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Wave-packet evolution in non-Hermitian quantum systems
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The quantum evolution of the Wigner function for Gaussian wave packets generated by a non-Hermitian
Hamiltonian is investigated. In the semiclassical limit h̄ → 0 this yields the non-Hermitian analog of the Ehrenfest
theorem for the dynamics of observable expectation values. The lack of Hermiticity reveals the importance of
the complex structure on the classical phase space: The resulting equations of motion are coupled to an equation
of motion for the phase-space metric—a phenomenon having no analog in Hermitian theories.
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Effective non-Hermitian Hamiltonians have long been
used for the description of a wide range of open quantum
systems [1]. Their applications range from chemical reactions
to ultracold atoms and laser physics. Complex potentials for
matter waves can be tailored experimentally using standing
light waves [2], and the complex Schrödinger equation appears
in optics using materials with complex refractive index.
The latter analogy was used in the recently reported first
experimental realizations of PT-symmetric non-Hermitian
Hamiltonians [3,4], which boosted the interest in the field
further. While much attention has been paid to the theoretical
study of example systems [5,6], the generic dynamical features
remain hitherto mostly unexplored. The present paper aims to
fill this gap by investigating wave-packet dynamics for general
non-Hermitian systems.

The time evolution of wave packets is a powerful tool for the
understanding of both dynamical and stationary properties of
Hermitian quantum systems [7,8]. Furthermore, it is a conve-
nient way to investigate the semiclassical limit and thus forms
the basis of many semiclassical methods. In what follows
we shall generalize the fundamental ideas of wave packet
dynamics to non-Hermitian systems. From this we derive
classical equations of motion in the spirit of a generalized
Ehrenfest theorem. This will pave the way for the development
of a semiclassical framework for non-Hermitian quantum
systems, or, more generally, absorbing wave equations.

The semiclassical properties of non-Hermitian dynamics
have recently been approached from various directions.
Examples include the study of ray dynamics of absorbing
wave equations for weak non-Hermiticities [9]; the mean-field
approximation for a non-Hermitian many-particle system [6];
the quantum classical correspondence for open quantum maps
in the chaotic regime [10]; and complex extensions of the
quantum probability distribution [11]. In [12] a coherent-state
approximation has been applied to non-Hermitian systems, and
a generalized canonical structure involving a metric gradient
flow has been identified. Here we go beyond this study by in-
vestigating general Gaussian states that are allowed to change
their shapes during time evolution, which can be interpreted as
a time-dependent metric on the corresponding classical phase
space. To derive the classical evolution equations in the spirit
of the Ehrenfest theorem, we study the quantum evolution
equation for the Wigner function and take the semiclassical
limit. This results in an unexpected type of classical phase-

space dynamics in which the evolution equations for the
phase-space coordinates depend on the local metric, and vice
versa. The complex structure of the classical phase space,
which is rarely considered in Hermitian systems, thus becomes
highly relevant in the presence of non-Hermiticity. The main
dynamical effect of the anti-Hermitian part of the quantum
Hamiltonian in this semiclassical approximation is a damping
of the motion. This strengthens the often speculated connection
to classical dissipation where non-Hermitian Hamiltonians are
a recurrent theme in the search for quantum counterparts (see,
e.g., [13] and references therein).

Gaussian coherent states. For a general n-dimensional
quantum system we study the evolution of initial wave packets
of the form

ψ(q) = (det Im B)1/4

(πh̄)n/4
e(i/h̄)[P ·(q−Q)+(q−Q)·B(q−Q)/2], (1)

where P,Q ∈ Rn, and B is a complex symmetric matrix
with positive definite imaginary part so that ψ is localized
around q = Q and normalized to unity. The Gaussian states
(1) with fixed B form a submanifold of Hilbert space which
has a natural complex structure associated with B. In the
semiclassical limit this submanifold can be identified with
the classical phase space, which thus inherits not only the
symplectic but also a metric structure. These relations become
most transparent using a phase-space representation [14]. In
the following we will focus on the evolution of the Wigner
function W of ψ . The Wigner function alllows a direct
computation of expectation values via phase-space integrals
〈ψ,Âψ〉/〈ψ,ψ〉 = 〈A〉W := ∫

