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Particle in a Möbius wire and half-integer orbital angular momentum
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Restricting one particle on the rim of a Möbius strip (Möbius wire), its wave functions are explicitly calculated
through the nonrelativistic quantum theory. Demanding the wave function to be single valued, it is proven that in
the case of a narrow strip the orbital angular momentum of the particle takes both integer and half-integer values
of h̄. In addition, the energy values of two chiral Möbius wires are proven to be equal.
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I. INTRODUCTION

The angular momentum operator in the quantum mechanics

domain is defined as any vectorial operator �̂J = (Ĵx,Ĵy,Ĵz),
whose components obey the well-known commutation
relations [Ĵx,Ĵy] = ih̄Ĵz, [Ĵz,Ĵx] = ih̄Ĵy , and [Ĵy,Ĵz] = ih̄Ĵx .
Out of these relations, someone can extract any property
of these operators, or even study the angular momentum
coupling between different sources (e.g., the total spin angular
momentum of a two-electron system, or the spin and orbital
angular momentum of an electron in a Coulombic field) [1].
It is noteworthy that the explicit form of Ĵx , Ĵy , and Ĵz is not
necessary.

It can be proved, for instance, that Ĵ 2 and one of its
components, say Ĵz, share the same eigenfunctions |j,m〉 [1].

Ĵ 2|j,m〉 = j (j + 1)h̄2|j,m〉,
(1)

Ĵz|j,m〉 = mh̄|j,m〉.
The eigenvalues of the Ĵ 2 and Ĵz operators are j (j + 1)h̄2

and mh̄, respectively. In addition, m is allowed to take values
from −j to j in a step of one (i.e., m = −j, − j + 1, . . . ,j −
1,j ). Of course, this implies that j and m can only be either
integer or half-integer numbers; otherwise −j can never reach
j , adding several times the unit. Ignoring angular momenta
coupling, it is well established that orbital angular momentum
is related only to integer m values, whereas spin is related to
all possible values of m.

Usually, in the textbooks the whole story starts with the
particle confined in a ring of radius R. If µ is the mass of
the particle, and φ the rotation angle, then the Hamiltonian
operator of the system is

Ĥ = − h̄2

2µR2

d2

dφ2
, (2)

and the solution of the Schrödinger equation Ĥ�m = Em�m

gives Em = h̄2m2/2µR2 and �m = c1e
imφ + c2e

−imφ . The
choice of the exact values of c1, c2, and m is not straight-
forward. The Hamiltonian operator commutes with both
the angular momentum operator L̂z = −ih̄∂/∂φ, and the
parity operator �̂φ(φ → −φ), but the latter operators do not
commute to each other. The eigenfunctions of L̂z are N±e±imφ ,
whereas those of �̂φ are N±(eimφ ± e−imφ). So, someone
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should choose what kind of solutions they need. The former
notation is appropriate for the next step, the particle on a
sphere, and the latter is suitable for drawing the wave functions
on a sheet of paper.

To obtain the values of m, we have to apply the boundary
conditions. But what are the boundary conditions? Someone
could say that the wave function must be single valued at
any (x, y) point, or that the density must be single valued.
In the first case only integer m values are allowed, while
in the second case both integer and half-integer values are
obtained, independently of the c1 and c2 values. Of course, the
single valuedness of a wave function constitutes a sine qua
non postulate of quantum mechanics, but it turns out that it
can be rationalized. Merzbacher stated that “It may even be
said that the strange double-valued eigenfunctions of angular
momentum have appeared only because we have changed from
Cartesian coordinates, which are adapted to the homogeneity
and isotropy of ordinary space, to polar coordinates, which are
singular at the coordinate origin and distinguish a particular
direction in space” [2]. Moreover, Henneberger and Opatrný
reported, “In bound states, the superposition principle by
itself guarantees single-valuedness” [3]. Nevertheless, the
particle on a ring has only integer m values. Providing the
N±e±imφ wave functions are selected, then L̂z has eigenvalues
0h̄, ± 1h̄, ± 2h̄, . . ..

Next, moving to the particle on a sphere we introduce
the angle θ , and the conclusions we can infer are similar.
The wave functions are the spherical harmonics Yj,m(φ,θ ),
and the fact that j , and thus m, takes only integer values
can be substantiated in several ways [4]. It seems that half-
integer orbital angular momentum in the three-dimensional
space cannot exist, and that spherical harmonics with half-
integer j values do not describe an angular momentum
eigenfunction [4].

In the present study, we present a one-particle system in the
three-dimensional space, with the eigenvalue of L̂z taking both
integer and half-integer values toward some limit (vide infra),
while the eigenfunction of the system can be characterized as
pseudo-double-valued. This system is the Möbius wire.

