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Gaussian-state entanglement in a quantum beat laser
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Recently quantum beat lasers have been considered as a source of entangled radiation [S. Qamar, F. Ghafoor,
M. Hillery, and M. S. Zubairy, Phys. Rev. A 77, 062308 (2008)]. We investigate and quantify the entanglement
of this system when the initial cavity modes are prepared in a Gaussian two-mode state, one being a nonclassical
state and the other a thermal state. It is investigated how the output entanglement varies with the nonclassicality
of the input Gaussian state, thermal noise, and the strength of the driving field.
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Gaussian states play a central role in the continuous-
variable (CV) regime as they can be produced from reliable
sources and controlled experimentally using an accessible
set of operations due to, for example, beam splitters, phase
shifters, and efficient homodyne detection. Entanglement be-
tween two Gaussian modes can be generated in the laboratory,
like two output beams of a parametric down-converter [1].
A number of schemes for the generation of such kinds of
entangled states for photons, atoms, and bright light sources
have also been proposed [2—14].

A quantum beat laser is one of the examples of CV
entangled systems where the gain medium is usually three-
level atoms in a V configuration interacting with two modes
of radiation in a doubly resonant cavity [9-13]. In order to
couple these two modes, the upper two levels of the atom are
coherently driven by a strong classical field, making the two
modes highly correlated [15-17]. Recently we considered the
generation of two-mode-entangled states of cavity modes in a
quantum beat laser [10], where the presence of entanglement
between the two modes was demonstrated using Duan et al.
[18], Simon [19], and Hillery and Zubairy [20] criteria for
some specific initial states, such as squeezed vacuum, Fock,
and coherent states. It was shown that entanglement can be
maintained for a longer time with the increase in the strength
of the driving field. In quantum beat lasers entanglement
eventually vanishes and its characteristic time highly depends
upon the initial states of the cavity field.

In another study we investigated the entanglement gen-
eration by beam splitter when a general Gaussian state is
mixed with thermal noise on a lossless beam splitter [21].
In this report, we employ the same class of initial states
in a quantum beat laser; that is, the two cavity modes are
initially in a (nonclassical) Gaussian state mixed with thermal
noise. In this case, we can systematically investigate the
time evolution of entanglement due to the well-established
Gaussian formalism and quantify the degree of entanglement
using the logarithmic negativity [22], not only determining the
presence of entanglement contrasting the previous work [10],
in a quantum beat laser.

Our model for the quantum beat laser is the same as that
discussed in [15,17], that is, a three-level atomic system of V
configuration in a doubly resonant cavity, as shown in Fig. 1.
The atoms are prepared in coherent superposition of |a) and
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|b) by an external driving field with Rabi frequency 2. The
atomic decay rates are assumed to be the same to simplify
analysis. The evolution of the two-mode field in a quantum
beat laser can be described by the characteristic function

x(&1,82,1) = Tr(P(f)é’{'ai_{‘*aletza;_gaz), (D

where a,-(aj ) is the annihilation (creation) operator of the ith

field mode (i = 1,2) and p(¢) is the density matrix of the

two-mode field given by the master equation [10]
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where k; and k, are the decay rates for the cavity modes of
frequencies v; and v,, respectively. The phase angle @ in the
above equation is given by ® = ¢ + (v; — v, — v3)f, where
v3 is the frequency and ¢ is the phase of the external driving
field. With the detunings A} = v, — o, — v; and A = wp, —
. — vy and the atomic decay rate y, the coefficients «;; are
given by
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where wesetg; = g» = gand A} = A, = A.Thecoefficients
o1and oy characterize the gain of the cavity modes while «
and ay, are related to the atomic coherence produced between
the levels |a) and |b) by the classical driving field.
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FIG. 1. (Color online) (a) Atomic medium inside a doubly
resonant cavity. (b) Atomic level configuration.

When the output two-mode state in the quantum beat laser
is Gaussian, its characteristic function is given by

X (¢1.02,1) = exp (— 3¥' Vi), )

where yT = (¢{,¢1,¢5,¢2) and V; is the time-dependent covari-
ance matrix of the form

Vi = 4 ¢ 6

The submatrices A, B, and C are given by
1 1
n+s5; —m n,+5 —m
A= 1 2 l1 , B — 2 2 21 ’
-my ni+5; —-m5 na+5
mg —me
c= (", ™
h - — (4t — (42 — (42

where ny = (aja1), ny = (ayaz), my = (ay), ma = (a3),
mg = (ala;), and m. = (a1ay) are time-dependant second-
order moments of the two-mode field and can be determined
by the master equation (2).