WAdz/
∫

Wdz, where Â is the
Weyl quantization of A(z) and z = (p,q) are canonical phase-
space coordinates. The Wigner function of a Gaussian state
(1) is Gaussian:

W (z) = (πh̄)−ne−(1/h̄)(z−Z)·G(z−Z). (2)

Here Z = (P,Q) ∈ Rn × Rn and the matrix G is related to B

by

G =
(

I 0

− Re B I

)(
(Im B)−1 0

0 Im B

)(
I − Re B

0 I

)
.
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The matrix G is nondegenerate, positive, and symmetric, and
thus acts as a metric on phase space. It is also symplectic, i.e.,
it satisfies G�G = �, where

� =
(

0 −I

I 0

)
(3)

is the symplectic, or canonical, structure on phase space. With
such a metric we can associate a compatible complex structure
J with J 2 = −I and �J = G [15]. The structure defined by
�, G, and J turns the phase space into a Kähler manifold.

The Wigner function (2) is localized of order
√

h̄ around
the maximum Z = (P,Q). In the semiclassical limit h̄ → 0
this collapses to a phase-space point Z. Hence the expectation
value of an observable Â satisfies

〈Â〉W = A(Z) + O(h̄) (4)

for A(z) smooth. The metric G describes the shape and
orientation of W in phase space, and therefore determines
the variance of observables:

(�Â)2
ψ = h̄

2
∇A(Z) · G−1∇A(Z) + O(h̄2). (5)

In the Hermitian case an initially Gaussian state stays
approximately Gaussian during the time evolution up to the
Ehrenfest time [7]. The center moves according to the classical
canonical equations of motion Ż = �∇H , and the evolution
of the metric is governed by the linearized Hamiltonian flow
around the classical trajectory. In the framework of the time-
dependent variational principle [16] it has been shown that
this dynamics can also be described by Hamiltonian equations
of motion. Although it plays a central role in semiclassical
methods involving families of coherent states [16,17], the
metric is often little investigated, as it does not enter the
dynamical equations for the phase-space variables. We will
see shortly that this is fundamentally changed in the presence
of non-Hermiticity.

Non-Hermitian Wigner–von Neumann equation. Decom-
posing the Hamiltonian into its Hermitian and anti-Hermitian
parts, Ĥ − i�̂, where we assume Ĥ and �̂ to be given as
the Weyl quantizations of sufficiently well-behaved classical
observables H (z) and �(z), the evolution equation for a density
operator Ŵ follows from the Schrödinger equation as

ih̄∂t Ŵ = [Ĥ ,Ŵ ] − i[�̂,Ŵ ]+ , (6)

where [·,·]+ denotes the anticommutator. Thus, the evolution
equation of a general Wigner function is given by

ih̄∂tW = (H�W − W�H ) − i(��W + W��), (7)

where (A�B)(z) denotes the Weyl product [14] for two phase-
space functions A(z) and B(z):

A�B = Ae(ih̄/2)
←−∇ z·�−→∇ zB ∼

∞∑
k=0

1

k!

(
ih̄

2

)k

A(
←−∇ z · �

−→∇ z)
kB.

Here the arrows over the differential operators indicate whether
they act on the function to the right or to the left. We will now
evaluate the leading-order terms in h̄ of (7). The Hermitian
part of the evolution equation (7) is the well-known Moyal

bracket with an asymptotic expansion in odd powers of h̄

whose leading term gives the Poisson bracket,

H�W − W�H = ih̄∇H · �∇W + O(h̄3). (8)

The anti-Hermitian part has an expansion in even powers of h̄,
with the first two terms given by

��W + W�� = 2�W − h̄2

4
��W + O(h̄4), (9)

where we introduced a second-order differential operator
defined by � as ��W := �(

←−∇ z · �
−→∇ z)2W . Denoting the

matrix of second derivatives of �(z) at z by �′′(z), the
operator �� can be written in the form �� = ∇ · �

′′
�∇,

with �′′
�(z) := �t�′′(z)�. It follows that �� is Hermitian.

