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Angular Schmidt modes in spontaneous parametric down-conversion
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We report a proof-of-principle experiment demonstrating that appropriately chosen set of Hermite-Gaussian
modes constitutes a Schmidt decomposition for transverse momentum states of biphotons generated in the
process of spontaneous parametric down-conversion. We experimentally realize projective measurements in the
Schmidt basis and observe correlations between appropriate pairs of modes. We perform tomographical state
reconstruction in the Schmidt basis, by direct measurement of single-photon density matrix eigenvalues.
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Characterizing entanglement in high-dimensional quantum
systems is a hot topic in quantum information science. One
of the less studied subjects is entanglement in the extreme
case of infinite-dimensional bipartite states. It is, nevertheless,
of much interest, since such states are usual for two-particle
scattering processes, such as spontaneous parametric down-
conversion (SPDC), being one of the most experimentally
attractive source of entangled photons. An approach to
quantifying entanglement in this case was proposed by Law
and Eberly [1]. It is based on Schmidt decomposition, a repre-
sentation of a bipartite state vector as a sum of factorized terms:
|�12〉 = ∑

k

√
λk|uk〉|vk〉, with |uk〉,|vk〉 being eigenvectors of

reduced single-particle density matrices (so-called Schmidt
modes) and λk corresponding eigenvalues. This decomposition
has several remarkable features:

(1) Schmidt modes, being pure single-particle states, form
a complete and orthogonal basis

(2) Decomposition has a discrete single-sum form; i.e.,
every Schmidt mode is correlated with exactly one counterpart

(3) Number of significant eigenvalues, defined as K =
1/

∑
k λ2

k , quantifies entanglement present in the system.
Despite its convenience as a mathematical tool, the concept

of Schmidt decomposition is not widely recognized as directly
applicable for actual quantum optical experiments. In this
Rapid Communication we would like to change the per-
spective by experimentally addressing the physical properties
corresponding to the aforementioned features of Schmidt
decomposition. Specifically, we choose spatial degrees of
freedom of biphoton field as an experimentally convenient
example of an infinite-dimensional system.

Angular spectrum of biphotons is well recognized as an
attractive object to study multidimensional entanglement, and
its properties were experimentally investigated in numerous
works during the last decade. These were focusing on two main
alternatives: EPR-like correlations in transverse momentum
[2–5] and entanglement in orbital angular momentum [6–17].
Both approaches may be addressed on the same grounds;
transverse entanglement manifests itself in nonclassical cor-
relations between coherent spatial modes: plane waves in the
first case, and arbitrarily chosen Laguerre-Gaussian modes
in the second one. None of these choices is perfect in
the following sense: the correlations between modes are
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nonideal, meaning that a single mode is correlated to multiple
counterparts. For the EPR case the number of correlated
modes is limited from below by finite angular divergence of
the pump, making the biphoton state always less entangled
then an ideal EPR pair [2,5]. In the case of orbital angular
momentum (OAM) entanglement, LG modes with different
radial indices are in general correlated [18]. It is exactly the
Schmidt decomposition that provides a natural set of modes to
study transverse entanglement in SPDC, meaning that, apart
from fundamental interest, it is of interest for high-dimensional
quantum-state engineering.

A biphoton state generated in a type-I SPDC
process has the following form [19]: |�〉 = |vac〉 +∫

d �k1 d �k2�( �k1, �k2)|1〉k1 |1〉k2 , with �k1,2 being the wave vectors
of scattered photons. In the thick-crystal approximation and
neglecting the walk-off effect caused by birefringence of the
nonlinear crystal, the biphoton amplitude �( �k1, �k2) is described
by the following expression [20–22]:

�( �k1, �k2) ∝ Ep( �k1⊥ + �k2⊥)sinc

[
L( �k1⊥ − �k2⊥)2

4kp

]
, (1)

where Ep(�k) stands for angular spectrum of the pump, L is
length of the crystal, kp the wave vector of the pump, and
subscript ⊥ denotes transverse vector component. We may
rewrite the amplitude in a form of Schmidt decomposition:

