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The enhanced collective coupling to weak quantum fields may turn atomic or spin ensembles into an
important component in quantum information processing architectures. Inhomogeneous broadening can, however,
significantly reduce the coupling and the lifetime of the collective excitation that represent the quantum
information. In this paper we show that the width and shape of the inhomogeneous broadening have a striking
influence on the dynamics of the cavity-ensemble system and may lead to narrowing of the linewidth of the
collective states. We underpin our findings with the examples of a Gaussian and a Lorentzian profile of the
inhomogeneity.
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I. INTRODUCTION

In ensembles of a large number of identical atoms, the
interaction with the electromagnetic radiation field concen-
trates in a few collective degrees of freedom. Typically,
one identifies effective oscillator degrees of freedom, which
represent the collective atomic population of different internal
states. The strong effective coupling of these oscillators to
incident quantum fields makes atomic ensembles a prospective
component in light-matter interfaces [1], quantum memories
[2], repeaters for long-range quantum communication [3], and
many other applications in quantum information technology.

The ensemble size, on the one hand, provides a large optical
depth, and on the other hand, it provides phase-matching
conditions to couple strongly to weak quantum fields. In a
microscopic quantum formulation, an incident single photon
couples to a single collective excitation, i.e., to a superposition
state where all atoms have the same or similar excitation
amplitude. The corresponding Rabi frequency is proportional
to the square root of the number of atoms. While a single
collective oscillator degree of freedom is coupled to the field,
a stored field state can be transferred to another spatial mode
of collective excitation by applying a controlled reversible
inhomogeneous broadening (CRIB) to the atoms. In this way,
a multimode optical interface and memory can be established
[4]. Although optical transitions of rare-earth ion dopants
in crystals are inhomogeneously broadened, narrow spectral
features can still be defined with hole-burning techniques,
and both CRIB schemes [5,6] and schemes based on atomic-
frequency combs [7] have been used to demonstrate storage of
up to 1060 pulses of light [8,9].

In this paper, we consider an ensemble of N effective
spin-1/2 particles, coupled to a central quantum oscillator
(cavity). A cavity can be used to significantly enhance the
atom-light interaction, as demonstrated by experiments on
ultracold rubidium atoms [10] and ion Coulomb crystals [11]
in an optical cavity. Furthermore, a single quantized field
mode can be used as an interface in hybrid proposals for
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quantum computing, e.g., to couple polar molecules [12,13]
or solid-state spin ensembles [14] to a superconducting
qubit via a transmission-line resonator. Recent experimental
breakthroughs have led to the observation of strong collec-
tive coupling between a superconducting transmission-line
resonator and large ensembles (N > 1012) of electron spins
of chromium ions in ruby [15], nitrogen-vacancy centers in
diamond [16], and erbium ions in yttrium orthosilicate crystal
[17], while iron nuclei embedded in a low-Q planar cavity
have been resonantly excited by synchrotron radiation to a
superradiant state with a large collective Lamb shift [18]. The
multimode capacity of ensembles has also been observed with
nitrogen electron spins in fullerene cages and the electron and
nuclear spins of phosphorous in silicon [19].

The purpose of this paper is to investigate collective
enhancement in the presence of inhomogeneous broadening,
which is not controllable by the experimentalist. We study a
system with a Hamiltonian,

Ĥ0 = ωcâ
†
c âc +

∑
j

ωj σ̂
j
z , (1)

where ωc is the angular frequency of the central oscillator,
ωj is the time-independent transition frequency of the j th
spin, and h̄ = 1. The spins are noninteracting and the coupling
to the central oscillator is described by a Jaynes–Cummings
Hamiltonian,

Ĥ1 =
∑

j

gj σ̂
j
+âc + H.c., (2)

with possibly different coupling constants gj .
This model has fundamental importance and it appears with

different variations in quantum physics: a single spin coupled
to a bath of oscillators (the model explaining spontaneous
emission of light from a single atom), a central spin coupled to
a spin bath in a spin-star configuration [20], a single oscillator
interacting with a spin ensemble, or a cloud of atoms in an
optical or microwave cavity. Many of these models have been
addressed in textbooks [21] with emphasis on the resulting
dissipative dynamics of the central system. The mathematical
difficulties arising when taking the limit of a continuously
dense ensemble are also well known [22–24].
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Here we revisit the problem with emphasis on the “spin
bath” degrees of freedom. We show that the density of
spin states plays an important role in the joint dynamics
of the central oscillator and the collective spin-wave mode
that is directly coupled to it. In certain cases, despite the
inhomogeneity, all the other spin-wave modes are effectively
decoupled. This fact manifests itself in reduced oscillator
linewidths determined by the homogeneous linewidth of the
individual spins [25,26]. For other configurations, however,
the oscillator linewidths are dominated by the inhomogeneous
broadening, and the “decoherence” of the superradiant mode
is collectively enhanced.

