq. (17) to a compound system by introducing

an ancilla as we did in the first example, and then we calculate
NCP(t1,t2) numerically. We plot NCP as a function of t1 and
�t in Fig. 2(a) for a typical non-Markovian case. We see
that NCP(t1,t2) is finite in contrast to infinite values in the
same region for the first example. On the other hand, NCP

of all �(t2,t1) (with different t1 and t2) are far less than π
2 ,

indicating weaker non-Markovianity in comparison with the
first example. Finally, from Eq. (12) or Eq. (13) we have
NM = 3.66 × 10−4 in this case.

Now we discuss the dependence of non-Markovianity on
the detuning. We plot NM in Fig. 2(b) with different �. We
find that NM appears nonzero at about � = 4, first increasing
then decreasing with �. This result is similar to that in [7],
where the non-Markovianity is measured by the decreases of
trace distance.

C. A two-level system coupling to a finite spin bath

In the third example we consider a central spin- 1
2 coupling

to a bath of N spin- 1
2 s. The interaction Hamiltonian is

H =
N∑

k=1

Akσzσ
k
z , (21)
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−4(a)
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0

FIG. 2. (Color online) NCP and non-Markovianity in the detuning
J-C model. (a) Counter plot of NCP as a function of t1 and �t , with � =
10 and γ0 = 0.3. (b) NM as a function of �. Other parameters chosen
are the same as in (a). The maximum non-Markovianity appears at
about � = 6.

where Ak = A/
√

N represents the coupling constants. The
non-Markovianity of the central spin in this model is discussed
in [1]. Assume the initial state of the whole system is ρs(0) ⊗
( 1

2N I ), i.e., all spins in the reservoir are in a maximal mixed
state. The density matrix of the central spin at time t takes

ρ(t) =
(

ρ11 ρ12 cosN
(

2At√
N

)
ρ21 cosN

(
2At√

N

)
ρ22

)
. (22)

In terms of the dynamical map, the dynamics can be
represented as �(t,0)ρ = 1

2 [1 − cosN ( 2At√
N

)]σzρσz + 1
2 [1 +

cosN ( 2At√
N

)]ρ. This is equivalent to the following master
equation,

ρ̇ = γ (t)L(ρ), (23)

where L(ρ) = σzρσz − ρ and the time-dependent γ (t) =
A

√
N tan( 2At√

N
). This example is discussed in several papers

as a classical example to quantify non-Markovianity, and
the non-Markovianity is infinite [7,8]. By our definition of
non-Markovianity, it is finite. This allows us to establish a
relation between non-Markovianity NM and the number of
spin N in the reservoir.

It is easy to calculate ρ� [defined in Eq. (9)] by Eq. (23),

[�(t2,t1) ⊗ I]|ψ〉〈ψ | =

⎛
⎜⎜⎜⎝

0.5 0 0 0.5k

0 0 0 0

0 0 0 0

0.5k 0 0 0.5

⎞
⎟⎟⎟⎠ (24)
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with k = cosN ( 2At2√
N

)

cosN ( 2At1√
N

)
(t2 � t1 � 0). Then we have

NCP(t1,t2) =
{

arctan 1
2 (|k| − 1), |k| > 1

0, −1 � k � 1.
(25)

The incomplete positivity of the map �(t2,t1) can be
examined by plotting NCP in (t1,t2) plan. Figure 3(a) shows
this result, taking only one spin as the environment. (For
N > 1, the results are similar.) We find that NCP is a
periodic function of both t1 and �t . When t1 = (2n + 1)π

4
and �t �= nπ

2 (n = 0,1,2 . . .), NCP = π
2 reaches its maximum.

The non-Markovianity measure in this case is NM = 0.505.

Now we try to find the relation between non-Markovianity
and the number of spins N in the environment; the result is
plotted in Fig. 3(b). We find that NM increases with the spin
number N . For a very large N , NM arrives at its maximum.
However, the coupling strength Ak = A/

√
N is very small

in large N limit, implying that the characteristic time of
the central spin tends to be infinitely long in this limit, i.e.,
non-Markovian dynamics can be observed only on a long
time scale. If we are interested in a limited time interval
(0,t), all dynamical maps �(t1,t2) are completely positive;
there is no non-Markovian effect. This can be understood as
follows. With a fixed T one always can choose N so that 2AT√

N

is close to zero. The off-diagonal element of the density matrix
Eq. (24) then takes ρ12e

−2A2(t2
2 −t2

1 ), indicating that the density
matrix in Eq. (24) describes a typical Markovian process.
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FIG. 3. (Color online) NCP and non-Markovianity in the N-spin
bath model. (a) NCP as a function of t1 and �t for N = 1. It shows
that NCP is a periodic function of t1 and t2; two periods are shown
here. (b) NM with different N . Non-Markovianity increases with N

and tends to π

2 when the limit N → +∞ is taken after T → ∞.
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FIG. 4. (Color online) (a) Entanglement as a function of time [8].
(b) Evolution of the decay rate for the second measure in [8]. (c)
Evolution of trace distance of the measure in [17]. The left three
figures are plotted for N = 1 and the right three for N = 5.

