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Relativistic equations with fractional and pseudodifferential operators
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In this paper we use different techniques from the fractional and pseudo-operators calculus to solve partial
differential equations involving operators with noninteger exponents. We apply the method to equations
resembling generalizations of the heat equations and discuss the possibility of extending the procedure to
the relativistic Schrödinger and Dirac equations.
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I. INTRODUCTION

Evolution equations involving fractional derivatives play
an important role in the theory of transport in heterogeneous
media [1] and different techniques have been developed [2],
or are under study [3], to deal, in an unambiguous way, with
the underlying formalism.

This paper is a contribution to the theory of operators
involving noninteger exponents and we will show how many
of the techniques employed within such a context can be
used to get further insight into the formalism of differential
equations, like the relativistic Schrödinger equation or the
pseudoheat equation. Here we will be mainly concerned with
the mathematical aspects and postpone the application of the
underlying formalism to a forthcoming investigation.

Different mathematical tools to deal with fractional dif-
ferential equations are available. Many of them were not
considered by physicists during the second decade of the last
century, at the time of the proposal of the Dirac equation.
Presently some progress has been made toward the under-
standing of fractional operators and their use is not limited
to pure mathematics anymore. However, it seems that a good
convergence can be realized by at least three different points
of view, namely the formalism of pseudodifferential operators,
the fractional calculus, and the theory of integral operators, as
will be shown in this paper.

We will discuss evolution equations containing the square
roots of differential operators and we will adopt different
methods of solution, involving the techniques from fractional
calculus, from the theory of pseudo-operators [4], and from
that of the generalized integral transform [5]. In the following
we will see that the use of a judicious combination of
operational techniques and of integral transform methods
is one of the main ingredients to get a solution of partial
differential equation involving fractional derivatives.

Evolution equations expressed in terms of the square root
of an operator have a quite old story in physics and an example
is provided by the debate developed around the meaning of the
relativistic Schrödinger equation, which paved the way to the
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formulation of the Dirac equation for the electron [6]. As a
first example of this class of equations, we consider, without
mentioning the specific physical problems it describes, the
following equation (the x and τ variables are dimensionless):

∂τF (x,τ ) = −∂1/2
x F (x,τ ), F (x,0) = f (x). (1.1)

The relevant solution can formally be written as

F (x,τ ) = exp
( − τ∂1/2

x

)
f (x), (1.2)

that, unless we specify the action of the exponential operator
containing the square root of a derivative on the initial function
f (x), is just a way of restating Eq. (1.1). The Doetsch transform
[7] (see Appendix A) is the appropriate tool to get a solution
for our problem, that can be formally written as

F (x,τ ) = 1

2
√

π

∫ ∞

0
dt

1

t3/2
exp

(
− 1

4t
− tτ 2∂x

)
f (x)

= 1

2
√

π

∫ ∞

0
dt

1

t3/2
exp

(
− 1

4t

)
f (x − τ 2t), (1.3)

and is valid if the integral on the right-hand side converges.
As we will see in the following, the fact that the solution of
Eq. (1.1) is given by the form of an integral representation
is a common feature of problems involving fractional deriva-
tives [8].

We consider now the equation

∂τF (x,τ ) = −
√

1 − ∂2
xF (x,τ ), F (x,0) = f (x), (1.4)

to which we will refer as the pseudofractional (or simply
pseudo) heat equation. By applying the evolution operator
formalism, the solution of this equation can be written as
follows:

F (x,τ ) = e−τ
√

1−∂2
x f (x), (1.5)

and, according to the Doetsch transform, we get

F (x,τ ) = 1

2
√

π

∫ ∞

0
dt

1

t3/2
exp

[
− 1

4t
− tτ 2

(
1 − ∂2

x

)]
f (x)

= 1

2
√

π

∫ ∞

0
dt

1

t3/2
exp

(
− 1

4t
− tτ 2

)
etτ 2∂2

x f (x).

(1.6)
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FIG. 1. The evolution of a packet initially Gaussian (solid)
according to an ordinary (dashed) and a fractional (dot-dashed) heat
equation. The case considered corresponds to τ = 1.

The crucial step to achieve the complete solution consists
in specifying the action of the exponential involving the
second-order derivative. This can be done by using the Gauss
transform [9]

eα∂2
x f (x) = 1

2
√

πα

∫ ∞

−∞
dξ exp

{
− (x − ξ )2

4α

}
f (ξ ), (1.7)

that allows us to write

F (x,τ ) = 1

4
√

πτ

∫ ∞

0
dt

1

t2
exp

(
− 1

4t
− tτ 2

)

×
∫ ∞

−∞
dξ exp

{
− (x − ξ )2

4tτ 2

}
f (ξ ). (1.8)

As a particular case, we note that if f (x) = e−x2
we can use

the so-called Glaisher identity [10]

eα∂2
x e−x2 = 1√

1 + 4α
exp

(
− x2

1 + 4α

)
, (1.9)

that, once inserted in Eq. (1.6), provides the result

F (x,τ ) = 1

2
√

π

∫ ∞

0
dt

1

t3/2
√

1 + 4tτ 2

× exp

{
−

(
1

4t
+ tτ 2 + x2

1 + 4tτ 2

)}
. (1.10)

As clearly shown in Fig. 1, compared to the ordinary
heat diffusion equation, the pseudoheat equation yields an
evolution characterized by a less significant spreading and
a larger reduction of the peak.