The paper is organized as follows. Section II derives
some important properties of the model system, including
the distribution of eigenenergies, the transmission spectrum
through the cavity, and a formal solution for the dynamics of
the system in the limit of high polarization. In Sec. III, we
analyze in detail the cases where the effective density of spin
states is Gaussian and Lorentzian, and compare the oscillator
linewidths as well as the degree of Rabi splitting in both cases.
In Sec. IV, we consider the regime of strong coupling and study
the protective effects of the Rabi splitting in a perturbative
manner. Section V summarizes our results.

II. THE CAVITY-ENSEMBLE SYSTEM

At low temperatures (high polarization), a collection of two-
level systems and a collection of oscillators behave identically.
This fact is conveniently described in the Holstein–Primakoff
approximation by introducing the bosonic operators âj for
each spin-1/2 particle,

σ̂ j
z ≡ − 1

2 + â
†
j âj , σ̂

j
+ ≡ â

†
j

√
1 − â

†
j âj ≈ â

†
j . (3)

The nonlinearity introduced by the square-root term in Eq. (3)
ensures that no two excitations can take place at the same
spin. If we consider delocalized spin waves involving a large
number of spins compared to the number of excitations, the
probability that a given spin is excited is inversely proportional
to the number of spins N . Therefore, as long as only a few
delocalized spin excitations are considered, it is reasonable to
neglect the square-root term in Eq. (3). In this regime, the free
and interaction Hamiltonian (1) and (2) become quadratic in
the bosonic operators (apart from an omitted c number),

Ĥ0 = ωcâ
†
c âc +

N∑
j=1

ωj â
†
j âj , (4)

Ĥ1 =
N∑

j=1

gj â
†
j âc + H.c. = �(b̂†âc + â†

c b̂), (5)

where b̂† ≡ ∑
j αj â

†
j , defined by the normalized vector αj =

gj/(
∑

k |gk|2)1/2, is the creation operator of a delocalized spin-
wave mode, which is the superradiant mode. This is the con-
centrated degree of freedom which is coupled to the cavity with
the collective coupling strength � = (

∑
k |gk|2)1/2 that scales

as
√

N . An important consequence of the Holstein–Primakoff
approximation is that the excitations become independent
(noninteracting) quasiparticles. Therefore, the dynamics of a
single excitation provides the general solution, even if the total

number of excitations is actually much larger than unity (but
still much smaller than N ; see [27] for the case when the
number of excitations in the superradiant mode is comparable
to the number of spins).

In the following, our aim is to gain a detailed understanding
of the spectroscopic signature of the bath, as observed through
the cavity mode. In order to do so, in Sec. II A we will use the
resolvent formalism [21] to calculate the Green’s functions of
the system, then we will describe transmission spectroscopy
in Sec. II B. We find that the Green’s functions, as well as the
spectroscopic properties of the system, are closely linked to
the level-shift function, and we devote Sec. II C to studying the
analytic properties of this function.

A. Green’s functions

The Green’s functions, which we are going to derive first,
provide a convenient description of the dynamics. We start
from the Heisenberg–Langevin equation of motion for the
oscillator operators in the Heisenberg picture,

d

dt
âc = −iωcâc − i

∑
j

g∗
j âj + f̂c, (6)

d

dt
âj = −iωj âj − igj âc + f̂j . (7)

To account for photons leaking out of the cavity at rate κ and
spins decaying at rate γj , the cavity frequency and the spin
transition frequencies are considered complex with negative
or zero imaginary parts, Im ωc = −κ and Im ωj = − 1

