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Two peaks in the momentum distribution of bosons in a weakly frustrated two-leg optical ladder
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The ground-state properties of neutral hard-core bosons trapped in an optical two-leg ladder in the presence
of an artificial magnetic field are studied. For a weak field, two separated peaks appear in the momentum
distribution as a signature of the Meissner state in which bosons, carrying persistent currents on each leg,
condense into finite-momentum states, while for a strong field, a central peak and tiny bumps associated with the
vortex lattice structure indicate that the ground state is the vortex state.
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I. INTRODUCTION

Recent advances in creating an artificial magnetic field
[1–5] for neutral bosons trapped in an optical lattice [6,7]
provide a laboratory to explore macroscopic phase coherence
in the presence of phase frustration. The condensate state,
analogous to the superconductivity in a real magnetic field,
either expels a weak field to form the Meissner state or
generates quantized vortices for a strong field in the vortex
state. These two states have been explored in type-II su-
perconductors mostly by measuring macroscopic quantities,
such as magnetizations, or by detecting vortices. However,
the state of bosons confined in typical condensed-matter
systems, such as Cooper pairs in Josephson junction arrays
or superconductors in the presence of a magnetic field, cannot
be directly probed. Ballistic expansion measurements of cold
atoms in an optical lattice provide a unique opportunity to
explore the macroscopically coherent state of the frustrated
bosonic matter waves.

Parameters, such as interaction strengths and hopping
amplitudes, of cold bosonic atoms in an optical lattice as well
as geometries of the lattice can be manipulated to realize in
a variety of strongly correlated systems [8–11]. Setting up
a three-dimensional lattice and then increasing the trapping
potential along the transverse directions to confine bosons
in columns, we can realize one-dimensional chains [12,13].
Interacting bosonic quantum gases in a chain is a Luttinger
liquid [14–16] which has a central peak at zero momentum
in the momentum distribution as a hallmark of superfluidity.
Superimposing a lattice with twice the period by controlling
the polarization of the laser beams [17,18], one can create a
two-leg ladder [19–21].

Since a ladder, still a one-dimensional system, permits
orbital motions around the planar loops, it can implement some
two-dimensional effects such as in-plane phase frustration.
How the ground-state properties will be changed due to the
phase frustration is a fundamental question on the behavior of
frustrated conducting bosons [22,23]. Innovative approaches
to create phase frustration [1–5] for neutral atoms in an optical
lattice are proposed and some of them are implemented by
using a spatially dependent optical coupling, freed from the
limitations of rotating systems. Inhomogeneous phase shifts
build an artificial magnetic field for neutral atoms bringing
phase frustration into the system. These artificial phase
shifts can create rather easily even strong frustration, seldom
available in condensed-matter systems where subnanosize of

the elementary plaquette needs a huge magnetic field to obtain
one fluxon per plaquette.

In this work, we show that the momentum distribution
provides tools to probe not only the vortex state, in which the
existence of vortices is often regarded as an evidence of phase
frustration due to a strong field, but also the Meissner state
when the system is subject to a weak field. Specifically, hard-
core bosons in a two-leg ladder under weak phase frustration
for f < fc with fc � 0.3 have two peaks in the momentum
distribution as a signature of the Meissner state, whereas
one central peak at zero momentum and tiny bumps at finite
momenta, indicating the vortex lattice structure, appear in the
vortex state for f > fc. Furthermore, from the correlation
functions, we find that, in the Meissner state, the phase angles
of bosons are aligned across the rungs at the cost of being
twisted along the legs, driving persistent currents in opposite
directions on each leg. On the other hand, in the vortex state, the
phase angles are locally twisted to adjust to strong frustration,
generating currents that alternate directions on the rungs with
a period characterized by the frustration.

II. MODEL

The system we are considering is that of cold bosonic
atoms confined in a frustrated two-leg optical ladder (Fig. 1)
described by the Hamiltonian

H = −t
∑

α,x

(b†α,xbα,x+1 + H.c.)

− t
∑

x

(
eiAx b

†
2,xb1,x + H.c.