More conventional methods, based, for example, on Fourier
transform techniques can also be used. If we assume that the
function f (x) admits a Fourier transform, namely

f (x) = 1√
2π

∫ ∞

−∞
dkf̃ (k)eikx, (1.11)
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FIG. 2. Time evolution of an initially Gaussian packet (solid)
undergoing diffusion ruled by a relativistic Schrödinger equation:
τ = 0.5 (dashed) and τ = 1 (dot-dashed).

the solution of our problem can be obtained as1

F (x,τ )= 1√
2π

e−τ
√

1−∂2
x

∫ ∞

−∞
dkf̃ (k)eikx

= 1√
2π

∫ ∞

−∞
dke−τ

√
1+k2

f̃ (k)eikx. (1.12)

Solutions (1.8) and (1.12) are both expressed in terms of an
integral transform and, in principle, there is no reason to prefer
one over the other except for the nature of the initial function
and the convergence of the integral involved in the expressions.

The use of the Fourier transform method is a useful
alternative to the method we are discussing when the pseudo-
operator is not a function of the derivative operator only. To
clarify this point we note that the evolution equation

∂τF (x,τ ) = P (∂x)F (x,τ ), F (x,0) = f (x), (1.13)

with P (·) an operator or an analytical function, can be solved
as

F (x,τ ) = 1√
2π

∫ ∞

−∞
dkeτP (ik)f̃ (k)eikx, (1.14)

which holds if the integral converges. On the contrary, if P (·)
is a function of the derivative operator and the coordinate, this
method, even though still applicable (at the price of using a
more complicated family of “symbols”), is more cumbersome
and an alternative procedure might be more convenient. This
is the case of the following equation:

∂τF (x,τ ) = −
√

x − c∂xF (x,τ ), F (x,0) = f (x),

(1.15)

where c is a constant. Here, the use of Doetsch transform and
Weyl disentanglement formula2 allow us to write the relevant

1In the second line we have used the identity f (∂x)eαx = f (α)eαx .
2If [Â,B̂] = k ∈ C, then eÂ+B̂ = e−k/2eÂeB̂ (see Ref. [9] for

details).
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solution in a quite straightforward way as follows:

F (x,τ )= 1

2
√

π

∫ ∞

0
dt

1

t3/2
exp

{
− 1

4t
− tτ 2

}
e−tτ 2(x−c∂x )f (x)

= 1

2
√

π

∫ ∞

0
dt

1

t3/2
exp

{
−

(
1

4t
+ tτ 2 + τ 4t2

2

)}

× e−tτ 2xf (x + cτ 2t), (1.16)

while the use of pseudodifferential operators would require a
more cumbersome analysis.

According to the discussion developed so far it is evident
that the combined use of integral transform and operational
methods offers the natural environment to deal with fractional
and/or pseudo-operators. Within this context the Laplace
transform method offers a wealth of possibilities. For example,
by assuming that the identity [7]

1√
a2 + b2

=
∫ ∞

0
dtJ0(bt)e−at (1.17)

can be extended to operators, we find [11]

1√
∂2
x + 1

=
∫ ∞

0
dtJ0(t)e−t∂x . (1.18)

We can therefore express the solution of a problem of the type√
∂2
x + 1f (x) = g(x), (1.19)

with f (x) an unknown function, as

f (x) =
∫ ∞

0
dtJ0(t)g(x − t). (1.20)

The use of the above transform allows us to cast the equation

∂τF (x,τ ) =
√

∂2
x + 1F (x,τ ) (1.21)

in the form

F (x,τ ) =
∫ ∞

0
dtJ0(t)∂τF (x − t,τ ). (1.22)

Unfortunately, this equation is of limited usefulness since the
convolution integral on the right-hand side does not produce
well behaved functions.

II. RELATIVISTIC SCHRÖDINGER EQUATION

As a variation on the pseudofractional heat equation,
we consider the relativistic (1+1 dimensional) Schrödinger
equation for a particle of mass m, that writes

i∂τ�(η,τ ) =
√

1 − ∂2
η�(η,τ ), �(η,0) = φ(η), (2.1)

where time and position variables are normalized to the
Compton wavelength (–λc = h̄/mc):

τ = ct
–λc

, η = x
–λc

.