�( �k1⊥, �k2⊥) =
∞∑
i=0

√
λiψi( �k1⊥)ψi( �k2⊥). (2)

Unfortunately, there is no analytical expression for Schmidt
modes known for an exact wave function (1). We will
assume the pump to be Gaussian and approximate the
biphoton amplitude by a double-Gaussian form as proposed in
Refs. [23,24]:

�( �k1, �k2) ∝ exp

[
− ( �k1⊥ + �k2⊥)2

2a2

]
exp

[
− ( �k1⊥ − �k2⊥)2

2b2

]
,

(3)

which allows one to find Schmidt decomposition in an
analytical form [1]. The wave function (3) depends on two
experimentally adjustable parameters: pump divergence a

and phase-matching angular width b, and the corresponding
Schmidt modes may be shown to be Hermite-Gaussian (HG)
or Laguerre-Gaussian (LG) modes with appropriately chosen
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widths. Namely, in Cartesian coordinates {k1(2)x,k1(2)y} the
decomposition reads

�( �k1, �k2) =
∑
mn

√
λnλmψn(k1x)ψm(k1y) × ψn(k2x)ψm(k2y),

(4)

with ψn(k1x,2x) = ( 2
ab

)1/4φn(
√

2
ab

k1x,2x) and φn(x) =
(2nn!

√
π )−1/2e−x2/2Hn(x) being HG functions. Eigenvalues

decrease exponentially with growing n:

λn = 4ab
(a − b)2n

(a + b)2(n+1)
. (5)

We performed the numerical calculation of eigenvalues and
eigenmodes for exact wave function (1) for the experimental
values of pump and phase-matching bandwidths. The results
were indeed close to those predicted by the double-Gaussian
model, validating its applicability in our experimental
conditions.

Since expression (4) is a product of two decompositions
depending on k1,2x and k1,2y , the Schmidt number, quantifying
entanglement in the system, has the form K = Kx × Ky , with

Kx = Ky =
(

1∑∞
n λ2

n

)
= a2 + b2

2ab
. (6)

Our main goal was to realize projective measurements
in the Schmidt basis experimentally. The simplest case is a
zeroth-order HG00 mode, which can be filtered by appropriate
coupling to a fundamental Gaussian mode of the single-mode
fiber. So a single-mode fiber followed by a photon-counting
detector would realize a projector on the HG00 mode. For
higher-order modes one has to use phase holograms, trans-
forming the Gaussian beam into the HGnm mode [25–27].
When the appropriate hologram is chosen, the corresponding
HG mode is transformed into a Gaussian one, whereas the
others transform to orthogonal ones, so only that mode is
transmitted through the fiber, realizing a desired projection. For
HG modes the holograms look essentially like stepwise phase
masks introducing a phase shift equal to Arg[Hn(x)Hm(y)]
into the beam.

A schematic of experimental setup is presented in
Fig. 1. We used a 325 nm continuous-wave He-Cd laser to
pump a 2-mm-thick BBO crystal cut for collinear frequency
degenerate type-I phase matching. The phase-matching
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SMF/M
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M

FIG. 1. (Color online) Experimental setup realizing projective
measurements in Schmidt basis (see text for details). Phase mask
(PM) is shown as transparent for simplicity; actual realization uses
double reflection from SLM as shown in the inset.