)
, (1)

where b
†
α,x (bα,x) denotes boson creation (destruction) operator

at the xth site on the leg indexed by α = 1,2, t is the hopping
matrix element, and Ax is the phase shift on the xth rung. Here,
focusing on the frustration effect, we choose the hard-core
limit and assume that the inter- and intraleg hopping strengths
are the same. We take a gauge choice Ax = 2πf x to have a
frustration

f = 1

2π

∑

x

Ax, (2)

where the sum runs over an elementary plaquette. A different
gauge choice, possibly taken in experiments, does not alter the
results.
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FIG. 1. (Color online) Schematic illustration of hard-core bosons
(large dots) in a two-leg ladder under the influence of an artificial
magnetic field due to nonvanishing phase shifts associated with
hopping.

Momentum distributions observed in ballistic expansion
experiments of cold atoms in an optical lattice are proportional
to one-body correlators within the factor of the Wannier
function in k space [8]. We describe them in terms of the
correlator along a leg defined by the formula

nα(k) = 1

L

L−1∑

x,x ′=0

〈b†α,xbα,x ′ 〉eik(x−x ′) (3)

for momentum k = (2π/L)l (l = 0,1, . . . ,L − 1) where L is
the length of the ladder and the average 〈· · ·〉 is taken over the
ground-state wave function. Here, we set the lattice constant
a = 1. For frustrated cases (f �= 0), the total momentum
distributions are n(kx,ky) ∼ 1

2 {n1(kx) + n2(kx)} for ky = 0
and ky = π since the values of the interleg correlators are
very small, but, for the unfrustrated case, n(kx,0) ∼ {n1(kx) +
n2(kx)} while n(kx,π ) are negligible.

Correlation functions are obtained by taking the Fourier
transform of the momentum distributions:

Cα(x) = 1

L

∑

k

nα(k)e−ikx . (4)

We also consider the currents on the rungs

Jr (x) = i(eiAx b
†
2,xb1,x − e−iAxb

†
1,xb2,x) (5)

and on the legs

Jlα(x) = i(b†α,x+1bα,x − b†α,xbα,x+1) (6)

and their correlations.
The ground-state wave functions and then their momentum

distributions are calculated by the modified Lanczos method
[24] for N bosons under the frustration f = p/q for some
small integers p and q with the periodic boundary condition.
Note that we need a size L = 2sq (s is an integer) to avoid any
twisted boundary effects, especially in the Meissner state.

III. RESULTS

Figure 2 shows the momentum distributions nα(k) at differ-
ent f for L = 20 (40 sites in total) and N = 8. Apparently they
show distinct features for different f . For f = 0, nα(k) shows
the Luttinger liquid behavior: it has peaks at zero momentum
for both legs and its size dependence [25] at a fixed filling
[nα(0) ∼ C0 + C1L

1−1/2Ks with fitting constants C0 and C1]
is roughly characterized by the Luttinger liquid parameter
Ks ≈ 1. Unfortunately, because of the limited sizes, further
elaboration of Ks is not feasible.
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FIG. 2. (Color online) The momentum distributions of hard-core
bosons, denoted by black (circles) and red (squares) lines for each
leg, on an optical ladder with phase frustration f . They show distinct
features below and above fc � 0.3: there are two separate peaks for
f < fc, characterized as the Meissner state, and one central peak and
tiny bumps at k = ±2πf for f > fc in the vortex state.

In the presence of frustration, for 0 < f < fc with fc �
0.3, however, an interesting feature appears: n1(k) and n2(k)
have peaks at finite k = −πf and +πf , respectively. This is a
one-dimensional quantum liquid of bosons condensed at finite
k, in which the lowest energy states are not the zero-momentum
state, but the states with finite velocity (or momentum) in
opposite directions at each leg. This state can be viewed as
the Meissner state with persistent currents at the edges: the
currents exist on the legs, 〈Jl1(x)〉 = −〈Jl2(x)〉 �= 0, but not
on the rungs, 〈Jr (x)〉 = 0.

For f > fc, vortices appear. The existence of vortices
is reflected in the current-current correlation functions of
currents on the rungs (Fig. 3): they oscillate with the period
characterized by f in the vortex state and agree fairly well
with the theoretically predicted form [22],

〈Jr (x)Jr (0)〉 ∼ (2π/L)2/K cos(2πf x)

[2 − 2 cos(2πx/L)]1/K
, (7)

for a finite system with the periodic boundary condition [26],
where K is a Luttinger parameter. By fitting data to this
form, we find that 1/K = 0.27 for f = 4/10 and 1/K = 0.29
for f = 5/10. However, the thermodynamic properties of
the strongly frustrated system with vortices are not readily
discriminated from those of the unfrustated system. Both of
them are mainly governed by the sharp central peak of nα(k).
In the vortex states, however, nα(k) has bumps at k = ±2πf as
remnants of the vortex lattice structure. They will, then, serve
as useful markers in identifying the vortex state by measuring
nα(k).