It describes the quantum evolution of a relativistic free
particle and does not include negative energy contributions.
The use of the Schrödinger equation in the form given
by Eq. (2.1) has been criticized on the basis of arguments

concerning its nonlocality, as a consequence of the nonlocal
character of the fractional operators. The problem is of genuine
mathematical nature and does not arise from the potential as
in the case of the nonlocalities associated with the fermionic
nature of nucleons in nuclear many-body problems. The
initial negative reaction to Eq. (2.1) stems, probably, from
the intrinsic mathematical difficulties rather than due to a real
physical reason. In Ref. [12] it is clearly stated that Eq. (2.1)
has been ruled out as a tool to develop the relativistic quantum
theory for reason of simplicity (i.e., to deal with simpler
expressions, avoiding square roots of operators) but not on the
basis of a real “physical cogency.” Even though the questions
about the intrinsic nonlocal nature of Eq. (2.1) are subtle
and have opened a long-standing debate, the relevant physical
consequences do not display any disturbing feature. This point
has been reconsidered in various papers (see Ref. [13]) where
its physical legitimacy has been discussed in depth.

From the mathematical point Eq. (2.1) can be transformed
into a pseudoheat equation by a Wick rotation, and thus its
solution can be written by following the procedure outlined
in Sec. I. However, the obtained result is ambiguous and
hampered by the relevant physical interpretation and the fact
that the convergence of the integral representation (1.8) with
τ 2 → −τ 2 is not ensured. For this reason we will treat the
problem following a different approach.

The evolution operator associated to Eq. (2.1) can be written
as follows:

Û (τ ) = e−iτ
√

1−∂2
η

=
∞∑

n=0

(−1)n
[
τ 2

(
1 − ∂2

η

)]n

(2n)!

{
1 − iτ

2n + 1

√
1 − ∂2

η

}
.

(2.2)

The fractional operator appearing in the series can be handled
by means of a trick, often exploited in the theory of the
fractional derivatives (see also the forthcoming section),
namely

√
1 − ∂2

ηφ(η)= 1 − ∂2
η√

1 − ∂2
η

φ(η)= 1 − ∂2
η√

π

∫ ∞

0
ds

e−s

√
s
es∂2

η φ(η),

(2.3)

where the last equality has been obtained using the Laplace
transform identity

a−ν = 1

�(ν)

∫ ∞

0
dse−assν−1 (ν > 0). (2.4)

In the case φ(η) = e−η2
, from the Glaisher identity (1.9) we

obtain

√
1 − ∂2

ηe−η2 = 1 − ∂2
η√

π

∫ ∞

0
ds

1√
s(1 + 4s)

× exp

{
−

(
s + η2

1 + 4s

)}
, (2.5)
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and taking into account the following identity involving the
two-variable Hermite polynomials [11,14]:

∂n
x eax2 = Hn(2ax,a)eax2

(
Hn(x,y) = n!

[n/2]∑
k=0

xn−2kyk

(n − 2k)!k!

)
, (2.6)

we can cast the free particle solution of the relativistic
Schrödinger equation in the form

�(η,τ ) = A(η,τ )e−η2 + iB(η,τ ), (2.7)

where

A(η,τ ) =
∞∑

n=0

(−1)n
τ 2n

(2n)!

n∑
k=0

(−1)k
(

n

k

)
H2k(2η, − 1),

B(η,τ ) =
∞∑

n=0

(−1)n+1 τ 2n+1

(2n + 1)!

n+1∑
k=0

(−1)k
(

n + 1

k

)
f2k(η),

(2.8)

f2k(η) = 1√
π

∫ ∞

0
ds

e−s

√
s(1 + 4s)

H2k

(
2η

1 + 4s
, − 1

1 + 4s

)

× exp

{
− η2

1 + 4s

}
.

The comparison of the previous solution with its nonrelativistic
counterpart shows significant differences, which becomes
more evident with increasing time (see Fig. 2). We will discuss
the relevant physical meaning in the forthcoming sections.

Even though the above relation provides us with a well
behaved solution, extendable to non-Gaussian packets (see
the concluding section), its unappealing features stems from
the fact that it is essentially a Taylor series expansion in time.
To overcome this problem different strategies (including the
already quoted Fourier transform method) will be developed
in the forthcoming sections.

Another commonly adopted method in fractional calculus,
which allows the elimination of noninteger exponents, is based
on the elementary Laplace transform identity already exploited
to derive Eq. (2.5). By using this identity, we can recast
Eq. (2.1) in the form

i∂τ �̄(η,τ ) = −∂2
η�(η,τ ), (2.9)

where

�̄(η,τ ) = exp

⎛
⎝−i

τ√
1 − ∂2

η

⎞
⎠ �(η,τ ),

�(η,τ ) = 1√
π

∫ ∞

0
ds

e−s

√
s
es∂2

η �̄(η,τ ) (2.10)

= 1

2π

∫ ∞

0
ds

e−s

s

∫ ∞

−∞
dξ exp

{
− (η − ξ )2

4s

}
�̄(ξ,τ ).

