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It has been recently shown that the placement of a three-level V-type quantum emitter in the proximity of
metallic nanostructures can create dynamics similar to that of quantum interference in spontaneous emission. Here
we continue this work and present results on the population dynamics of a three-level V-type quantum emitter
for various initial conditions in the presence of a two-dimensional array of metal-coated dielectric nanospheres.
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For several years it has been realized that the spontaneous
emission of quantum emitters, such as atoms, molecules and
quantum dots, can be strongly influenced by the presence
of nanostructures (for reviews see, e.g., [1,2]). An important
effect in such systems is the significantly modified spontaneous
decay rate in different emitter dipole moment directions, for
example, for orthogonal dipole directions. Agarwal [3] showed
that this effect can be used for simulating quantum interference
effects in spontaneous emission [4–15]. He proposed to
place a three-level quantum emitter with orthogonal dipole
moments within or near a structure which suppresses spon-
taneous emission for a specific dipole orientation. Applying
this idea, it has been recently shown [16], by using a rigorous
electromagnetic (EM) Green’s tensor technique [17–19], that
the placement of a three-level V-type quantum emitter in
the proximity of simple, or complex, metallic nanostructures
can boost the degree of quantum interference in spontaneous
emission.

Here we continue this work and present results on the
population dynamics of a three-level V-type quantum emitter
for different initial conditions in the presence of a two-
dimensional array of metal-coated dielectric nanospheres. We
also note that quite recently, Hatef and Singh have studied
the effects of spontaneous emission interference in absorption
and dispersion in metallic photonic crystals doped with
quantum dots in the V-type configuration [20]. In addition,
the study of spontaneous emission and resonance fluorescence
of quantum emitters near various plasmonic structures has
attracted significant attention recently [21–28].

The quantum system of interest is shown in Fig. 1(a).
We consider a V-type system with two degenerate Zeeman
sublevels for the upper states |2〉 and |3〉, and one lower state
|1〉. The quantum system is located in vacuum at distance d

from the surface of the plasmonic nanostructure. The dipole
moment operator is taken as �µ = µ(|2〉〈1|ε̂− + |3〉〈1|ε̂+) +
H.c., where ε̂± = (ez ± iex)/

√
2 describes the right-rotating

(ε̂+) and left-rotating (ε̂−) unit vectors and µ is taken to be
real. Both excited levels |2〉 and |3〉 decay spontaneously to
the lower level with decay rate 2γ .

The spontaneous decay dynamics in the above system is
studied by a density-matrix approach. By considering solely
spontaneous emission effects, the time-dependent density
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matrix equations describing the interaction of the atom with
its environment, in the rotating-wave and Weisskopf-Wigner
approximations, are given by [16,29–32] (we take h̄ = 1)

ρ̇22 = −2γρ22 − κ(ρ23 + ρ32) , (1)

ρ̇33 = −2γρ33 − κ(ρ32 + ρ23) , (2)

ρ̇23 = −2γρ23 − κ(ρ22 + ρ33) , (3)

with ρ11 + ρ22 + ρ33 = 1 and ρnm = ρ∗
mn. Here κ describes

the coupling coefficients between states |2〉 and |3〉 due to
spontaneous emission in a modified anisotropic vacuum [3],
and it is responsible for the effects of quantum interference.

The values of γ and κ are obtained by [29]

γ = µ2ω2
0 ε̂− · ImG(r,r; ω0) · ε̂+ (4)

κ = µ2ω2
0 ε̂+ · ImG(r,r; ω0) · ε̂+ . (5)

Here, G(r,r′; ω) is the dyadic EM Green’s tensor that obeys
the equation

∇ × ∇ × G(r,r′; ω) − ε(r,ω)ω2

c2
G(r,r′; ω) = Iδ(r − r′) .

(6)

Also, Gij (r,r′; ω), with i,j = x,y,z, are the components of
the Green’s tensor and I = exex + eyey + ezez is the unit dyad
(unit tensor). In addition, ε(r,ω) is the spatially and frequency-
dependent dielectric function of the system, r refers to the
position of the quantum emitter, ω0 is the resonance frequency
between states |1〉 and |2〉 (or |3〉), and c is the speed of light
in the vacuum.

From Eqs. (4) and (5) we finally obtain the values of γ and
κ as [29–33]

γ = 1
2µ2ω2

0Im[G⊥(r,r; ω0) + G‖(r,r; ω0)] = 1
2 (�⊥ + �‖),

(7)

κ = 1
2µ2ω2

0Im[G⊥(r,r; ω0) − G‖(r,r; ω0)] = 1
2 (�⊥ − �‖).