2γj . The

Langevin noise operators f̂c and f̂j satisfy 〈f̂c(t)f̂ †
c (t ′)〉 =

2κδ(t − t ′) and 〈f̂j (t)f̂ †
k (t ′)〉 = γj δjkδ(t − t ′). Equations (6)

and (7) specify a set of inhomogeneous linear differential
equations, whose Green’s functions can be calculated as

Gµν(t) ≡ [e−iHt ]µν = 〈[âµ(t),â†
ν(0)]〉, (8)

where the matrix elements of the dynamic matrix H are Hcc =
ωc, Hjk = δjkωj , and Hjc = H ∗

cj = gj . (In what follows, Latin
indices j,k = 1, . . ., N enumerate spins only, whereas Greek
letters µ, ν = c, 1, ..., N refer both to spins and to the cavity.)
Calculating the matrix exponential directly in Eq. (8) can be
rather appealing (see Sec. II D). Instead, here we derive the
Green’s functions using the resolvent technique, which allows
for taking the continuum limit.

The Green’s function (8) also specifies the transition
amplitude for an excitation created at t = 0 in the oscillator
mode ν to end up in oscillator µ at a later time t and, thus,
can be expressed as the given commutator expectation value.
We use this formula to convert Eqs. (6) and (7) to a system of
differential equations for the Green’s functions,

i
d

dt
Gcν(t) = ωcGcν(t) +

∑
j

g∗
j Gjν(t), (9)

i
d

dt
Gjν(t) = ωjGjν(t) + gjGcν(t), (10)

with the initial condition Gµν(0) = δµν . Substituting into
Eq. (9) the formal solution

Gjc(t) = Gjc(0)e−iωj t − igj

∫ t

0
Gcc(τ )e−iωj (t−τ ) dτ, (11)
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we get a closed integro-differential equation for Gcc(t),

i
d

dt
Gcc(t) = ωcGcc(t) − i

∫ t

0
Gcc(τ )K(t − τ ) dτ, (12)

where we have introduced the memory kernel function

K(t) ≡
∑

j

|gj |2e−iωj t . (13)

Equation (12) can be solved in the Fourier domain by
extending the integral to a proper convolution. For this, we
introduce the advanced (+) and retarded (−) versions of the
Green’s functions and the memory kernel function,

G±
µν(t) ≡ ∓i
(±t)Gµν(t),

(14)
K±(t) ≡ ∓i
(±t)K(t),

where 
(t) is the Heaviside step function. With these func-
tions, we have a proper convolution,

i
d

dt
G±

cc(t) = δ(t) + ωcG
±
cc(t) +

∫ ∞

−∞
G±

cc(τ )K±(t − τ ) dτ.

(15)

Now taking the Fourier transform of Eq. (15), we obtain

ωG̃±
cc(ω) = 1 + ωcG̃

±
cc(ω) + G̃±

cc(ω)K̃±(ω), (16)

from which the explicit form of the reduced dynamics of the
central oscillator follows by simple algebra,

G̃±
cc(ω) = [ω − ωc − K̃±(ω)]−1. (17)

The Fourier transforms G̃±
µν(ω) = ∫

G±
µν(t)eiωt dt are con-

ventionally called forward and backward propagators, while
K̃±(ω) is the level-shift function [21]. We note, however,
that K̃−(ω), as well as the backward propagators G̃−

µν(ω), are
undefined if any of the spin-relaxation rates γj or the cavity κ

is nonzero.
The remaining propagator matrix elements can all be

expressed in terms of G̃±
cc(ω): Introducing kj (t) ≡ e−iωj t and

defining k±
j (t) similarly to Eq. (14), we find by Eq. (11) that

G̃±
jc(ω) = gj k̃

±
j (ω)G̃±

cc(ω), (18)

G̃±
ck(ω) = g∗

k k̃
±
k (ω)G̃±

cc(ω), (19)

G̃±
jk(ω) = δjkk̃

±
j (ω) + gjg

∗
k k̃

±
j (ω)k̃±

k (ω)G̃±
cc(ω). (20)

Furthermore, for the amplitude of transiting from the cavity to
the superradiant spin-wave mode, Gsc(t) ≡ 〈[b̂(t),â†

c(0)]〉, we
have

G̃±
sc(ω) = G̃±

cs(ω) = �−1K̃±(ω)G̃±
cc(ω), (21)