This is a Schrödinger equation in which time and spatial
derivative operators do not act on the same wave function. The
action of the second-order spatial derivative is indeed mediated
by another operator, inducing a kind of diffusion, whose effect
is that of delocalizing the initial wave function, as is illustrated
in Fig. 3, where we have reported how the integral transform
in the previous equation affects a given function.
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FIG. 3. The function � of Eq. (2.10) (dashed) calculated for an
initial wave function �̄(ξ,0) = ξ 2e−ξ2

(solid).

An alternative way of writing Eq. (2.9) is the following:

i∂τ �̄(η,τ ) = −∂2
η D̂�̄(η,τ ), (2.11)

with

D̂ = 1√
π

∫ ∞

0
ds

e−s

√
s
es∂2

η , (2.12)

that allows the series solution

�̄(η,τ ) =
∞∑

n=0

(iτ )n

n!
�̄n(η), (2.13)

where

�̄n(η) = ∂2
η D̂�̄n−1(η)

= 1

2π

∫ ∞

0
ds

e−s

s

∫ ∞

−∞
dξ exp

{
− (η − ξ )2

4s

}
× ∂2

ξ �̄n−1(ξ ). (2.14)

Let us now consider the inclusion of a potential, so that
Eq. (2.1) becomes

i∂τ�(η,τ ) = [√
1 − ∂2

η + V (η)
]
�(η,τ ). (2.15)

In this case, by introducing the transformation (a kind of
interaction picture)

(η,τ ) = e−iτ
√

1−∂2
η �(η,τ ), (2.16)

the problem to solve becomes

i∂τ(η,τ ) = V̂ (η,τ )(η,τ ), (2.17)

where

V̂ (η,τ ) = eiτ
√

1−∂2
η V (η)e−iτ

√
1−∂2

η

= V (η) + iτ
[√

1 − ∂2
η ,V (η)

]
− τ 2

2

[√
1 − ∂2

η ,
[√

1 − ∂2
η ,V (η)

]] + O(τ 3).
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The previously outlined procedures can still be applied, but
the solution of problem (2.17) should be expressed as follows:

�(η,τ ) = eiτ
√

1−∂2
η

{
exp

(
− i

∫ τ

0
dτ ′V̂ (x,τ ′)

)}
+
�(η,0),

(2.18)

where {}+ denotes the Dyson time-ordering operation. In
this case the ordering procedure becomes mandatory because
the Hamiltonian contains the explicitly time-dependent term
V̂ (η,τ ), which does not commute with itself at different times.

III. THE HEISENBERG PICTURE AND THE FRACTIONAL
OPERATORS

In this section we will show how the use of methods
involving fractional derivatives can be useful to study physical
states whose evolution is ruled by relativistic Hamiltonians.
We will show that these methods find a natural application in
the treatment of the Heisenberg equations of motion of the
physical observables and in the evaluation of their average
values.

The relativistic Hamiltonian for a free particle is (we limit
ourselves to the one-dimensional motion)

Ĥ = c
√

m2c2 + p̂2, (3.1)

and the Heisenberg equations of motion for the position and
momentum operators can be written as3

d

dt
x̂ = 1

ih̄
[x̂,Ĥ ] = c

p̂√
m2c2 + p̂2

,
d

dt
p̂ = 0, (3.2)

and the relevant solution reads

x̂(t) = x̂(0) + cp̂(0)√
m2c2 + p̂2(0)

t. (3.3)

As also noted in Ref. [13], the operator dx̂/dt is the velocity
operator, whose definition has been introduced in quite a
natural way within the present context, without the necessity of
defining a new position operator as usually done in the case of
the Dirac theory and as discussed in the forthcoming section.

The dynamical behavior of a wave packet undergoing an
evolution ruled by Hamiltonian (3.1) can be inferred from the
evaluation of the particle position and momentum at a given
time t . By assuming a packet initially Gaussian,

�(x) = 1

(2πσ 2)1/4
exp

(
− x2

4σ 2

)
, (3.4)

we find that it spreads in time according to the relation

σ 2(t) =
〈
x̂2(0) + c2p̂2(0)

m2c2 + p̂2(0)
t2

〉

= 1√
2πσ

∫ ∞

−∞
dx exp

(
− x2

4σ 2

)

×
[
x̂2(0) + c2p̂2(0)

m2c2 + p̂2(0)
t2

]
exp

(
− x2

4σ 2

)
. (3.5)

3Note that [x̂,f (p̂)] = ih̄∂pf (p̂).

0 1 2
0

0.5

1

a

FIG. 4. Plot of the functions R(a) (solid) and F (a) (dashed)
defined in the text.

