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Coherent perfect absorption in a homogeneously broadened two-level medium
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In recent works, it has been shown, rather generally, that the time-reversed process of lasing at threshold
realizes a coherent perfect absorber (CPA). In a CPA, a lossy medium in an optical cavity with a specific degree
of dissipation, equal in modulus to the gain of the lasing medium, can perfectly absorb coherent optical waves
that are the time-reversed counterpart of the lasing field. Here, the time-reversed process of lasing is considered
in detail for a homogeneously broadened two-level medium in an optical cavity and the conditions for CPA
are derived. It is shown that, owing to the dispersive properties of the two-level medium, exact time-reversal
symmetry is broken and the frequency of the field at which CPA occurs is generally different than the one of the
lasing mode. Moreover, at a large cooperation parameter, the observation of CPA in the presence of bistability
requires one to operate in the upper branch of the hysteresis cycle.
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Introduction. It is well-known that the absorption properties
of a lossy medium can be conveniently controlled by optical
feedback. Several early studies have investigated coherent
absorption effects in optical cavities [1–4] with application
in the realization of special modulators and cavity-enhanced
detectors [1–3]. The transmission properties of an optical
cavity filled by an absorbing medium have also attracted great
attention since long time in connection to optical bistability
(see, for instance, Refs. [5–7] and the references therein).
In recent works, the idea of controlling the properties of an
absorption of a lossy medium in the presence of feedback has
been revisited [8,9], and the unusual scattering properties of
gain (absorber) systems with certain symmetries have been
highlighted [10,11]. In particular, in Ref. [8] it was proven
rather generally that a coherent perfect absorber (CPA) realizes
the time-reversed process of lasing at threshold [8], whereas
in Ref. [9] an experimental demonstration of interferometric
control of the absorption was reported using a thin slice of
silicon illuminated by two beams [9]. The main idea underlying
CPA is that, since in a steady-state process time reversal
corresponds to interchanging incoming and outgoing fields,
the time-reversed process of lasing at threshold corresponds
to the perfect absorption of certain incoming coherent-light
fields. In the reverse process of lasing at threshold, the gain
medium in the resonator is replaced by a lossy medium,
corresponding to a positive imaginary refractive index equal in
absolute value to that at the lasing threshold. Then, whenever
the system is illuminated coherently and monochromatically
by the time-reverse of the output of a lasing mode, the incident
radiation is perfectly absorbed [8]. Such a simple picture of
CPA strictly holds provided that phenomena like saturation
of the absorption and absorption-induced dispersion in the
medium (responsible for the well-known frequency pulling
effect in the time-reversed process of lasing) are negligible.
While the former condition can be satisfied for low-power
fields, the latter phenomenon (being a linear one) occurs
also for low input powers and can be non-negligible when
absorption exploits a narrow resonance frequency of the atomic
medium. In this Brief Report, we consider the time-reversed
process of lasing for a homogeneously broadened two-level
medium in an optical cavity and discuss in details the

conditions for CPA when the saturation of absorption and
loss-induced dispersion are properly considered in the model.
Owing to the dispersive properties of the two-level medium, it
is shown that the frequency of the field at which CPA occurs
is generally different than the one of the lasing mode and
that a somewhat singular case appears when the cavity photon
and polarization decay rates are equal. Moreover, it is shown
that, for a strong cooperation parameter leading to optical
bistability, the observation of CPA requires one to operate in
the upper branch of the bistable cycle.

The model. Let us consider a standard model describing
light absorption (or amplification) in a homogeneously broad-
ened two-level medium embedded in an optical cavity similar
to the one encountered in the theory of optical bistability
[7,12] or in the semiclassical theory of homogeneously
broadened lasers with an injected signal [13]. Specifically,
we consider a two-level medium with a resonance frequency,
ω0, of length, l, placed in a ring cavity of total length,
L, which is coupled to the outside by a single mirror of
power transmittance, T [see Fig. 1(a)]. An input field of
frequency, ω, close to ω0, and amplitude, E0, can be injected
into the cavity, as shown in Fig. 1(a). As compared to the
most common configurations considered in the theory of
optical bistability [7,12], the optical cavity considered here
is coupled to the outside by a single coupler [see mirror 1 in
Fig. 1(a)], whereas all other mirrors are assumed to have 100%
reflectivity. For such a cavity, the lasing and its time-reversed
counterpart, i.e., CPA, are schematically shown in Figs. 1(b)
and 1(c). To study the operation of laser and CPA, let
us indicate by E(z,t) = (1/2)[(