bandwidth inside the crystal was estimated to be b =
20 mrad. The laser beam was focused into the crystal by
a 150 mm quartz lens (L1), leading to divergence a =
3.5 mrad (inside the crystal). The particular values of parame-
ters were chosen to reduce the Schmidt number to a reasonably
low value of K ∼ 10, so that only several modes of lower order
were significant. Ultraviolet mirror (UVM) and wide interfer-
ence filter (IF) with 40 nm bandwidth were used to cut off
the pump and additional luminescence. The crystal was put in
the focal plane of a 140 mm lens (L2) to collimate the SPDC
radiation into a ∼3 mm-wide beam, which, after being split
on a 50/50 nonpolarizing beam splitter (BS), was coupled
with 8× microscope objectives (O1, 2) to single-mode fibers
(SMF) placed in the objectives’ focal planes. The optical setup
was aligned to match the fundamental mode of the fiber to a
Gaussian beam corresponding to zeroth-order Schmidt mode
(HG00) for SPDC radiation. The fibers were connected to
single-photon counting modules (Perkin-Elmer), followed by
a coincidence circuit.

We used a reflective Liquid-Crystals-on-Silicon phase-only
SLM placed in the transmitted arm of the BS to display
the holograms. The device used has 1280 × 768 square
pixels of 10µm size. To check the quality of transformation
between HG modes, we used a coherent laser source with
divergence similar to HG00 Schmidt mode. The holograms
were adjusted to minimize the counts rate for a transformed
beam, ensuring its orthogonality to the fundamental Gaussian
mode. We obtained minima with visibility greater than 97%
for modes with n,m � 4. We further checked shapes of
the modes obtained by scanning the detecting SMF tip in
the focal plane of the coupling objective. The obtained
dependencies of the counting rate on fiber tip position R(x)
showed behavior exactly similar to expected convolution
R(x) ∝ | ∫ ∞

−∞ Hnm(x̃/a) exp(− x̃2

a2 ) exp[− (x−x̃)2

a2 ]|2.
To illustrate the single-sum property of Schmidt decom-

position, i.e., demonstrate the pairwise correlations being
characteristic for Schmidt modes, we selected HG00 mode
in the reflected arm, while one of the orthogonal HGnm modes
was selected in the transmitted arm. Coincidence counts rate
Rc for holograms with different n and m in the transmitted
arm are shown in Fig. 2(a). Only the n = m = 0 case displays
a high counting rate, while all others are suppressed with
visibility over 90%, in good agreement with what is expected
for Schmidt decomposition. When some higher-order mode is
selected in the reflected arm also, coincidences are expected
to be registered only when its counterpart is selected in

(a) (b)

FIG. 2. (Color online) Coincidence counting rates for HGmn

modes selected in the transmitted arm of the setup; HG00 mode (a)
and HG10 (b) modes are selected in the reflected arm.
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FIG. 3. (Color online) (a) Single counts rates for HGmn modes
selected in the transmitted arm of the setup. Not normalized, only
background noise was subtracted. (b) Single-photon density matrix
eigenvalues λmn in a HG-modes basis, which are the weights in the
Schmidt decomposition. (c) One-dimensional projection on the plane
n = 0. Red (dark) bars are normalized experimental results, gray
(light) bars are eigenvalues for HG modes predicted by the double-
Gaussian model.

the transmitted arm, which is confirmed by experimental
results presented in Fig. 2(b). We observe the somewhat lower
visibility in this case, which may be explained by the low
quality of phase masks used in the reflected channel, since
phase-step plates made of glass were used instead of the SLM
in that arm of the setup.

When the HGnm mode and HG00 mode were selected in the
transmitted and the reflected arms, respectively, and the fiber
tip was scanned, the coincidence rates behave like an expected
convolution of corresponding modes. Moreover, absolutely
similar behavior was observed, irrespectively of whether the
fiber in the transmitted or in the reflected arm was scanned.
This behavior is a direct experimental evidence of the fact that
projecting one of the photons into a Schmidt mode leads to
a pure (spatially coherent) state for the second one, which is
another feature specific for Schmidt decomposition.