Furthermore, if �′′(z) is symplectic, then �′′
� = �′′−1, and ��

is the Laplace-Beltrami operator defined by �′′.
Summarizing, in leading order of h̄ the dynamical equation

for the Wigner function reads

h̄∂tW = −
(

− h̄2

4
�� − h̄∇H · �∇ + 2�

)
W. (10)

For vanishing � we recover the classical Liouville equation for
the transport of phase-space densities. For nonvanishing and
positive �, on the other hand, the � term defines a diffusion
equation.

The higher-order terms are of order h̄3|∂3W |(|∂3H | +
|∂3�|), i.e., they are small if the derivatives of H (z), �(z),
and W (z) do not grow too fast as h̄ → 0. If the derivatives
of W are bounded, the first term on the right side of (10) is
of lower order than the other terms. In this case the solution
W (t,z) is obtained by transporting the initial W (z) along the
Hamiltonian flow generated by H , multiplied by a damping
factor, which is determined by the integral of � along the
Hamiltonian trajectories of H . This behavior is well known
from damped wave equations. For a Gaussian initial state (2),
on the other hand, the term h̄2��W = O(h̄) is of the same
order as the Hamiltonian term in (10), and the dynamics differs
drastically from the Hermitian case.

Gaussian evolution. In what follows we investigate the
solution of (10) for an initial Gaussian Wigner function (2).
Inserting a Gaussian ansatz for the time-evolved Wigner
function

W (t,z) = α(t)

(h̄π )n
e−(1/h̄)δz·G(t)δz with δz := z − Z(t)

into (10) yields[
h̄

α̇

α
+ 2Ż · Gδz − δz · Ġδz

]
W (z)

=
[
δz · G�′′

�δz − 2∇H · �Gδz − h̄

2
tr(�′′

�G) − 2�

]
W (z).

(11)

Following the well-established method of Heller and Hepp [7],
we expand �(z) and H (z) up to second order around z = Z:
�(z) ≈ �(Z) + ∇�(Z) · δz + 1

2δz · �′′(Z)δz and ∇H (z) ≈
∇H (Z) + H ′′(Z)δz. Since W (z) is localized around z = Z

with a width proportional to
√

h̄ the remainder terms are of or-
der h̄3/2. Separation of different powers of δz = z − Z in (11)
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then yields the following three equations of motion for Z(t),
G(t), and α(t):

Ż = �∇H (Z) − G−1∇�(Z), (12)

Ġ = H ′′(Z)�G − G�H ′′(Z) + �′′(Z) − G�′′
�(Z)G, (13)

α̇

α
= −2

h̄
�(Z) − 1

2
tr[�′′

�(Z)G]. (14)

To obtain (13) the symmetry-enforcing convention G = (Gt +
G)/2 was applied. As W depends only on the symmetric part
of G any antisymmetric part is unobservable.

The time evolution of expectation values and variances of
arbitrary observables in Gaussian coherent states for small h̄

is determined by Z(t) and G(t) according to (4) and (5).
Equations (12)–(14) can be interpreted as the hitherto uniden-
tified semiclassical limit of non-Hermitian quantum dynamics.
This result goes beyond previous studies of the non-Hermitian
Ehrenfest theorem [12,13,18] for two reasons. First, previous
studies usually focused on unnormalized expectation values,
which prevented the identification of a classical structure,
and, second, disregarded the role of the metric, related to
the widths of the quantum wave packet. The dynamics (12)
emerging as the classical limit is no longer Hamiltonian, but
has a Hamiltonian part and a gradient part, determined by the
Hermitian and anti-Hermitian parts of Ĥ − i�̂, respectively.
The main dynamical effect of the anti-Hermitian part is to
drive the motion toward the minima of �. In addition, this
gradient part is coupled to an evolution equation (13) for the
metric G, which in turn depends on (12). In this context
it is important to note that (13) preserves the symplectic
nature of G and hence describes an evolution of the complex
structure on phase space. Further, the anti-Hermitian part leads
to a change of the overall probability according to Eq. (14),
which can be interpreted as absorption or amplification.
The first term gives the contribution from the center and
the second term captures the influence of the width of the
Wigner function. Note, however, that after renormalization the
non-Hermitian Schrödinger equation is equivalent to norm-
conserving nonlinear models for quantum dissipation [19].

