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Conformal cloak for waves
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Conformal invisibility devices are only supposed to work within the valid range of geometrical optics. Here,
we show by numerical simulations and analytical arguments that for certain quantized frequencies, they are
nearly perfect even in a regime that clearly violates geometrical optics. The quantization condition follows from
the analogy between the Helmholtz equation and the stationary Schrödinger equation.
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Invisibility came into sight as the first nontrivial application
of transformation optics [1–5]. The progress made has been
impressive, but complete cloaking devices have never been
demonstrated in practice yet. All electromagnetic cloaking
experiments reported in the literature were for reduced cases.
For example, one cloaking device [6] worked for microwaves
of one frequency and polarization, and this only in the
approximation of geometrical optics. Cloaking in tapered
waveguides is also approximative [7]. Carpet cloaking [8,9]
is a drastic form of reduced cloaking where an object is not
made to disappear completely, but to appear as being flat. There
are two reasons for the need of resorting to reduced cloaking
devices, a practical one and a fundamental one. The materials
required for perfect cloaking [1,3] are extremely difficult to
fabricate, because they need impedance-matched anisotropic
media to be implemented [5], and, therefore, perfect cloaking is
impractical. The fundamental problem is that perfect cloaking
also implies propagation with a superluminal phase velocity
that reaches infinity [10], which is possible in principle, but
only for discrete frequencies. Perfect cloaking in a broad band
of the spectrum is, therefore, physically impossible. Note that
these qualifications do not apply to acoustic cloaking [11,12]
where the required materials are much easier to manufacture,
and the constraints from relativistic causality are not relevant.

One of the earliest ideas for invisibility devices, optical
conformal mapping [2,13], has the advantage of requiring
rather ordinary optical materials—they are optically isotropic
and nonmagnetic (but still need a large index range). It can
be easily applied in acoustics, because it does not rely on
materials with artificially designed anisotropic mass [11,12].
This cloaking method was originally derived [2] for the
approximation of geometrical optics (or acoustics). In isotropic
media, perfect invisibility is mathematically impossible, not
only for physical reasons, because the inverse scattering
problem is uniquely solvable [14], and so waves cannot
completely hide from the fact that they propagate in media.
Here we show, however, that conformal cloaking can be nearly
perfect for discrete frequencies.

Cloaking by optical conformal mapping consists of two
parts: (1) the implementation of a conformal coordinate trans-
formation and (2) an index profile with certain properties that
cannot be reduced to flat space by a coordinate transformation,
which is a non-Euclidian part [15,16]. A conformal coordinate
transformation is valid for complete waves, but it cannot make

a cloaking device on its own [2]; the non-Euclidean part
completes the device, but it is only supposed to work within
the valid range of geometrical optics. Full-wave simulations
of optical conformal mappings are rare; in a recent review
[17], the effect of conformal coordinate transformations was
studied, but without the non-Euclidean part. Not surprisingly,
cloaking is not possible here, but it is wrong to conclude from
an incomplete numerical experiment that cloaking by optical
conformal mapping would not work. The simulations we show
here prove to the contrary, even in a regime far away from
geometrical optics.

Let us begin with a brief recapitulation of optical conformal
mapping [2,13]. Consider a planar medium with the two-
dimensional graded index profile n(x,y). The medium is
purely electrical such that ε = n2. In this case, electromagnetic
waves polarized such that the electric field points in the
vertical direction (orthogonal to the plane) obey the Helmholtz
equation [8]

0 = (
∂2
x + ∂2

y + n2k2
)
ψ = (4∂∗

z ∂z + n2k2)ψ, (1)

where ψ denotes the electric-field component, z = x + iy,

and k is the wave number. Electromagnetic waves polarized
such that the magnetic field points in the vertical direction also
obey the Helmholtz equation [Eq. (1)], but only approximately
in the regime of geometrical optics [5]. In this case, ψ denotes
the magnetic-field component. A linear combination of the two
polarizations constitutes an arbitrary electromagnetic wave in
the planar medium. Under a conformal mapping w = w(z),
the Helmholtz equation in w space appears as