√
γ‖γ⊥ h̄/µ)A(z,t) exp(iωt −

ikz) + c.c.], P(z,t) = (1/2)[(iµNe

√
γ‖/γ⊥)�(z,t) exp(iωt −

ikz) + c.c.], and N (z,t) = Nen(z,t) the electric field, macro-
scopic polarization, and population difference in the medium,
respectively, where z is the longitudinal spatial coordinate
along the ring, γ‖ and γ⊥ are the population and dipole decay
rates, respectively, µ is the modulus of the electric dipole
moment of the atoms, and Ne is the population difference at
the equilibrium between the lower and upper atomic levels.
For an absorber, Ne is positive and equal to the total atomic
population, Nt , whereas for an amplifying medium, Ne is
negative and its value is determined by the pumping rate. The
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evolution of the slowly varying amplitudes, A and �, of the
electric field and polarization in the medium are governed by
the Maxwell-Bloch equations [7,12,13]:

∂tA = −c∂zA + cα�, (1)

∂t� = −γ⊥[(1 + i�)� + nA], (2)

∂tn = −γ‖
[
n − 1 − 1

2 (A∗� + A�∗)
]
, (3)

where α ≡ µ2ω0Ne/(2h̄γ⊥ε0c) is the unsaturated absorption
(Ne > 0) or amplification (Ne < 0) coefficient and � ≡ (ω −
ω0)/γ⊥ is the detuning between the frequency, ω, of the
injected field and the resonance frequency, ω0, of the atoms,
normalized to the polarization decay rate, γ⊥ [i.e., to the
gain (absorption) linewidth]. Equations (1)–(3) should be
supplemented by the boundary conditions imposed by the
coupling mirror 1 at z = 0, which relates the incident and
scattered fields [see Fig. 1(a)]. For a lossless mirror, these are
given by

A(0,t) = i
√

T A0 + √
1 − T A(L,t) exp(−ikL) (4)

and

Aout = √
1 − T A0 + i

√
T A(L,t) exp(−ikL), (5)

where A0 ≡ µE0/(h̄
√

γ‖γ⊥) and Aout ≡ µEout/(h̄
√

γ‖γ⊥) are
the normalized amplitudes of the injected and reflected electric
fields at the mirror 1, respectively [see Fig. 1(a)]. Note that
the laser (α < 0) and CPA (α > 0) systems in Figs. 1(b)
and 1(c) correspond to E0 = 0, Eout �= 0 and E0 �= 0, Eout = 0,
respectively. To simplify the analysis, here, we consider the
mean-field limit of the Maxwell-Bloch equations [7,12,13], in
which the fields are almost uniform along z. This limit requires
a small transmissivity, T → 0, a small single-pass absorption
(or amplification) coefficient, αl → 0 (of order ∼T ), a small
amplitude of the injected signal, A0 → 0 (of order ∼√

T ), and
a small detuning, kL − 2nπ → 0 (of order ∼T ), where n is
an integer defining the resonance frequency of the cold cavity
closest to ω. In this limit, the Maxwell-Bloch equations read

∂tA = κ[2C� − (1 + iθ )A + Y ], (6)

∂t� = −γ⊥[(1 + i�)� + nA], (7)

∂tn = −γ‖
[
n − 1 − 1

2 (A∗� + A�∗)
]
, (8)

where Y ≡ 2A0i/
√

T , C ≡ αl/T is the cooperation param-
eter, κ ≡ cT /(2L) is the photon decay rate in the cold

FIG. 1. (a) Schematic representation of a ring cavity with a
homogeneously broadened two-level medium and an injected signal;
(b) and (c) show schematically the operation of a laser and of a CPA
system.

cavity, and θ ≡ (ω − ωc)/κ is the detuning between the
frequency, ω, of the injected field and the cavity resonance fre-
quency, ωc = 2nπc/L, closest to ω, normalized to the photon
decay rate, κ . Moreover, in the mean-field limit the normalized
amplitude, Aout, of the field leaving the cavity, as obtained by
Eq. (5), simply reads

Aout 	 i
√

T (A − Y/2). (9)

Let us now discuss separately the cases of lasing [Fig. 1(b)]
and CPA [Fig. 1(c)], highlighting some distinct features not
considered in Refs. [8,9] and arising from dispersive and
saturation effects.

