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Simplified optical quantum-information processing via weak cross-Kerr nonlinearities
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We propose a simplified parity meter for photonic qubits with cross-Kerr nonlinearities, homodyne
measurement, and some optical elements. Our scheme has lower error probability than the protocol proposed
in Nemoto and Munro [Phys. Rev. Lett. 93, 250502 (2004)]. Based on the present parity meter, we achieve
cluster-state preparation, a complete Bell-state analyzer, and quantum teleportation. All of these schemes are
nearly deterministic in the regime with little noise and include less optical elements, which makes our schemes
more meaningful for large-scale quantum computing.
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In recent years, quantum-information processing (QIP) has
been investigated quite extensively and deeply. Many schemes
for QIP have been proposed in different quantum systems, such
as cavity QED [1,2], trapped-ion systems [3,4], quantum-dot
systems [5,6], superconducting quantum systems [7,8], and
linear optical systems [9,10]. In 2001, Knill, Laflamme, and
Milburn (KLM) [9] proposed that measurements can provide
the means to implement a controlled-NOT (CNOT) gate on
boson qubits using single photon sources, detectors, and
linear elements. This pioneering work opened the gate of
measurement-based quantum computation. Thereafter, many
approaches for QIP based on measurement were proposed in
both boson systems [11–13] and fermion systems [14–20].
However, because of the probabilistic nature of gates in
linear optical QIP, it is difficult to achieve deterministic QIP
using only single-photon sources and linear optical elements,
including feedforward. In 2003, Munro et al. [21] induced an
interaction between the photons, which moved optical QIP
beyond linear optics and brought the hope of deterministic
optical QIP. This interaction is achieved by using a cross-Kerr
nonlinear medium. Strong Kerr nonlinearities are difficult to
achieve in experiment, so their later works [22–25] used strong
coherent state and weak cross-Kerr nonlinearities generated
with electromagnetically induced transparencies to realize
nearly deterministic quantum gates. Recently, more and more
attention [26–28] has been given to optical QIP with weak
cross-Kerr nonlinearities.

In general, cross-Kerr nonlinearities can be described with
the Hamiltonian as [21–23] Ĥ = h̄χn̂an̂c, where n̂a and n̂c are
the photon number operators for modes a and c, respectively. χ
is the coupling strength of the nonlinearity, and it is decided by
the property of the nonlinear material. We consider the signal
mode a to be a Fock state |na〉 containing na photons and the
probe mode c to be a coherent state |αc〉 with amplitude αc.
The cross-Kerr nonlinearity causes the combined system of
the two modes to evolve as eiχtn̂a n̂c |na〉|αc〉 = |na〉|αce

inaθ 〉,
where θ = χt and t is the interaction time. It is clear that
the phase shift picked up by the coherent state is directly
proportional to the number of photons in signal mode a and that
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the Fock state is unaffected. So the measurement on the phase
of probe beam can distinguish the photon numbers in signal
mode.

In this Brief Report, first, we simplify the parity meter in
Ref. [23] and discuss the advantages of the simplification.
Then, we investigate the applications of the present parity
meter in the optical QIP, including cluster-state preparation,
a complete Bell-state analyzer (BSA), and a scheme for
deterministic quantum teleportation. Finally, discussions and
a summary are given.

Based on the qubit-parity meter presented in Ref. [23], we
first proposed a simpler qubit-parity meter, as shown in Fig. 1.
Compared with the former one, our device is an effective
simplification by removing two polarizing beam splitters
(PBS) and several mirrors (not shown). This simplification is
meaningful for large-scale quantum computing. Furthermore,
we will demonstrate that the present scheme has a lower error
rate than in Ref. [23].