(4∂∗
w∂w + n′2k2)ψ = 0 , n = n′

∣∣∣∣dw

dz

∣∣∣∣ . (2)

In the language of transformation optics [4,5], w space is
called virtual space and z space is the physical space. Consider
the simplest mapping suitable for cloaking, the Zhukowski
transform [2,5]

w = z + a2

z
, or equivalently z = w ± √

w2 − 4a2

2
,

(3)

that maps a virtual w space with two Riemann sheets on two
regions of physical z space, where one is the exterior and the
other the interior of a circle of radius a (Fig. 1). If the virtual
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FIG. 1. In transformation optics, electromagnetic waves are
transformed from an empty virtual space to physical space by an
appropriate medium. In optical conformal mapping, this is achieved
by a conformal transformation that requires an optically isotropic
material. Virtual space consists of Riemann sheets (above) that are
mapped to the physical plane (below). However, light may cross
the branch cut between two sheets and get absorbed at a singularity
of the transformation, casting a shadow with zero amplitude, as
the figure illustrates for the Zhukowski map [Eq. (3)]. Cloaking
with optically isotropic materials (Fig. 2) is possible when the
lower sheet contains a medium where light propagates in closed
loops (Fig. 3).

space were empty, light rays would travel along straight lines
in w space that may cross the branch cut from the exterior to
the interior w sheet, and then get absorbed at the infinity of the
latter that corresponds to the singularity of w(z), which, for the
Zhukowski transform [Eq. (3)], lies at z = 0 in physical space.
This feature has caused the distortion of wave propagation [17]
mentioned above. However, it is possible to shepherd the lost
rays back to the exterior sheet by filling the interior sheet with
a suitable index profile that cannot be reduced to empty space
by a coordinate transformation [2,13]. Many such profiles are
possible [5], including ones with negative refraction [18] (that
do not cause phase delays). What these index profiles have
in common is their ability to let light propagate in closed
trajectories. Consider the simplest case, the Hooke and the
Kepler profiles [2,13]:

n′2 = 1 − |w − w1|2
r2

0

(Hooke), (4)

n′2 = r0

|w − w1| − 1 (Kepler), (5)

where w1 is the branch point 2a of the Zhukowski map
[Eq. (3)] and r0 is chosen to be 4a. The index n in physical
space ranges from 0 to 14.5 for the cloaking device with

Hooke profile and from 0 to 13.3 for the Kepler case. In
both cases, the ray trajectories are closed curves in virtual
space (in particular ellipses) such that after a loop in the
“underworld”—on the interior sheet—the light returns to the
exterior sheet and propagates along straight lines in w space in
the same direction it came from. In the underworld, the light is
confined to a circle around w1 with radius r0, because beyond
this circle n′ is purely imaginary and so light cannot propagate
there (light waves decay exponentially). In physical space, the
exterior of the virtual circle is the interior of its map z(w), i.e.,
of the curve r = a[2 + cos φ −

√
(2 + cos φ)2 − 1 ] in polar

coordinates. This region—and anything inside it—is invisible,
while light bends around it such that rays are asymptotically
straight lines in physical space: the conformal transformation
[Eq. (3)] combined with one of the profiles [Eqs. (4) and (5)]
makes a cloaking device. Note that light rays are refracted at
the interface between the interior and the exterior region of
the Zhukowski map [Eq. (3)] where the profiles [Eqs. (4) and
(5)] reside. Rays are refracted back to their original direction
after one loop on the interior sheet, but waves are partially
reflected at sudden index steps. When the index varies much
more rapidly over the scale of the wavelength, as it is the
case for index steps, the conditions of geometrical optics [5]
are violated, causing the conversion of one wave front into
two, i.e., partial reflection. Furthermore, the detour in the
underworld causes a uniform time delay [13] that appears
as a phase shift in the part of the wave that entered there,
and thus creates phase dislocations that may cause diffraction
overshadowing the cloaking of small devices.