The laser system. The laser configuration in Fig. 1(b)
corresponds to the absence of an injected field, Y = 0, and to
an amplifying medium, C < 0. In this case, as is well-known
laser emission occurs above threshold, for |C| > |Cth| ≡
(1 + �2)/2. The frequency, ω = ωlas, of the emitted radiation
is obtained from the condition � = −θ , which yields the
well-known frequency-pulling relation:

ωlas = γ⊥ωc + κω0

γ⊥ + κ
. (10)

Above threshold, the steady-state solution of the normalized
intracavity power, X = |A|2, is given by

X = 2|C| − 1 − �2 (11)

and it is stable within the mean-field model. The normalized
output power is simply given by |Aout|2 = T X.

The CPA system. CPA is realized for an absorbing medium
(C > 0) with an injected signal (Y �= 0) of appropriate ampli-
tude and frequency such that the output field, Aout, vanishes.
Contrary to the predictions of Ref. [8], we show here that the
absorption-induced dispersion of the two-level atoms breaks
exact time-reversal symmetry and the frequency at which
CPA occurs is generally different than the lasing frequency,
ωlas, given by Eq. (10). Moreover, as compared to Ref. [8]
our model properly accounts for saturation of the absorber,
and thus can predict CPA beyond the condition of lasing at
threshold. To determine the conditions that realize a CPA, let
us first notice that the steady-state solution to Eqs. (6)–(8)
gives the following implicit relation between the normalized
powers, |Y |2 and X = |A|2, of incoming and intracavity fields,
respectively,

|Y |2 = X

[(
1+ 2C

1 + �2 + X

)2

+
(
−θ+ 2C�

1 + �2 + X

)2]
. (12)

The normalized power of the field leaving the cavity can
be then obtained using Eq. (9). The steady-state solution of
Eq. (12), and its stability have been extensively studied in the
theory of optical bistability and the results can be briefly sum-
marized as follows [7]: (i) for 2C > �θ − 1 and (2C − �θ +
1)2(C + 4�θ − 4) > 27C(� + θ )2, the curve X = X(|Y |2) is
S-shaped. Within the mean-field approximation the solution
is stable in the upper and lower branches and unstable in
the intermediate (negative-slope) branch. (ii) If either one
of the two previous inequalities is not satisfied, the curve
X = X(|Y |2) turns out to be single-valued and the solution
is always stable. In particular, for C < 4 the curve is always
single-valued. As an example, in Figs. 2(a) and 2(b) the
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FIG. 2. (Color online) Behavior of the normalized intracavity
power, X = |A|2, and output power, Z = |Aout|2/T , versus the
normalized intensity, |Y |2, of the incident beam for � = θ = 0 and
for (a) C = 3 (monostable regime) and (b) C = 8 (bistable regime).
In (b) the dashed curves denote the unstable branches. The value
Y = YCPA corresponds to the input field amplitude that realizes CPA.
In (b) the amplitude YCPA is close to the boundary of the hysteresis
cycle, as shown in the enlargement depicted in the inset of (b).

behaviors of the normalized intracavity power, X, and output
power, Z = |Aout|2/T , versus the normalized intensity, |Y |2,
of the incident beam are depicted for typical monostable
[Fig. 2(a)] and bistable [Fig. 2(b)] cases.

Let us now focus our attention to the conditions that realize
a CPA. According to Eq. (9), CPA corresponds to a steady-state
solution of Eqs. (6)–(8) with A = Y/2. This leads to the
following two requirements for CPA: (i) the intracavity power,
X, should have the value X = XCPA = 2C − 1 − �2, which
is precisely the value given by Eq. (11); correspondingly,
the normalized power, |Y |2, of the injected field that realizes
CPA reads |YCPA|2 = 4XCPA = 4(2C − 1 − �2). In the case of
optical bistability, it can be easily proven that XCPA is always
located on the upper stable branch of the S-shaped curve [see,
for instance, Fig. 2(b)]. (ii) The frequency, ω, of the injected
field should satisfy the condition θ = �.