The evaluation of the contribution depending on the momen-
tum operator can be performed using identities (2.4) and (1.9),
and yields

A(t)=
〈

c2p̂2(0)

m2c2 + p̂2(0)
t2

〉
= c2–λ2

c t
2

√
2πσ

∫ ∞

−∞
dx exp

(
− x2

4σ 2

)
∂2
x

×
{ ∫ ∞

0
ds

e−s

√
�(s)

exp

(
− x2

4σ 2�(s)

)}
, (3.6)

where

�(s) = 1 + a2s

(
a =

–λc

σ

)
.

The explicit evaluation of the previous integral allows us to
write the width of the packet in the form

σ 2(t) = σ 2

[
1 + 1

4

(
a

σ

)2

R(a)c2t2

]
, (3.7)

where

R(a) = 2
√

2
∫ ∞

0
ds

e−s

(2 + a2s)3/2
. (3.8)

Equation (3.7) reduces to its nonrelativistic version for R(a) =
1. As shown in Fig. 4, the function R(a) decreases with
increasing a. This means that when the particle is initially
localized better than its Compton wavelength, the spreading
of the packet occurs at a rate slower than in the nonrelativistic
case. Moreover, it is easy to show that

〈[x̂(t),x̂(0)]〉 = −i–λcF (a)ct, (3.9)

with

F (a) = 2
√

2√
π

∫ ∞

0
ds

√
se−s

√
2 + a2s

, (3.10)

in which the standard nonrelativistic result is corrected by the
function F (a). Also this function decreases with increasing
argument (see Fig. 4), and the conclusion drawn for the
spreading extends to the Heisenberg principle.

The role of the relativistic corrections in Eqs. (3.8) and
(3.10) can be understood as follows. The indetermination in
position induces an indetermination in momentum and thus
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in velocity, which is in turn responsible for the relativistic
corrections that we are dealing with. The contributions derived
from these corrections are, however, of higher order in h̄, as
easily inferred from the series expansion of the functions R(a)
and F (a). For example, the function R(a) at lowest order in a

reads

R(a) = 1 − 3
4a2. (3.11)

This means that the ordinary nonrelativistic limit is obtained
by just keeping the previous results at the lowest order in a2.

In the case of a particle subject to a linear potential

Ĥ = c
√

m2c2 + p̂2 − f̂ x, (3.12)

the equations of motion are written as

d

dt
x̂ = c

p̂√
m2c2 + p̂2

,
d

dt
p̂ = 1

ih̄
[p̂,Ĥ ] = f̂ , (3.13)

and thus for the position operator we obtain

x̂(t)= x̂(0)+ c

f̂
[
√

m2c2 + [t f̂ + p̂(0)]2 −
√

m2c2 + p̂2(0)].

(3.14)

The evaluation of average values becomes more complicated,
but still requires the use of fractional operators; we will not
further dwell on this point but note that the method of the
fractional derivatives offers a useful tool to treat problems
involving even more complicated potentials. Also in this
case we have assumed that the Schrödinger and Heisenberg
pictures are linked by the usual unitary transformation [we
have indeed evaluated the average value of a given operator
as 〈X̂(t)〉 = 〈�| exp(iĤ t/h̄)X̂|�〉]. Even though such an
assumption sounds trivial, it is not taken for granted. In
particular, when a potential is included, its mathematical
legitimacy should be studied in a more rigorous way.

IV. PARAMETRIZAZION OF A UNIT MATRIX
AND FRACTIONAL OPERATORS

In the previous section we have ignored the existence
of another procedure to eliminate the square roots, which
is essentially the Dirac parametrization method in terms of
Clifford numbers [14,15]. The price to be paid is the necessity
of introducing a matrix realization of these numbers, which
inevitably increases the dimensionality of the problem.

Before proceeding further, we believe it worthwhile to treat
the Dirac method using a slightly unconventional procedure,
according to which we will point out that this method is a tool
to get the square root of a 2 × 2 or a 4 × 4 unit matrix in terms
of Pauli or Clifford numbers, respectively.

The use of the Pauli numbers (matrices)4

σ 1 =
(

0 1

1 0

)
, σ 2 =

(
0 −i

i 0

)
, σ 3 =

(
1 0

0 −1

)
,

(4.1)

4From now on, an underlined letter denotes a matrix and a product
of matrix by a (pseudo)differential operator will be denoted by a hat
over an underlined letter.

with

{σ i,σ j } = 2δij 1, [σ i,σ j ] = 2iεijkσ k

(i,j,k = 1,2,3), (4.2)

allows us to estabilish the following identity [�v = (v1,v2,v3),
vi ∈ C]:

N = �σ · �v = v
√

1. (4.3)

The anticommutative properties of the Pauli numbers
allows us also to prove that

N2k = N2k1, N2k+1 = N2kN, (4.4)

from which it is easy to show that

eyN = cosh(yN )1 + 1

N
sinh(yN )N. (4.5)

As an example, let us apply the parametrization (4.3) to the
case of the relativistic one-dimensional Schrödinger equation.
In this case, the relevant Hamiltonian [see Eq. (2.1), written in
terms of the usual coordinate x,t] can be written as

Ĥ = σ 1p̂c + σ 3mc2 (4.6)

and the associated Schrödinger equation reads

ih̄∂t� =
(

mc2 p̂c

p̂c −mc2

)
�, (4.7)

where � is a two-component wave function. This equation
should not be confused with the Pauli equation, but it should
be understood as a two-dimensional Dirac equation with the
components of the wave function referring to the positive and
negative energy states.