Here, we have tested the performance of conformal cloak-
ing devices for waves using simulations made with standard
commercial software. In the invisible region of the device, we
used an imaginary index profile. One can also shield this region
with perfect mirrors; our simulations show little principal
difference between the two (only quantitative differences). We
also introduced a cutoff radius rc in physical space that makes
our cloaking device finitely extended. Conformal transforma-
tions, such as the Zhukowski map [Eq. (3)], act across the entire
plane, in contrast to quasiconformal transformations [8], so
the medium implementing the transformation is, in principle,
infinitely extended. Yet beyond the cutoff radius rc = 5a,
we put n = 1 and observed that this cutoff has a negligible
effect on the propagation of waves. More importantly, our
simulations show that the sharp index steps at the interface
of the inner cloaking region do neither cause reflections nor
phase delays for certain discrete wave numbers of light, as
Fig. 2 illustrates. Figure 3 shows the scattering cross section
σ of ψ for the incident plane wave ψ0 of Fig. 2 as a function
of kr0, where σ is defined as the ratio between

∮ |ψ − ψ0|2dl

and |ψ0|2 in the limit r → ∞ (approximated by r = 10a in
our case). The cross section dips below the σ of the uncloaked
object for the wave numbers k of nearly perfect cloaking. Note
however that the scattering cross section is a poor measure of
the image quality of a cloaking device, because it is sensitive
to the uniform phase delays in the device [13] that would not
appear in an image.

The wave numbers of nearly perfect invisibility turn out to
be related to the eigenfrequencies of light in the index profiles
[Eqs. (4) and (5)]. We can easily deduce them from the analogy
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FIG. 2. (Color online) Simulations of wave propagation for a
cloaking device based on the Zhukowski map [Eq. (3)] and the Kepler
profile [Eq. (5)]; our results for the Hooke profile [Eq. (4)] are very
similar. In each panel, the outer circle describes the boundary of
the device (with cutoff radius rc), the inner circle contains the core
of the cloaking device that carries the transformed profile [Eq. (5)],
and the pupil indicates the cloaked region where the wave decays
exponentially. (a), (b) Top pictures show the cloaking of incident
plane waves, and (c), (d) bottom pictures cylindrical waves. Our
simulations illustrate two extreme cases, kr0 = 5 [(a), (c)] with nearly
perfect invisibility and kr0 = 6 [(b), (d)] with a pronounced phase
dislocation and a resulting diffraction pattern. Note that the core of
the device is small in comparison with the wavelength such that
geometrical optics is no longer a good approximation, yet cloaking
can be nearly perfect.

between the Helmholtz equation [Eq. (2)] in virtual space and
the stationary Schrödinger equation(

∇′2 + 2m

h̄2 (E − U )

)
ψ = 0 , E − U = h̄2n′2k2

2m
, (6)

where U denotes the potential, E the energy, and m the
mass. The Hooke profile [Eq. (4)] corresponds to the two-
dimensional (2D) harmonic-oscillator potential

U = h̄2k2

mr2
0

|w − w1|2 = mω2
0

2
|w − w1|2, (7)

with ω0 being the oscillation frequency. An eigenstate of the
2D oscillator has the quantized energy

E = h̄2k2

2m
= h̄ω0(l + 1) (8)

for nonnegative integer l. From relations [Eqs. (7) and (8)], it
follows that

kr0 = 2(l + 1) (Hooke) (9)

that defines the wave number k of an eigenmode. Along similar
lines, we deduce the eigenmodes in the Kepler profile [Eq. (5)]
from the 2D hydrogen spectrum [19], and obtain in this case

kr0 = 2l + 1 (Kepler). (10)
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FIG. 3. Cross sections. We compare the total scattering cross
section σ of the cloaking device of Fig. 2 (black) with the
corresponding σ of the uncloaked object (gray) depending on kr0.
We see that σ drops below the cross section of the uncloaked object
when kr0 is an odd integer, in agreement with Eq. (10). Maximal σ is
comparable to the size of the device given by twice the radius rc = 5
in our units.