We assume that the two modes of the cavity field are initially
in a product state, which consists of two independent Gaussian
states with one input in an arbitrary single-mode Gaussian state
defined by nonclassicality t and purity # and the other input

in a thermal state of average photon number 7. The covariance
matrices for these two initial modes are given as [21]

a b n+i 0
V1=<* )7 V2= 2 — 1 ) (8)
b a 0 l’l+§

where matrix elements a, b = |b|e'?, and 77 are given as

1
1 1

Pl = g =35~ 3029 (10)

m= (e — 1), (11

where kg is the Boltzmann constant and 7 is the absolute
temperature of the thermal state. Thus, its characteristic
function can be written as x(¢1,¢,t = 0) = exp(—%y* VinY),
where Vi, = V| @ V, is the initial covariance matrix. The
characteristic function of the two-mode Gaussian state at time
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t is given by Eq. (5), where the time-dependent elements of the
covariance matrix V; at resonance (A = 0) can be obtained as

A e 226 — k44 ()]
n = — — —
1 Dis Dy 12 X
x [Byy sin(Bt) + By, cos(B1)]}, (12)
A L2126 — k44 ()]
"= Dy, Dy 2 X
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m, = %(An — e Az — [-2G + k(4 + x)]
11
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The other coefficients A;;, B;;, and D;; are given in the
Appendix.

Entanglement among two modes of quantum beat laser can
be determined using logarithmic negativity [22],

N = max{0, — log,(26_)} + max{0, — log,(2§;)}, (19)

where &, are the two positive roots of the characteristic
equation

£4 — (Det[A] + Det[B] — 2Det[C])E2 + Det[V;] = 0.  (20)

Thus, entanglement depends upon the parameters €2, t, u,
and 7. The major controlling parameter which greatly affects
the entanglement is the strength of the driving field €2, which
produces the coherence between the two lasing levels and is
essentially responsible for entanglement. Here we discuss the
two extreme cases of the driving field upon entanglement.

Case (i): Weak driving field (2 < y). When the strength
of the driving field is much less than the spontaneous decay
rates of the atomic levels at resonance (A = 0) then the terms
corresponding to the atomic coherence o, and o, are very
small compared to the gain terms «1; and o;,, resulting in no
entanglement at all times.

Case (ii): Strong driving field(2 > y). It has been shown
earlier that the lasing process in the quantum beat laser occurs
only in the limit that the classical driving field is very strong
[16]. With a very strong driving field € >> y at resonance
(A = 0), the coefficients corresponding to the gain «;; and
o7 are much smaller than the coherence terms o, and «,;. So
under this approximation the master equation describing the
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quantum beat laser reduces to

p(t) = —ilHewr.p) — ki(ajarp — 2a1pa] + palay)

—ka(alarp — 2a3pal + pajar), @1
with the effective Hamiltonian
2iGy ; _
H.q = (alare'® + ajale™®). (22)

Therefore, in the strongly driven limit, the two-mode quantum
beat laser behaves like an optical beam splitter with some
losses. It has already been shown that two output beams of a
beam splitter can become entangled if one of the input beams
is nonclassical [21,23-25].