By using Eq. (4.5), the solution of Eq. (4.7) can be written
as

�(t) = exp

(
− i

h̄
Ĥ t

)
�(0) =

{
cos

(
c
–λc

√
1 + π̂2t

)
1

− i
sin

(
c

–λc

√
1 + π̂2t

)
√

1 + π̂2
(σ 1π̂ + σ 3)

⎫⎬
⎭�(0)

×
(

π̂ = p̂

mc

)
(4.8)

that represents a kind of oscillation between the two states, with
negative and positive energies. This aspect of the problem can
be better understood from the Heisenberg equations of motion
associated with the Hamiltonian (4.6), namely

d

dt
x̂ = cσ 1,

d

dt
p̂ = 0, ih̄

d

dt
σ 1 = −2imc2σ 2. (4.9)

This equation should be completed with the Hamilton equation
of motion for the σ k matrices that can be written in a vector
form as follows:

d

dt
�σ = �̂� × �σ, �̂� = 2

c
–λc

(π̂ ,0,1). (4.10)

This equation is reminiscent of the Bloch-type equation ob-
tained by Feynman, Vernon, and Hellworth in their rehandling
of the two-state Schrödinger equation [16]. In this case the
two states are represented by the positive and negative energy
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solutions and the coupling between positive and negative states
is realized by the matrix σ 3, whose time dependence is just
an oscillating function between positive and negative values.
In a forthcoming paper we will discuss more thoroughly the
physical properties of Eqs. (4.7) and (4.10).

Analogous considerations can be developed for the pseu-
doheat equation (1.4), that, in a two-component form, reads

∂t� = −
(

1 i∂x

i∂x −1

)
�, (4.11)

where the negative and positive solutions are now interpreted
as backward and forward heat fluxes.

In the case of 4 × 4 matrices, the Dirac parametrization
applies:

N = �α · �v + βq = N
√

1 (N =
√

v2 + q2 ∈ C),

(4.12)

where �α,β are the Clifford numbers (matrices) realized as

α1 =

⎛
⎜⎜⎜⎝

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎞
⎟⎟⎟⎠ , α2 =

⎛
⎜⎜⎜⎝

0 0 0 −i

0 0 i 0

0 −i 0 0

i 0 0 0

⎞
⎟⎟⎟⎠ ,

(4.13)

α3 =

⎛
⎜⎜⎜⎝

0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

⎞
⎟⎟⎟⎠ , β =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

1 0 0 0

0 0 0 −1

⎞
⎟⎟⎟⎠ ,

with

{αj ,αk} = 2δjk1, {αj ,β} = 0,

β2 = 1 (j,k = 1,2,3). (4.14)

We stress that, if the only request is to write N as the
product of a number by the square root of a unit matrix, other
parametrizations, like

N = �α′ · �v + α3u, �α′ = (α1,α2,β), (4.15)

or

N = Nβ, (4.16)

can also be used. The last parametrization has the advantage
of being expressed in terms of a diagonal matrix. In some
sense this is the essence of the so-called Foldy-Woythusen
transformation [12], and will be discussed in the forthcoming
section.

In order to see whether this discussion has any relevance
to the theory of fractional derivatives and/or pseudo-operators,
we consider the following 4 × 4 operator:

Ô = (
1 − ∂2

x

)
1. (4.17)

The square root of this operator can be written in terms of the
Clifford matrices introduced before as follows:

Ô
1/2 = i �α · �̂d + β, d̂k = 1√

3
∂x (k = 1,2,3), (4.18)

and therefore the pseudoheat equation (1.4) can be rewritten
in the following form:

∂τ� = −Ô
1/2

�, (4.19)

where � is a four-component function. By introducing the
matrices

γ
k

= βα k (k = 1,2,3) (4.20)

and multiplying both sides of Eq. (4.19) by β, one has (τ ′ =
−τ )

β∂τ ′� = (i �γ · �̂d + 1)�, (4.21)

that, as will be discussed in the forthcoming section, is just
a Dirac-like form. The last remark suggests that a link can
be found between fractional calculus and Clifford algebras;
further comments about this aspect will be presented in the
next sections.