It is clear from semiclassical quantum mechanics that for
these eigenmodes, the phase difference along the closed loop
on the interior sheet in virtual space is an integer multiple of
2π . Therefore the device does not cause a phase dislocation;
the emerging wavefront on the exterior sheet is intact. What
seems more surprising is the fact that the incident wave is
not reflected at the boundary between the exterior and interior
sheets (within the accuracy of our simulations) even when the

FIG. 4. (Color online) One-dimensional model. Top picture
shows a typical closed loop of a light ray on the Riemann surface
of the Zhukowski map [Eq. (3)] with the Kepler potential [Eq. (5)]
on the lower sheet. Bottom picture visualizes the refractive index
profile n′ experienced by the ray on its trajectory in virtual space.
At the sharp interfaces between the media, a wave is reflected and
transmitted with coefficients ri and ti . However, when the phase
delay ϕ in the dielectric structure is an integer multiple of 2π , no net
reflection occurs due to interferences at multiple reflections. In this
case, the structure is perfectly invisible.
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index jumps by an infinite amount, as is the case for the Kepler
profile [Eq. (5)] in virtual space. Finally, we observed (Fig. 2)
that the cloaking device performs nearly perfectly for the wave
numbers [Eqs. (9) and (10)], showing no signs of reflection and
diffraction beyond free wave propagation. Cloaking is almost
perfect even when the device is smaller than the wavelength of
light, a regime that lies outside the validity range of geometrical
optics [5].

The perfect transmission and hence perfect invisibility at
an eigenfrequency can be made plausible by a simple one-
dimensional model. Imagine, instead of the lower Riemann
sheet (Fig. 1) where the light enters and leaves through the
branch cut, a one-dimensional index profile (Fig. 4) that light
enters from one side and leaves at the other. This simple model
contains the essence of the more complicated behavior of light
propagation on the interior Riemann sheet where the index
jumps, but after one loop returns to the original value; in
the model, we have opened this loop such that the two sides of
the branch cut are represented by two interfaces. We denote the
reflectivities and transmittivities of each interface by r1,r2 and
t1,t2, and obtain from the Fresnel coefficients [5], the relations

r1 = −r2 , t1t2 = 1 − r2
1 = 1 − r2

2 . (11)

Consider a wave ψ propagating in x direction in a uniform
background medium with index n0 toward the nonuniform
profile representing the interior sheet. Part of the wave
is reflected; the transmitted part propagates to the second

interface with phase ϕ and is multiply reflected inside the
index profile, such that in total

ψ = ein0kx + e−in0kx(r1 + t1 eiϕ r2 eiϕρ t2) , (12)

ρ =
∞∑
l=0

(r2e
iϕ)2 = 1

1 − (r2eiϕ)2
. (13)

For an eigenmode, the phase delay ϕ is an integer multiple
of 2π . In this case, the Fresnel relations [Eq. (11)] imply
that ψ = exp(in0kx); the interference of light by multiple
reflections causes no reflection at all—the wave is perfectly
transmitted and so the index profile is invisible. It is remarkable
that this behavior carries over to the wave propagation on
virtual Riemann sheets that, for certain frequencies, are not
only invisible themselves but make everything inside invisible.

We, thus, showed by numerical simulations and simple an-
alytical arguments that cloaking devices based on optical con-
formal mapping [2] work perfectly for discrete frequencies—
like the cloaking devices made by the implementation of
nonconformal coordinate transformations [3]—and this even
in a regime far beyond geometrical optics.
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