II. THE PARTICLE IN A MÖBIUS WIRE

The Möbius surface was first introduced by A. F. Möbius
and J. B. Listing, and practically it can be constructed using a
strip of paper, twisting one narrow edge by 180◦, and attaching
it to the other. Alternatively, it is the surface created by a
stick, which rotates around a circle of radius R, and at the
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same time around itself with the half angular velocity (see
Fig. 1 and Ref. [5]). Depending on the direction (clockwise
or counterclockwise) of the self-rotation, we get two different
Möbius strips, which are mirror images to each other (chirality)
[5]. The Möbius wire is defined as the rim of a Möbius surface.
Beginning from any point of this curve and moving on it,
someone will arrive at the same point after a 4π rotation. The
Cartesian coordinates of such a shape as a function of the
rotation angle φ are [5]

x = [R + s cos(±φ/2)] cos φ,

y = [R + s cos(±φ/2)] sin φ, (3)

z = s sin(±φ/2),

where R and s are parameters of the Möbius wire (see Fig. 1),
and the plus or minus sign covers both chirals. Note that if
s � R then the Möbius wire tends to become a “double”
circle. Observe, also, that for given x and y values, the angle
φ is fully determined. Using the first two equations, we get

φ = arctan(y/x). (4)

Consequently, the z coordinate depends on x and y, z =
z(x,y). So, even if we wrote φ = φ(x,y,z), then we would
result in φ = φ(x,y,z(x,y)) = φ(x,y). The necessity of the
third dimension (z coordinate) will become clear later. Finally,
the partial derivatives of φ relative to x, y, and z, are

∂φ

∂x
= − sin φ

r
,
∂φ

∂y
= cos φ

r
,
∂φ

∂z
= 0, with

(5)
r = R + s cos(φ/2),

so that ∂/∂x = − sin φ/r ∂/∂φ, ∂/∂y = cos φ/r ∂/∂φ, while
∂/∂z vanishes, and the Hamiltonian operator for both chiral
systems in terms of φ is

Ĥ = − h̄2

2µ
∇2 = − h̄2

2µ

1

r

∂

∂φ

1

r

∂

∂φ
, or

Ĥ = − h̄2

2µ

(
1

r

∂

∂φ

)2

. (6)

R

z

ϕ
ϕ/2

y

xs

FIG. 1. A stick of length 2s rotates around the circle of radius R

(dashed line), and simultaneously around itself. The former rotation
occurs twice faster than the latter, so that the stick after φ = φ + 2π

rotation will have the same position, but opposite orientation. The
orbit of the two edges of the stick constitutes the Möbius wire.

Now, r is rewritten as r = R[1 + λ cos(φ/2)] = Rρ(φ), where
λ = s/R, and the Hamiltonian reads

Ĥ = − h̄2

2µR2

(
1

ρ

∂

∂φ

)2

. (7)

Markedly, the Schrödinger equation Ĥ�m = Em�m is
solved explicitly and gives Em = h̄2m2/2µR2 with �m =
c1 eimφe2imλ sin(φ/2) + c2 e−imφe−2imλ sin(φ/2). The choice of c1

and c2 is a matter of our will: If we want to exploit the
commutation of Ĥ with M̂ = −ih̄/ρ ∂/∂φ the eigenfunctions
become �m = N±e±imφe±2imλ sin(φ/2), or the commutation of
Ĥ with the parity operator �̂φ , and then �m is either
Nc cos{m[φ + λ sin(φ/2)]} or Ns sin{m[φ + λ sin(φ/2)]}. In
order to find the allowed m values, we impose �m(φ + 4π ) =
�m(φ), which yields m = 0,±1/2,±1,±3/2,±2, . . . If the

FIG. 2. Plots of the eigenfunctions of the Möbius wire (solid
lines) as compared to those of the ring model (dashed lines) for m =
1/2 and m = 1, and for both sine and cosine cases. The eigenfunctions
are normalized so that their maximum is at 1.0. The φ values are
counted in π radians.
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z coordinate were absent, then the curve in question would
have a crossing, and thus break down the proposed boundary
conditions.

In Fig. 2 the wave functions of cases m = 1/2 and 1
with λ = 0.3 are shown. For reasons of comparison the wave
functions of the particle on a ring are also included (λ = 0).
Notice that the eigenfunctions at angles φ and φ + 2π , in
general, have completely different values (i.e., they are not
related by equality or a sign inversion).

Observe, now, that the operator M̂ has eigenvalues equal to
mh̄, and toward the limit s � R, it transforms to L̂z. Indeed,
in this case the Möbius wire looks like two circles of radius R

almost attached to each other, and the eigenfunctions adopt the
form �m = N±e±imφ (λ → 0). Hence, after a rotation of 2π

radians the wave function may have the same value (integer
m value) or exactly the opposite (half-integer m value). The
following question is in order: In the case of a half-integer
m value, what is the value of the eigenfunction at a specific
φ, minus or plus something? The answer is that it depends
on “which” circle the particle is. Thus the eigenfunction is
characterized as pseudo-double-valued.

III. SUMMARY AND CONCLUSIONS

Studying the one-particle system confined in a Möbius wire
through the nonrelativistic quantum mechanical principles,
we prove that in the three-dimensional (3D) space we may
have half-integer projections (on an axis) of orbital angular
momentum, retaining the single-valuedness property of the
wave function. Of course, half-integer values of the total
angular momentum quantum number j have already been ruled
out in the literature [4]. The reason for that may be ascribed to
the fact that we cannot construct a “single-sided” 3D volume
(introducing two angles, φ and θ ); we need the fourth dimen-
sion. In addition, we prove that the two chiral conformations of
the Möbius wire have the same Hamiltonian, and thus exactly
the same energy values, although it might seem obvious.
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