Assume two polarization photons with the form

|ψ1〉 = α|H 〉 + β|V 〉, |ψ2〉 = δ|H 〉 + γ |V 〉, (1)

where |α|2 + |β|2 = |δ|2 + |γ |2 = 1. The probe beam is the
coherent state |αc〉. After passing through the first PBS, there
is only one photon in each spatial mode (called balanced) for
the initial state |H 〉1|H 〉2 or |V 〉1|V 〉2, while there is zero or
two photons in each spatial mode (called bunched) for the
initial state |H 〉1|V 〉2 or |V 〉1|H 〉2. Then, the photons interact
with two separate weak cross-Kerr nonlinearities, as shown in
Fig. 1. The subsequent PBS is used to separate two photons
into different spatial modes. Therefore, after the PBSs and
cross-Kerr nonlinearities, the joint state will evolve into

|ψ12αc
〉 = (αδ|HH 〉 + βγ |V V 〉)|αc〉 + (αγ |HV 〉|αce

−i2θ 〉
+βδ|V H 〉|αce

i2θ 〉). (2)

Obviously, the probe beam receives no phase for the |H 〉1|H 〉2

and |V 〉1|V 〉2 components of the state, while the probe mode
receives −2θ and +2θ phase shifts for the |H 〉1|V 〉2 and
|V 〉1|H 〉2 components, respectively. Now we have to perform
an X homodyne measurement [23] to obtain the projection of
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FIG. 1. (left) The parity meter for photonic qubit coding in the polarization degree of freedom. PBS indicates polarizing beam splitter. The
θ indicates that the coherent beam in mode c will pick up a phase shift θ when there is a photon in mode a. φ(X) represents a phase shift
dependent on the feedforward result of the homodyne measurement. (right) The circuit shown to the left.

|ψ12αc
〉 onto the eigenstate |x〉 of the observable X,

|ψ̃12αc
〉 = 〈x|ψ12αc

〉 = f (x,αc)(αδ|HH 〉 + βγ |V V 〉)
+f (x,αc cos 2θ )(e−iφ(x)αγ |HV 〉+eiφ(x)βδ|V H 〉),

(3)

where

f (x,ξ ) ≡ 1
4
√

2π
exp

[
− 1

4
(x − 2ξ )2

]
,

(4)
φ(x) ≡ αc sin 2θ (x − 2αc cos 2θ ) mod2π.

Here f (x,αc) and f (x,αc cos 2θ ) are Gaussian probabil-
ity amplitudes of the two states αδ|HH 〉 + βγ |V V 〉 and
e−iφ(x)αγ |HV 〉 + eiφ(x)βδ|V H 〉, respectively. Therefore, the
two Gaussian curves with two peaks located at 2αc and
2αc cos 2θ (as shown in Fig. 2) correspond to different qubit
parities. The only difference between our scheme and that of
Ref. [23] is that we double the θ in Ref. [23], which makes our
scheme have less error probability, as described below.

The error probability can be obtained with the same method
as in Ref. [22]. The small overlap between the two Gaussian
curves amounts to the error probability, which is given by
Perror = 1

2 erfc(xd/2
√

2), where xd = 2αc(1 − cos 2θ ) is the
distance between two peaks. As θ � π for the regime of weak
cross-Kerr nonlinearities, xd ∼ 4αcθ

2. Hence, comparing our
scheme with that in Ref. [23], the error probability of the

2αccosθ x 0 2αc
x

f x, ξ

FIG. 2. (Color online) Gaussian probability distribution for the
result of the X-quadrature homodyne measurement. The dashed
curve and the solid curve correspond to f (x,αc) and f (x,αc cos 2θ ),
respectively. x0 is the midpoint between two peaks.

former Perror = 1
2 erfc(

√
2αcθ

2), while in the latter P
′
error =

1
2 erfc(αcθ

2/2
√

2). If we choose the same coherent probe beam
and weak cross-Kerr nonlinearities as the latter, i.e., αcθ

2 > 9,
Perror is less than 10−12, while P

′
error is less than 10−5. On the

other hand, if we have the same error probability and coherent
probe beam as in Ref. [23], the phase shift required in our
scheme reduces to half, which will be more feasible in the
experiment with weak cross-Kerr nonlinearities.