Taking this model as an example, we now compare our
measure with that in [7] and [8]. The number N = 1 and 5 for
the environmental spins will be chosen for the comparison.

First, we calculate the non-Markovianity defined in [8],

I =
∫ tmax

t0

∣∣∣∣dE[ρSA(t)]

dt

∣∣∣∣dt − �E, (26)

where E denotes an entanglement measure, and �E =
E[ρSA(t0)] − E[ρSA(tmax)] with ρSA(0) = |φ〉〈φ|. |φ〉 is the
maximally entangled state defined in Eq. (9). This measure was
defined to count the increment of entanglement in time evolu-
tion from t0 to tmax. Choosing the concurrence [22] C(ρ) as the
entanglement measure, we have E(t) = C(�(t,0) ⊗ I|ψ〉〈ψ |).
Straightforward calculation yields E(t) = | cosN ( 2At√

N
)|. We

plot E(t) in Fig. 4(a) for N = 1 (left) and N = 5 (right),
respectively. If (t0,tmax) = (0,∞), we obtain I = ∞ for any
N , since E(t) is an oscillating function of t , and 0 � �E � 1.
The non-Markovianity measure I depends on tmax, when tmax

is infinite.
Our measure is based on the same fact as the sec-

ond non-Markovianity measure proposed in [8]. Now
we examine the difference between these two mea-
sures. In [8] the measure is given by DNM

= I/(I + 1),

with I = ∫ ∞
0 g(t)dt and g(t) = limε→0+

‖(ε(t+ε,t)⊗I)(|φ〉〈φ|)‖−1
ε

.
For the evolution governed by Eq. (23), g(t) = 0 for
γ (t) � 0 and g(t) = −2γ (t) for γ (t) < 0 (see also [8]).
Then I = −2

∫
γ (t)<0 γ (t)dt , with γ (t) = A

√
N tan( 2At√

N
) in

this example, which was plotted in Fig. 4(b) for N = 1 (left)
and 5 (right), respectively. It is clear that I is proportional to
the area between the curve of γ (t) < 0 and the t axis. Because
γ (t) has singular points, the area is infinite, i.e., I = ∞. Then,
DNM

= 1 regardless of N .
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Next we turn to the non-Markovianity based on the trace
distance [7], which was given by

N = max
ρ1,2(0)

∑
i

[D(ρ(1)(bi),ρ
(2)(bi)) − D(ρ(1)(ai),ρ

(2)(ai))].

(27)

The maximum is taken over all pairs of initial states and
(ai,bi) are all time intervals where D increases. Equation (22)

yields D(t) =
√

a2 + cos2N ( 2At√
N

)|b|2, where a = ρ
(1)
11 (0) −

ρ
(2)
11 (0) and b = ρ

(1)
12 (0) − ρ

(2)
21 (0). The maximal growth of the

trace distance occurs for the case where the initial states
lie in the antipodal points on the equator of the Bloch sphere
[7]. Then D(t) = | cosN ( 2At√

N
)|. (Note that D(t) has the same

expression with E(t) above.) We plot D(t) with initial states
|ψ1〉 = 1√

2
(|↑〉 + |↓〉) and |ψ2〉 = 1√

2
(|↑〉 − |↓〉) for N = 1

(left) and N = 5 (right), respectively, in Fig. 4(c). Clearly,
D(t) is an oscillating function of time, reaching its maximum
1 periodically and giving N = ∞ [7]. For more comparisons
between the measures in [7] and [8], see [23].

V. SUMMARY

The divisibility of dynamical maps may be a good starting
point to quantify non-Markovianity [8]. In this paper we
have presented a measure for non-Markovianity based on
the divisibility of the dynamical map. This measure has the
advantage that it is easy to calculate and no optimization is
required. Three examples are illustrated which show that the
measure can nicely manifest the non-Markovianity. We also
compare our measure with others in the literature; differences
have been found and discussed.
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