For the general case, here we discuss the effect of various
parameters €2, 7, u, and 7 on entanglement. In Fig. 2(a) we
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show the effect of €2 on the entanglement. The value of Q2
must be larger than /2y as the lesser values make f in
Eq. (18) complex, resulting in no entanglement. The amount
of entanglement, which is very small at low €2, increases with
Q2 reaching the maximum value at about Q2 ~ 20y, and then
begins to decrease with €2. The duration of the entanglement
generally increases with the strength of the driving field €2,
which is clearly demonstrated in Fig. 2(b) where the cross
sections of the plot in Fig. 2(a) are shown. In Fig. 2(c)
we show the effect of nonclassicality of the input Gaussian
state upon entanglement. The amount of entanglement along
with the survival time of the entanglement increases with the
nonclassicality T and approaches to its maximum value as
v — 1/2. In Fig. 2(d) we show the effect of thermal noise
on entanglement. Increase of the thermal noise reduces the
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FIG. 2. (Color online) (a) Entanglement as a function of driving field strength €2/y and dimensionless time Gt at A = 0,7 = 0,u = 1, and
T = 0.45. (b) Cross-sections of Fig. 2(a) at, from top to bottom, 2 = 800 kHz (black solid), 1200 kHz (red dotted), 1600 kHz (green dashed),
and 2000 kHz (blue dash-dotted). Inset at smaller values of Rabbi frequency €2 = 200 kHz (black solid),300 kHz (red dotted),400 kHz (green
dashed), and 500 kHz (blue dash-dotted). (c) Entanglement as a function of nonclassicality T and dimensionless time Gt at A =0, 7 =0,
u =1, and Q = 400 kHz. (d) Entanglement as a function of average photon numbers 7 in the thermal state and dimensionless time Gt at
A =0,7 =045 u =1and Q2 = 400 kHz. The other parameters are taken as y = 20 kHz, r, = 22 kHz, g = 43 kHz, and k = 1.5 kHz.
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amount and the duration of entanglement. The purity of the
initial Gaussian state does not show any significant effect on
entanglement.

This work is supported by NPRP Grant No. 1-7-7-6 from
the Qatar National Research Fund (QNRF).

APPENDIX: COEFFICIENTS OF THE MARTIX ELEMENTS

The coefficients A;;, B;;, and D;; of the Egs. (14)—(20) are.

A= —8G*Y(1+3x> + x"Q2Z + K*(14 = 25> — x*).

A = 2GYZx*16k+8(G — 2k)(2a — n)+2(2k(2 — 7 — 4a)
+G3B 4 2a + 2n)x* + k(1 — 2a — 2m)x ™1,

Ay = —8G?Y3 % [2G? — 6Gk + 3k*(4 + x )1,

Ay =2GYZx 4+ x*)2G(3 + 2m)x* — 4n)
—k(@n(x* = 2) = x* —4) +2a(2G — k(4 + x7)))
x (44 x],

Az = 8G*Yk(G — 3k)8 + 14x2 + Tx* + x°),

Az = 2GY Z[16k + 8(G — 2k)(2a — 1) + 2(2k(2 — 4a — n)
+G3+2a +2m)x* + k(1 — 2a — 2m)x*],

By =2GY?[(1 +20)Z — 24+ 5x° + x M),

Bi» = GY{8Gk(1 + x)[2 +4a + (1 + 2a + 2n)x>
+(a—71 — Dyx* — G*x*[4 + 8a+(6 + da + 4m) x>
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—(1 = 2a+2mx 1+ G+ 52 + xh
x [4=2a(4+2x* + xH + x2Q + x> +20(x* — 2)))
Boi = AGY[GX(1 + m)(=2 + xD)x* — 2Gk(1 + x?)
x (3 +2m)x% — 4n) — K8 + 6x% — 3x* — xO)1,
By = GY{K*@4+5x% + xHI(1 = 2a)x>(4 + x*)°
+2n(x* — 8)] — 8Gk(1 + xH)[(x® — 8) — x*
x 2+ x*— x*+a@+ xHH - G*x*[16 — 2n
x (x5 — 8) + x2(16 + 8x% — x* + 2a( + xOA,
By = GQR+3> + xH{k*@ +5x* + x")[8a + 4n — 4
+(2a — 27 — D21 + 8Gk(1 + x[(1 + (x>
—2)—a@d+ x4 G*}*[4Q2 + 2a + 1)
+ x%Qa — 21 — D1},
By, = GY{—8Gk(1 4+ xH[2+4a — 21+ Q2+ a + ) x?]
+ G*x2[8a—4n+(3+2a+2n) x 1+k>4+5x>+x
X [8a — 4(1 +7) + 2a + 2 — Dx*)
D11 =8GYZQ2+3x2 4 xH2G — k(4 + x>,
Y2
S S )
Q+3x>+xY

where k is the cavity decay rate taken same for both the modes
and

Dy, 115

Y =+ x4+ 1%,
Z=G*x> —4Gk(1 + xH) + K*@ +5x2 + x*).
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