At the same time very different dependencies were observed
for single counts of the detector in the transmitted arm: smooth

wide curves with no local minima, as we would indeed
expect for spatially multimode radiation. The value of the
single-counts rate for central positions of both fiber tips is
directly related to single-photon density matrix eigenvalues
in a Schmidt basis: Rs ∼ 〈ψmn|ρ(s)|ψmn〉 ∼ λmn, providing
a direct way to perform state tomography. Results for this
kind of measurements are presented in Fig. 3(a). These should
be compared with eigenvalues calculated according to the
analytical expression (5) illustrated in Fig. 3(b). To make
the comparison quantitative, one may use Uhlmann’s fidelity
F = Tr

√√
ρρ(exp)√ρ = ∑

m,n

√
λmnλ

(exp)
mn , where λ

(exp)
mn are

experimental estimates for eigenvalues obtained by appro-
priate normalization of single-counts rates. We achieved a
value of F = (92 ± 3)%, showing a good agreement with the
double-Gaussian model.

Experimental measurement of eigenvalues in Schmidt
decomposition provides a direct way of quantifying entangle-
ment in the considered system. We have achieved the following
experimental estimates for Schmidt numbers: Kx = 3.1 ± 0.9
and Ky = 2.7 ± 0.5 in agreement with theoretical prediction
of Kx,y = 2.97 obtained from (6).

The most direct measurement of Schmidt modes shapes
may be performed with ghost-interference techniques [28].
For this purpose we substituted the single-mode fiber in the
reflected channel with a multimode one with approximately
ten times larger core diameter. Multimode fiber, supporting
many spatial modes, served as a “bucket” detector, collecting
the entire angular spectrum of SPDC radiation. A 200 µm slit
was scanned in front of the focusing objective in the same
arm to obtain an image in the coincidence counts. In this
case, we can directly resolve the angular shape of the desired
mode with corresponding hologram inserted in the transmit-
ted arm. Figure 4 shows the obtained “ghost” interference
patterns. They are well approximated by HG functions, as
expected.

We have reported here the first, to our knowledge, experi-
mental attempt to address the physical properties of Schmidt
decomposition for an infinite-dimensional system. We have
applied the classical technique of spatial modes transformation
to study transverse entanglement in SPDC in the most natural
basis of Schmidt modes. We carry on the complete state
reconstruction in a Schmidt basis and determine the Schmidt
number by direct projective measurements. Although a simpler
approach based on measurement of the so-called Fedorov
ratio was proposed [5], it is strictly applicable only in the
asymptotical case of high-transverse entanglement, when the
Schmidt number and Fedorov ratio coincide.

(a) (b) (c)

FIG. 4. (Color online) Ghost images of the first three Schmidt modes: HG00 (a), HG10 (b), and HG20 (c). Solid curves are HG fits.
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We have demonstrated all properties of the Schmidt
modes: perfect one-to-one correlations between modes, spatial
coherence, and expected behavior of eigenvalues for an
appropriately chosen set of HG modes. While LG modes
are currently preferred as a basis for spatial entanglement
experiments, there are cases when Cartesian coordinates on
the plane of transverse momentum components of photons,
corresponding to HG modes, may be more convenient. That is,
for example, the case of high-transverse entanglement, when
the biphoton amplitude is anisotropic, having different shapes
in the direction of the optical axis of the crystal and in the
orthogonal one [5].

Besides studying spatial entanglement in SPDC itself,
Schmidt decomposition provides a natural way to get pure
spatial states of heralded single photons, which is of great im-
portance for quantum information tasks. It is thus an important
step to demonstrate the realization of projective measurements
in the Schmidt basis. An interesting theme to address is the

possibility of preparing an initially factorized spatial state of
biphoton pairs by manipulating the angular spectrum of the
pump. Development of Schmidt mode filtering techniques in a
frequency domain would also be an interesting challenge. We
believe the proof-of-principle results of this work to be another
step on the way to mastering high-dimensional quantum state
engineering with spatial states of photons providing a bridge
between the abstract formalism of Schmidt decomposition
and the physical properties of infinite-dimensional bipartite
systems.
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