(8)

Here G⊥(r,r; ω0) = Gzz(r,r; ω0), G‖(r,r; ω0) = Gxx(r,r; ω0)
denote components of the EM Green’s tensor where the
symbol ⊥ (‖) refers to a dipole-oriented normal (parallel)
to the surface of the nanostructure. Finally, we define the
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FIG. 1. (Color online) (a) A V-type, three-level system.
(b) Metallic nanoshell made from a silica core of radius Sc and metal
coating of thickness S − Sc. (c) Square lattice of metallic nanoshells
(monolayer) with period a. (d) Side view of the monolayer, where d

is the distance of the quantum emitter from the surface of a nanoshell.

spontaneous emission rates normal and parallel to the surface
as �⊥,‖ = µ2ω2

0Im[G⊥,‖(r,r; ω0)]. The degree of quantum
interference is defined as p = (�⊥ − �‖)/(�⊥ + �‖). For
p = 1 we have maximum quantum interference. This can
be achieved by placing the emitter close to a structure that
completely quenches �‖. We stress that when the emitter is
placed in vacuum, �⊥ = �‖ and κ = 0 (p = 0), so no quantum
interference occurs in the system.

The EM Green’s tensor which provides the corresponding
spontaneous emission rates �⊥ and �‖ is given by [16,17]

GEE
ii ′ (r,r′; ω) = gEE

ii ′ (r,r′; ω) − i

8π2

∫ ∫
SBZ

d2k‖
∑

g

1

c2K+
g;z

× vgk‖;i(r) exp(−iK+
g · r)êi ′ (K+

g ), (9)

with

vgk‖;i(r) =
∑

g′
Rg′;g(ω,k‖) exp(−iK−

g′ · r)êi(K−
g′ ) (10)

and

K±
g = (k‖ + g, ± [q2 − (k‖ + g)2]1/2). (11)

The vectors g denote the reciprocal-lattice vectors corre-
sponding to the two-dimensional periodic lattice of the plane
of scatterers and k‖ is the reduced wave vector which lies
within the surface Brillouin zone (SBZ) associated with the
reciprocal lattice [18]. When q2 = ω2/c2 < (k‖ + g)2, K±

g

defines an evanescent wave. The term gEE
ii ′ (r,r′; ω) of Eq. (9)

is the free-space Green’s tensor and êi(K±
g ) the polar unit

vector normal to K±
g . Rg′;g(ω,k‖) is the reflection matrix which

provides the sum (over g’s) of reflected beams generated by the
incidence of plane wave from the left of the plane of scatterers
[18]. Also, in Eq. (9) the terms corresponding to s-polarized
waves (those containing components with the azimuthal unit
vector êi(K±

g ) normal to K±
g ) have small contribution to the

decay rates and therefore have been neglected.
The plasmonic nanostructure considered in this study is

a two-dimensional array of touching metal-coated spherical
dielectric (silica) nanoparticles and is shown in Figs. 1(b)–1(d).
The dielectric function of the shell, εm(ω), is provided by a
Drude-type electric permittivity given by

εm(ω) = 1 − ω2
p

ω(ω + i/τ )
, (12)
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FIG. 2. (Color online) (a) The spontaneous decay rate as a
function of the transition frequency close to a monolayer of plasmonic
nanoshells with (ωpτ )−1 = 0.05 for a dipole which is normally
(�⊥ – solid curve) and tangentially (�‖ – dashed curve) oriented
with respect to a plane of spheres. The quantum emitter is placed at
a distance d = 0.5c/ωp from the surface of a sphere of the plane.
(b) The corresponding quantum interference factor p. �0 is the decay
rate in the vacuum.

where ωp is the bulk plasma frequency and τ the relaxation
time of the conduction-band electrons of the metal. The lattice
constant of the square lattice is a = 2c/ωp and the sphere
radius S = c/ωp with core radius Sc = 0.7c/ωp.

Figure 2 shows the spontaneous decay rates near the
plasmonic nanostructure described above. This is calculated
with the method analyzed in Refs. [16–19]. It is evident that
�‖ is suppressed relative to vacuum and exhibits significant
suppression in the frequency region from 0.6ω/ωp to 0.7ω/ωp,
with the actual value becoming significantly smaller that the
free space decay rate. In the same frequency region �⊥ is also
suppressed but it remains larger than the free space decay rate.
In fact, for the the whole spectral range of Fig. 2, �⊥ is much
larger than �‖ and the corresponding quantum interference
factor p is above 0.935.