V. DIRAC EQUATION

In this section we will treat the Dirac equation and its
implications for the fractional and pseudodifferential operators
calculus. By assuming that the parametrization (4.12) can be
applied also in the case in which �v is replaced by a differential
operator, the Dirac equation for a free particle with mass m can
be written in the Schrödinger form with a Hamiltonian given
by

Ĥ = c�α · �̂p + βmc2, (5.1)

i.e., in terms of the normalized variables introduced in
Eq. (2.1),

i∂τ� = (�α · �̂π + β)�. (5.2)

Moreover, by multiplying both sides of this equation for the
matrix β it assumes the form

iβ∂τ� = Ŝ� (5.3)

with

Ŝ = �γ · �̂π + 1 =
√

1 − π̂2
√

1, (5.4)

where the analogy with the pseudoheat equation (4.21)
becomes even closer. The evolution operator associated with
Eq. (5.2) is given by

Û (τ ) = cos(
√

1 + π̂2τ )1 − i
sin(

√
1 + π̂2τ )√

1 + π̂2
(�α · �̂π + β−1),

(5.5)

and the corresponding solution

�(η,τ ) = Û (τ )φ(η) (5.6)

shows all the relevant features of the evolution of a free Dirac
particle, including the Zitterbewegung, if φ contains positive
and negative energy components.

The Heisenberg equation for the position and momentum
operators reads

d

dτ
�̂η = −i[ �̂η,�α · �̂π + β] = �α, ∂τ

�̂π = 0, (5.7)
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i.e., in this formalism the velocity operator is associated with
the Clifford matrices. As for the matrices αk one has

d

dτ
�α = 2i( �̂π − �αĤ ) (5.8)

that allows to get the solutions for the position operator in the
form

�̂η(τ ) = �̂η(0) + τ �̂πH−1 + i

2
H−1[�α(0) − �̂πH−1]

× (e−2iτ Ĥ − 1). (5.9)

The first two terms in this equation coincides with Eq. (3.3); the
last is a further term accounting for the interference between
particles with positive and negative energy (the Zitterbewe-
gung term) and can be removed by their decoupling. Being
the matrix β diagonal, parametrization (4.16) automatically
satisfies such a request, and yields

d

dτ
�̂η = β

�̂π√
1 + π̂2

. (5.10)

Since the eigenvalues of β have the values ±1, the positive
and negative energy solutions have velocities in opposite
directions. By integrating Eq. (5.10), since the momentum
remains constant, we get

�̂η(τ ) = �̂η(0) + β
�̂π√

1 + π̂2
τ. (5.11)

We close this section by addressing the problem of the
existence of alternative forms for the Dirac equation depending
on the chosen parametrization. In 1971, in a not widespread
known paper [17], Dirac himself proposed a four-component
equation, not containing negative energy solutions and valid
for particles with integer spin. This equation, written in a
form closely similar to the electron relativistic case, contains a
different realization of the matrices αk and β. Without entering
into the details of the physical implications of this type of
equation, which will be discussed elsewhere, we consider the
problem from the point of view that inspired this paper, by
noting that for the product of the square root of a number the
unit matrix also the following parametrization applies:

N = �κ · �w + iδr (N =
√

w2 + r2 ∈ C), (5.12)

where κ1 = −α3, κ2 = α1, κ3 = β, and

δ =

⎛
⎜⎜⎜⎝

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

⎞
⎟⎟⎟⎠ . (5.13)

These matrices satisfy the same anticommutation relation of
Eq. (4.14), except that δ2 = −1. Accordingly we can introduce
the following equation:

i∂τ� = (�κ · �̂π + iδ)�. (5.14)

It resembles the ordinary Dirac equation, but the associated
Hamiltonian is a non-Hermitian operator. Although it has been
derived using the correct correspondence with the relativistic
Schrödinger Hamiltonian, it cannot be exploited in unitary
evolution processes and its physical properties are completely

different from the ordinary Dirac equation (see [10] for further
comments on the use of the matrices κj and δ in the derivation
of Dirac-like matrices).

It is also interesting to note that

N = �κ · �w + δr (5.15)

is such that

N =
√

w2 − r2 (5.16)

and therefore it can provide the square root of the matrix −1
or even of the null matrix (when w2 = r2).

VI. CONCLUSIONS

In this paper we have discussed a number of problems
showing how different analytical methods, from apparently
uncorrelated fields, can be merged to provide interesting and
useful tools. We have presented a general view on the theory
of pseudo-operators and of fractional derivatives and on their
implications for problems regarding the relativistic heat and the
Dirac equations. The latter case has been discussed adopting
a method involving the extraction of the square root of the
unit matrix. We have touched many points and each of them
would deserve a separate and deeper treatment. In particular,
we have stressed that alternative parametrization may lead to
a meaningful alternative. This observation is not entirely new
and, apart from the already quoted Dirac paper [17], the same
problem was addressed also in Ref. [18]. In this paper the
authors insist on what they call the Dirac “dichotomy” and
show that the alternative derivation, based on a 2 × 2 matrix
representation, leads to a two-component equation of the type
discussed in Sec. IV.