Between the Meissner and the vortex states, a transition
occurs at f = fc [22,23]. In a finite-size system, however, the
transition is smeared and, near fc, the central peak and the
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FIG. 3. (Color online) The current-current correlation functions
(denoted by filled circles) for the currents on the rungs. In the vortex
states for f > fc, a periodic oscillation of currents associated with
the vortex lattice structure appears, which is absent in the Meissner
states for f < fc, fitted to the theoretical predictions (denoted by
open circles).

peaks at finite momenta coexist as shown in Fig. 2 at f =
3/10. Therefore we can estimate fc � 0.3, nearly consistent
with the value obtained in the Josephson-junction ladder
at commensurate filling [23]. However, it is inappropriate
to make a direct comparison of our results to the case at
commensurate filling where the coupling to the periodic
lattice potential leads to a Kosterlitz-Thouless (KT)-like
transition. As shown in Ref. [22], our flux driven transition
is a commensurate-incommensurate transition and the exact
value of fc will depend upon the details of the system such as
the ratio between the inter- and intraleg hopping amplitudes or
the filling fractions.

We may consider the system with f = p/q as the one with
q-fold degeneracy in the ground states. Then, as f decreases,
for example, by increasing q with fixed p = 1, the number
of degeneracy increases. This picture fails for a small f : at
f = 0, the system has one ground state in the limit where q

goes infinity. It turns out that the picture of q-fold degeneracy
is valid only in the vortex state. As f decreases, there is a
transition to the Meissner state which has one ground state
with persistent currents at edges, manifested by two peaks
in the momentum distribution. The peaks become closer and
eventually merge into one central peak as f approaches zero.

The properties of the momentum distribution discussed
above show how conducting bosons adjust to phase frustration.
In the Meissner state for weak frustration, the phase angles of
bosons are twisted gradually along the legs over long distance,
as can be described by the correlation functions, Cα(x), in
Fig. 4, which have roughly a sinusoidal oscillation with the
wavelength λ ∼ 2/f . This results in persistent currents on legs,
〈Jlα(x)〉 �= 0, in directions opposite each other but little twist
across the rungs, which may cause relatively larger energy
cost. In the vortex state, however, the phase angles are locally
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FIG. 4. (Color online) The correlation functions for different f

on leg 1.

twisted to adjust to strong frustration, generating vortices with
currents alternating in directions on legs and rungs in the period
characterized by f . This makes the phase angles of the matter
wave aligned along the legs with tiny tilts so that the real
part of the correlation function is always positive while the
imaginary part is nearly vanishing. Figure 5 shows a schematic
plot of angles and currents of the Meissner and the vortex states
which represent two different ways how conducting bosons in
a two-leg ladder cope with external orbital frustration.

IV. SUMMARY

In this work, we have studied the ground-state properties of
hard-core bosons in a phase frustrated two-leg ladder through
a Lanczos calculation of the momentum distributions and the
current-current correlation functions. We have found that, in
the weakly frustrated case, the ground state is the Meissner
state with persistent currents on the legs, which is marked in
the momentum distribution by two peaks at finite momenta
k = ±πf . In the strongly frustrated case, on the other hand,
the vortex state is formed, in which vortex lattice structure
characterizes the oscillating behavior in the correlation func-
tions of currents on the rungs. In the momentum distribution

FIG. 5. (Color online) A schematic plot of the currents (red
arrows) and the phase angles (blue arrows) in (a) the Meissner state
for f = 2/10 and (b) the vortex state for f = 4/10 with vortices
(circles).
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of this state, a central peak at zero momentum and tiny bumps
at k = ±2πf appear. Experimentally, these features can be
detected and used in a ladder of coupled optical chains in
an artificial magnetic field to measure the phase frustration
realized on the system and to clarify the properties of the
corresponding ground state.
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