Now we discuss how to generate cluster states with the
parity meter proposed above. As shown in Fig. 3(a), let two
photons 1 and 2 prepared initially with |ψ12〉 = |+〉1 ⊗ |+〉2

simultaneously impinge on the parity meter from different
arms, where |+〉i = 1√

2
(|H 〉i + |V 〉i). When P = 0, the initial

state will collapse to |ψ0
12〉 = 1√

2
(|HH 〉 + |V V 〉), and we

choose σ = I . Then, let the second photon through a half-wave
plate (HWP) set at 22.5◦ (this value will be used throughout),
which is equivalent to a Hadamard rotation:

|H 〉 → 1√
2
(|H 〉 + |V 〉), |V 〉 → 1√

2
(|H 〉 − |V 〉). (5)

|ψ0
12〉 will become

∣∣ψ0′
12

〉 = 1
2 (|HH 〉 + |HV 〉 + |V H 〉 − |V V 〉). (6)

When P = 1, we can obtain the same result as in Eq. (6) with
σ = σx , where σx is Pauli X operator. It is evident that Fig. 3(a)
is an encoder for transforming the product state |+〉1 ⊗ |+〉2

to the entangled state shown as Eq. (6).
Straightforwardly, an N-particle cluster state can be gener-

ated using the N encoders proposed above in series, as shown
in Fig. 3(b). The operator σi depends on Pi . σi = I for Pi = 0,
and σi = σx for Pi = 1. Consider N photons prepared initially
in a product state,

|φ0〉 = ⊗N
i=1|+〉i , (7)

to illustrate the process for generating cluster states, where i

stands for the ith photon. By a simple calculation, we find that,
when P1 = P2 = · · · = PN = 0, the output state becomes

|φ0〉 = 1√
2N

⊗N
i=1

(|H 〉i + |V 〉iσ i+1
z

)
, (8)

where σz is a Pauli Z operator and σN+1
z = I . Equation (8) is

a standard form of cluster state. When Pi = 1, we can obtain
the same result as in Eq. (8) by choosing σi = σx . Because
the error probability of a parity meter Perror < 10−12, the
failure probability of generating an N -particle cluster state is
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FIG. 3. (a) An encoder for transforming the product state |+〉1 ⊗ |+〉2 to the entangled state 1
2 (|HH 〉 + |HV 〉 + |V H 〉 − |V V 〉). The block

P is the parity meter shown in Fig. 1. σ is dependent on the result of the parity meter, σ = I for P = 0 and σ = σx for P = 1. HWP is a
half-wave plate oriented at 22.5◦. (b) The setup for generating an N -particle cluster state, which is N encoders shown in Fig. 3(a) in series.

(N − 1)Perror. That is, when N is not very large, the generation
is also nearly deterministic. In addition, Fig. 3(a) can be used
as the gate to make an N-particle cluster state and a state |+〉
fuse to an (N + 1)-particle cluster state.

In what follows, we will construct a BSA and teleport an
arbitrary unknown state with the present parity meter. The
device in the rounded rectangle in Fig. 4 is the present BSA,
which is composed by two parity meters and four HWPs. After
the first parity meter, the Bell states in the polarization degree
of freedom |φ±〉 = 1√

2
(|HH 〉 ± |V V 〉) can be distinguished

from |ψ±〉 = 1√
2
(|HV 〉 ± |V H 〉). Then, we perform bilateral

Hadamard rotations of both photons in a Bell state, which
leave the states |φ+〉 and |ψ−〉 invariant, interchanging the
states |φ−〉 and |ψ+〉. So after the second parity meter, we
can distinguish |ψ+〉, |φ+〉 from |ψ−〉, |φ−〉. Hence, the
four Bell states can be completely distinguished. Compared
with that in Ref. [28], the present BSA does not destroy the

φ +

1ψ

Photon 2 Photon 3

Alice Bob
Class ic al Com m unic ation

Channel

Bell s tate

1P2P
HWP

HWP

BS A

FIG. 4. Diagrammatic illustration of quantum teleportation.
|φ+〉 = 1√

2
(|HH 〉 + |V V 〉) is shared by Alice and Bob. The blocks

P1 and P2 are the parity meters shown in Fig. 1. The device in the
rounded rectangle is the present BSA. The cross curve at the left of
Alice indicates that Alice will obtain one Bell state after quantum
teleportation.

measured state. Therefore, the BSA is nearly deterministic and
nondestructive.