Let us first discuss the condition (i). This condition shows
that to observe CPA, a necessary requirement is that the
cooperation parameter, C = αl/T , must be larger than a
minimum value, which is precisely the threshold value, |Cth|,
of the lasing mode once the absorber is replaced by the
amplifier. If the injected power is small enough, in such a
way that saturation of absorption is negligible, i.e., XCPA 
 1,
according to Ref. [8], CPA is obtained for a lossy medium
corresponding to a positive imaginary refractive index equal in
absolute value to that at the lasing threshold. For a cooperation
parameter larger than the threshold value, CPA is attained at
the intracavity power, XCPA, that makes the saturated positive
imaginary refractive index of the absorber equal in absolute
value to that at the lasing threshold. Thus perfect absorption
occurs solely at a precise power level of the injected field
given by |Y |2 = |YCPA|2 = 4XCPA = 4(2C − 1 − �2). Let us
now assume that the injected signal is adiabatically increased
from Y = 0 to the final value, YCPA, that realizes CPA. If the
input-output curve [Eq. (12)] is not S-shaped, CPA is obviously
realized once Y reaches YCPA. This is shown, as an example

in Fig. 2(a). However, if the input-output curve [Eq. (12)] is
S-shaped and XCPA lies inside the bistable interval, CPA is not
attained when Y reaches YCPA because XCPA lies on the upper
branch of the hysteresis cycle, as shown in Fig. 2(b). To realize
CPA, one should therefore follow the bistable cycle: first, by
increasing the power level, |Y |2, above the hysteresis threshold
to switch the system from the lower to the upper stable branch,
and then, by decreasing the input power level down to |YCPA|2.
Thus at large values of the cooperation parameter such that
the optical bistability appears, CPA could be prevented by the
appearance of the hysteresis, and its observation requires one
to switch the operation into the upper branch of the bistable
curve.

Let us now discuss the condition (ii), � = θ , required
to observe CPA. Such a condition, basically, determines the
frequency, ω = ωCPA, of the injected field for which CPA is
observable. Here, the main result is that ωCPA �= ωlas, where
ωlas is given by the frequency-pulling equation, Eq. (10). Such
a difference is basically related to the physical circumstance
that, if the two-level amplifier is replaced by a two-level
absorber, the resonant contribution to the real part of the
refractive index changes sign as well and the condition
ε(z) → ε∗(z), invoked to explain the CPA process as the
time-reversed process of lasing at threshold [8], is not strictly
satisfied. In other words, time-reversal symmetry is broken
for the Maxwell-Bloch equations. The frequency, ω = ωCPA,
of the injected field that yields a CPA is simply calculated by
the requirement � = θ . For κ �= γ⊥, such a condition gives
[compare with Eq. (10)]

ωCPA = γ⊥ωc − κω0

γ⊥ − κ
. (13)

Note that, for γ⊥ � κ , i.e., in the good-cavity limit and for a
sufficiently broadened absorption line, one has ωCPA 	 ωlas 	
ωc. More interesting is the case of γ⊥ → κ , i.e., the case
where the bandwidth of the absorption line equals to the decay
rate of photons in the cold cavity. In this case, the condition
� = θ is never satisfied for ωc �= ω0 and it is satisfied for
any frequency, ω, for ωc = ω0. Therefore, if γ⊥ = κ and a
resonance frequency, ωc, of the cavity is exactly tuned in
resonance with the two-level atoms, the observation of CPA
does not require a precise frequency tuning of the injected
field.

Conclusions. In this Brief Report, the time-reversed process
of lasing and coherent perfect absorption proposed in recent
works [8,9] have been investigated in the framework of the
semiclassical (Maxwell-Bloch) laser equations for a homoge-
neously broadened two-level medium. It has been shown that,
owing to the dispersive properties of the two-level medium,
exact time-reversal symmetry is broken and the frequency of
the field at which CPA occurs is generally different than the one
of the lasing mode. Moreover, at a large cooperation parameter
the observation of CPA in the presence of bistability requires to
operate the system in the upper branch of the hysteresis cycle.
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