In the paper we have not discussed the problem of the
discrete symmetries of Eq. (4.7). For differential equations
with fractional derivatives this problem deserves particular
care [19]. We only remark that for parity (P ) and time reversal
(T ), the corresponding operators can be constructed in terms
of the Pauli matrices in analogy to the procedure followed in
Ref. [20].

A further point, which has not been touched in the paper, is
the nature of equations like the relativistic heat equation (1.4),
generically treated as an evolution equation. The square-root
operator does not allow a classification in the usual sense
(elliptic, parabolic, hyperbolic) (see Ref. [21]). We have
avoided this point, since we have dealt with a genuine Cauchy
problem, namely an initial value problem concerning the
solution of a differential equation first order in time. The
techniques associated with the evolution operator method
are therefore sufficient, provided that the operator is well
defined. The inclusion of boundary conditions would imply
mathematical problems and technicalities beyond the scope of
the paper.

We close the paper briefly mentioning the application of
this method to the case of the wave propagation. It is well
known that the nonrelativistic Schrödinger equation is used in
classical optics to treat the paraxial wave propagation, namely
the case in which the propagation occurs without significant
variation of the field with respect to the axis of propagation
[22]. The equation is obtained as a consequence of the
application of the so-called Leontovich-Fock approximation
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to the Helmholtz equation [23]. The Hamiltonian describing
the propagation of an optical ray in a medium with an index
of refraction n is5

H = −
√

n2 − p2. (6.1)

If the medium is homogeneous n can be considered constant;
the variable p denotes the beam divergence and the use of the
standard procedure allows us to replace it with the operator
−i–λ∇q , where q is the transverse coordinate and λ is the
wavelength of the propagating radiation. The “quantization”
procedure, involving –λ instead of h̄, is guaranteed by the fact
that p and q are canonically conjugated variables. The method
we have described in this paper can therefore be applied to the
study of nonparaxial wave evolution and to the quantitative
analysis of the deviation from the paraxial case.

APPENDIX A

The identity

e−x
√

y = 1

2
√

π

∫ ∞

0
dtt−3/2 exp

(
− 1

4t
− tx2y

)
(A1)

is sometimes referred to as the Doetsch integral transform [7].
We dwell on the proof of this identity because, albeit available
in literature [24,25], it yields a first glimpse of how methods
from different fields of calculus can be combined to get the
desired result.

The substitution t = 1/ξ 2 in the integral in the right-hand
side of Eq. (A1) leads us to consider the function defined as

I (a,b) = 1√
π

∫ ∞

0
dξ exp

(
− a2ξ 2 − b2

ξ 2

)
, (A2)

which is easily shown to satisfy the differential equation

∂bI (a,b) + 2aI (a,b) = 0, I (a,0) = 1

2a
. (A3)

The solution of this equation is given by

I (a,b) = I (a,0)e−2ab, (A4)

5This Hamiltonian is not invariant under Lorentz transformations
and therefore cannot be considered relativistic. Nevertheless, a Dirac-
like parametrization can be performed as

Ĥ = −�α · �̂p + iβn.

that for a = 1/2, b = x
√

y reproduces Eq. (A1). In this case,
from Eqs. (A4) and (A2) we obtain also the identity

e−x
√

y = 1√
π

∫ ∞

0
dξ exp

(
− ξ 2

4
− x2y

ξ 2

)
, (A5)

that can be exploited to write the solution of Eq. (A1) in the
following alternative form:

F (x,τ ) = 1√
π

∫ ∞

0
dξ exp

(
− ξ 2

4
− τ 2

ξ 2
∂x

)
f (x)

= 1√
π

∫ ∞

0
dξeξ 2/4f

(
x − τ 2

ξ 2

)
. (A6)

APPENDIX B

In this appendix we show how the already quoted Laplace
transform method can be applied to evaluate the square root
of a matrix.

As an example, let us consider the following matrix:

R = a1 + bσ 1, (B1)

with a > b > 0. For its square root we can write

√
R = R√

R
= R

(
1√
π

∫ ∞

0
ds

e−sR

√
s

)
, (B2)

where identity (2.4) has been used, and, as a consequence of
Eq. (4.5), it turns out that

√
R = R√

π

∫ ∞

0
ds

e−sa1

√
s

{cosh(bs)1 − sinh(bs)σ 1}

= R

2

{
1√

a − b
(1 − σ 1) + 1√

a + b
(1 + σ 1)

}
. (B3)

This method can be applied to more general matrix forms, by
combining the previous integral transform with more conven-
tional tools, like the Cayley-Hamilton theorem. Moreover, it is
not limited to the square root but can be formulated in a wider
context. For ν > 0, we get indeed

R−ν = 1

2

{
1

(a − b)ν
(1 − σ 1) + 1

(a + b)ν
(1 + σ 1)

}
. (B4)
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