The quadratic approximation around z = Z(t) to H (z) and
�(z) is expected to remain accurate so long as W (t,z) stays
strongly localized around z = Z(t). Since for a symplectic G

we have ‖G−1‖ = ‖G‖, a suitable criterion for this is

h̄‖G(t)‖ 
 1. (15)

The wave packet becomes delocalized at the Ehrenfest time
TE defined by h̄‖G(TE)‖ = 1, and the semiclassical approxi-
mation based on the central trajectory Z(t) breaks down. The
nonlinear term in the equation for G(t) that is induced by
� can have a stabilizing effect on the long-time evolution
of G(t). Therefore, the non-Hermitian part can increase the
Ehrenfest time, i.e., the time scale for which the semiclassical
approximation is valid, as compared to the Hermitian case.

Examples. To illustrate our results we consider two ex-
amples. The first example is a non-Hermitian anharmonic
oscillator with Ĥ = ω

2 (p̂2 + q̂2) + β

4 q̂4 and �̂ = γ

2 (p̂2 + q̂2),
respectively, with ω = 1, γ = 0.2, and β = 0.5. This can be
interpreted as a quantum analog of a damped anharmonic
oscillator (see, e.g., [13] and references therein). The simple
structure of this model makes it an ideal testing ground for
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FIG. 1. (Color online) Time evolution of the exact Wigner
function (left column) and the semiclassical approximation (right
column) for an initial state at (p,q) = (5,0) at different times
(t = 1,2.5,4) for the anharmonic oscillator. The white line shows
the motion of the center. The left panel on the bottom shows the norm
of the exact quantum state (black dashed line) and the semiclassical
approximation (blue solid line), and the right panel shows the largest
eigenvalue of G(t) (blue line) in comparison with the Hermitian case
γ = 0 (pink upper line).

the semiclassical approximation proposed here. We set h̄ = 1,
which is equivalent to a rescaling upon which β plays the role
of an effective h̄. For β = 0 the semiclassical approximation
becomes exact. While the Hermitian part tries to propagate
a state along closed curves of constant energies around the
origin, the anti-Hermitian part drives it toward the origin,
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FIG. 2. (Color online) Quantum evolution (black dashed line)
versus semiclassical approximation (blue solid line) of a PT-
symmetric waveguide for an initial state at (p,q) = (0,2). Shown
are the phase-space evolution (left) and the evolution of the norm
(right).
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thus acting as a damping. Figure 1 shows the exact numerical
propagation and the semiclassical approximation for an initial
Wigner function with G0 = I , which are in good agreement.
Also, the total mass of the exact state, a measure for the
absorption, due to the anti-Hermitian part is well described
by the semiclassical approximation α(t), as illustrated in the
left panel on the bottom. The right panel shows the time
dependence of the larger eigenvalue of G as a measure for
‖G(t)‖ in comparison with a Hermitian case, γ = 0. The result
indicates that the Ehrenfest time [see (15)] is increased in
the non-Hermitian case, i.e., the semiclassical approximation
is accurate over a longer time scale than in a comparable
Hermitian case.

Second, we consider a simple model system for a
PT-symmetric optical waveguide [3]: a single waveguide
with harmonic confinement described by H = 1

2 (p̂2 + q̂2)
and an anti-Hermitian part � = 5 tanh(0.2q) that models
absorption on one side and equally strong amplification on the
other side with a smooth transition in between. Although the
Hamiltonian is complex, due to its special symmetry, it has
real eigenvalues which can lead to a pseudoclosed behavior.

This phenomenon is captured by our classical approximation.
Figure 2 shows an example of the full quantum evolution
and its classical counterpart. Both the phase-space evolution
and the dynamics of the norm are well approximated by the
classical description. In particular, despite the anti-Hermitian
part in the Hamiltonian, no sink of the dynamics is observed.
Note that there is a stable fixed point at (p,q) = (0,1),
corresponding to the ground state of the quantum system.

Conclusion. The results presented here for the evolution of a
Gaussian coherent state generated by a non-Hermitian Hamil-
tonian provide the basis for a more profound understanding of
non-Hermitian time evolution, a topic of considerable interest
in a wide range of subjects. In particular, the application to
realistic examples of non-Hermitian Hamiltonians with typi-
cally energy-dependent imaginary part, appearing in resonance
physics, is an interesting task for future studies.
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