Initially, we study the case where only one of the upper
states is initially excited, for example, ρ22(0) = 1, ρ33(0) = 0,
ρ23(0) = 0. The analytical formulas for the populations from
Eqs. (1)–(3) are given by

ρ22(t) = 1
4 (e−�‖t + e−�⊥t )2 (13)

ρ33(t) = 1
4 (e−�‖t − e−�⊥t )2. (14)

An example of population dynamics for this case is shown in
Fig. 3(a). As the population evolves in time population transfer
to the initially unexcited is found. The population to each
excited state becomes approximately 1/4 and it is followed
by a very slow decay of the population. This is in contrast to
the case that the quantum interference is zero, i.e., κ = 0,
where the spontaneous decay rates are influenced, but the
population of the initially excited state evolves exponentially
with ρ22(t) = e−(�‖+�⊥)t , and the other state is not involved in
the dynamics, ρ33(t) = 0.

Then we consider the case where the upper states have
initially equal population, i.e., ρ22(0) = ρ33(0) = 1/2 and
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FIG. 3. (Color online) (a) Population dynamics of states |2〉
(solid curve with quantum interference and dot-dashed curve without
quantum interference) and |3〉 (dashed curve with quantum inter-
ference and dotted curve without quantum interference), when the
emitter is initially in state |2〉. (b) Population dynamics of state
|2〉 without quantum interference (solid curve) and with quantum
interference: symmetric superposition (dashed curve), antisymmetric
superposition (dot-dashed curve), and complete incoherent mixture
(dotted curve). (c) Population dynamics of state |2〉 for C = eiφ ,
and φ = π/5 (solid curve), φ = 2π/5 (dashed curve), φ = 3π/5
(dot-dashed curve), φ = 4π/5 (dotted curve). Here, d = 0.5c/ωp

and ω0 = 0.64ωp .

ρ23(0) = C/2, where 0 � |C| � 1 determines the initial quan-
tum (atomic) coherence in the system. For |C| = 1 we
have maximum quantum coherence, and C = 1 (C = −1)
represents a symmetric (antisymmetric) superposition of the
two excited states. For C = 0 we have a complete (uniform)
incoherent mixture of the upper states. The analytical formulas
for the populations from Eqs. (1)–(3) for this case are given by

ρ22(t) = ρ33(t) = 1
4 {e−2�‖t [1 − Re(C)] + e−2�⊥t [1 + Re(C)]}.

(15)

We note that the dynamics of the system is determined only
by the real part of C. Therefore, a partially coherent initial
state with C real will give the same population dynamics as a

maximum coherent initial superposition with ρ23(0) = eiφ/2,
as long as cos φ = C.

For the case of the symmetric superposition

ρ22(t) = ρ33(t) = 1
2e−2�⊥t , (16)

for antisymmetric superposition

ρ22(t) = ρ33(t) = 1
2e−2�‖t , (17)

and for the complete incoherent mixture

ρ22(t) = ρ33(t) = 1
4 (e−2�‖t + e−2�⊥t ). (18)

An example of population dynamics for this case is shown
in Fig. 3(b). For the case of the symmetric superposition,
the population decays faster than for the absence of quantum
interference, where ρ22(t) = ρ33(t) = 1

2e−(�‖+�⊥)t , as the pop-
ulation dynamics is determined solely by �⊥ that is enhanced.
In contrast, for the case of the antisymmetric superposition a
very slow population decay is found as the decay is determined
solely by �‖ that is significantly suppressed. For the case
of the incoherent mixture, two different decay evolutions
are found, an initial fast response determined by �⊥ and
a forthcoming very slow response determined by �‖. This
population response also occurs for different values of C as
well, as can be seen from Eq. (15) and Fig. 3(c). It is clear that
the actual population dynamics depends strongly on C.

In summary, we have studied the effects of the presence of a
two-dimensional array of metal-coated dielectric nanospheres
on the decay rates and the population dynamics of a V-type
quantum emitter placed near the plasmonic nanostructure. We
show that the decay rate of a perpendicular oriented dipole,
relative to the surface of the nanostructure, is enhanced while
the decay rate of a parallel-oriented dipole is significantly
suppressed. We then analyze the population dynamics of
the system for different initial conditions. We show that
when only a single upper state is initially excited then via
quantum interference the other excited state is also populated,
and both states obtain the same population as time evolves.
This population is slowly decaying for the case that the
transition frequency of the quantum emitter is in the frequency
region where the decay rate of the parallel oriented dipole is
significantly suppressed. For the same frequency region, both
excited states having initially the same population leads to
a quite different response, depending on the initial quantum
coherence. For the case of an initial symmetric superposition
fast population decay is found, while for the case of an initial
antisymmetric superposition a significantly slow population
decay is predicted. Finally, for the case of an initial incoherent
mixture it is found that an initial fast population decay is
followed by a very slow population decay.
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