Using the present BSA, we can teleport an arbitrary
unknown state. Suppose Alice wants to teleport an arbitrary
state |ψ1〉 = α|H 〉 + β|V 〉 with |α|2 + |β|2 = 1 to Bob, who is
in a distant location. Choose the Bell state |φ+

23〉 = 1√
2
(|HH 〉 +

|V V 〉) as the entanglement channel. Photons 1 and 2 belong to
Alice, and photon 3 belongs to Bob. Alice performs a Bell-state
analysis on photons 1 and 2 (see Fig. 4). Then, Alice tells
her result to Bob with classical communication, and Bob can
recover the teleported state |ψ1〉 by performing appropriate
local single-qubit operations on photon 3 according to Alice’s
result. We can see the present quantum teleportation scheme
is nearly deterministic due to the nearly deterministic BSA.
In addition, it is worth mentioning that Alice will obtain
a maximum Bell state after the teleportation, which is a
by-product of the teleportation scheme and can be used for
other QIP.

So far, we have shown a simplified parity meter for
photonic qubits and discussed its applications in cluster-state
generation, complete BSA, and quantum teleportation. One
can see that the main idea in this Brief Report is also based on
quantum nondemolition measurement of the photon number
via cross-Kerr nonlinearity. The error probability of the present
parity meter Perror equals 1

2 erfc(
√

2αcθ
2), which decreases

as αθ2 increases. Therefore, the amplitude of the coherent
state and the property of the nonlinear cross-Kerr material
jointly determine the success probability of our schemes.
In practice, strong Kerr nonlinearities are not available in
current technology; hence, we need to choose strong amplitude
coherent states to decrease the error probability. A suitable
Kerr nonlinear media can be provided by a two-dimensional
photonic crystal waveguide constructed from diamond thin
film with nitrogen-vacancy color centers fabricated in the
center of the waveguide channel [29,30]. Moreover, in 2003,
Hofmann et al. [31] showed that a phase shift of π can be
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achieved with a single two-level atom in a one-sided cavity.
That is to say, the present protocols are feasible and nearly
deterministic, as previously mentioned.

However, it should be noted that the above analysis is
carried out under ideal conditions, which is impractical in
actual experiments. Many factors will affect the experimen-
tal performance, such as dispersion, self-phase modulation
(SPM), molecular vibrations in Kerr media, etc. Shapiro
et al. [32] analyzed in detail phase noise and its effect on
the parity meter of Ref. [25], using the continuous-time
model for cross-phase modulation. SPM can be suppressed
by operating in the slow-response regime, so phase noise
is caused mainly by coupling to localized noise oscillators.
Their analysis showed that phase-noise terms will preclude
satisfactory performance of the parity meter in Ref. [25]; for
optimum performance, the following three conditions must be
satisfied simultaneously:

θ2|αc|2 � 1, σ 2|αc|2 � 1, σ 2 � 1, (9)

where σ 2 is the common variance of the phase noise. This
result also applies to our parity meter as we have the same

number of cross-Kerr media and optical pulses as Ref. [25].
The first condition in Eq. (9) has been discussed above, while
the actual requirements of the last two conditions is that
σ 2 is small enough. From Fig. 3 of Ref. [32], we can see
the parity meter has higher success probability when σ 2 �
10−5, which is a huge challenge for the current experimental
conditions.

In summary, we have proposed a simplified parity meter
with cross-Kerr nonlinearities and homodyne measurement.
Our scheme has lower error probability and can be achieved
with weaker cross-Kerr nonlinearities than the existing pro-
tocol. Furthermore, we have discussed the applications of the
present parity meter in the optical QIP from three aspects:
cluster-state preparation, Bell-state analysis, and deterministic
quantum teleportation. All of these schemes are nearly
deterministic in the regime of little noise and may be useful to
future optical QIP.
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