G̃±
ss(ω) = K̃±(ω)[1 − K̃±(ω)G̃±

cc(ω)]/�2. (22)

B. Linear response and spectroscopic features

An efficient experimental tool for studying the coupled
cavity-ensemble system is transmission spectroscopy. In this
process, the (lossy) cavity is driven by an external classical
field of frequency ω0 via the interaction Hamiltonian V̂ (t) =
Ee−iω0t â

†
c + H.c. The transmitted field—which is proportional

to the steady state of the field inside the cavity—reflects
the linear response of the system to the driving field and

shows a resonance when the driving frequency is near an
eigenfrequency. The linear susceptibility of the system is,
therefore, what we are going to derive here.

Let us consider a general external classical drive described
by V̂ (t) = ∑

µ Eµe−iω0t â†
µ + H.c. For the transmission spec-

troscopic setup above, Ej = 0 and Ec = E are proportional
to the external field driving the cavity; but one could also
consider, e.g., directly driving the spins via an external field
that couples to the total spin, Ec = 0 and Ej = E . We assume
that the driving field is weak, so that the total number
of excitations is always small and the Holstein–Primakoff
approximation remains valid. Then the Heisenberg–Langevin
equation of motion for the annihilation operators can be
obtained from Eqs. (6) and (7) by adding the source terms
−iEce

−iω0t and −iEj e
−iω0t , respectively, to the right-hand

sides. The formal solution of this set of inhomogeneous
differential equations can be written in terms of the Green’s
functions as

âµ(t) =
∑

ν

Gµν(t − t0)âν(t0)

+
∑

ν

∫ t

t0

Gµν(t − τ )[−iEνe
−iω0τ + f̂ν(τ )] dτ.

(23)

The first term vanishes when taking the limit t0 → −∞, for all
eigenvalues of Hµν are assumed to have a negative imaginary
part (even if infinitesimal). Since 〈fµ(t)〉 = 0, the expectation
value of the oscillator operators in the steady state becomes〈

ass
µ (t)

〉 = e−iω0t
∑

ν

χµν(ω0)Eν, (24)

where

χµν(ω) ≡ −i

∫ ∞

0
Gµν(τ )eiωτ dτ = G̃+

µν(ω) (25)

is the linear susceptibility (impedance) of the system, which
has been calculated in Eqs. (17)–(22).

In the transmission spectroscopic setup, the cavity field is
〈ass

c (t)〉 = Ee−iω0tχcc(ω0), so the transmissivity of the system
is proportional to |G̃+

cc(ω0)|2, and the phase shift is φ(ω0) =
arg G̃+

cc(ω0) [26,28]. The resonance peaks in the transmission
spectrum are characterized by the complex poles of G̃+

cc(z),
that is, the solutions for z of the implicit equation

[G̃+
cc(z)]−1 = z − ωc − K̃+(z) = 0. (26)

Finally, we mention that there is a direct way to extract
information about the level-shift function—and thus about the
structure of the spin bath—from the measured transmission
spectrum. The level-shift function can be calculated by
inverting Eq. (17): K̃+(ω) = ω − ωc − χ−1

cc (ω). Alternatively,
if only the transmissivity is available experimentally, but not
the phase of the susceptibility, then K̃+(ω) may be obtained
by fitting a Lorentzian to the transmissivity |χcc(ω,ωc)|2 as a
function of the cavity frequency ωc (with Im ωc = −iκ). Once
the values of the level-shift function K̃+(ω) are known for
real frequencies, its analytic properties can be used to derive
information about the shape of the inhomogeneous broadening
of the spin ensemble.
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C. Analytic properties of the level-shift function

The complex analytic extension of the level-shift function
K̃±(ω) is of special importance, and here we summarize
some of its properties [21]. First we note that the Fourier–
Laplace transforms k̃±

j (z) ≡ ∫
k±
j (t)eizt dt are defined on

complementary halves of the complex plane,

k̃±
j (z) =

{
1

z−ωj
if Im z ≷ Im ωj ,

undefined if Im z ≶ Im ωj ,
(27)

and when Im z approaches Im ωj = − 1
2γj from above or

below, k̃+
j (z) and k̃−

j (z) tend to different distributions,

lim
η→0+

k̃±
j

(
ω − i

2
γj ± iη

)

= P 1

ω − Re ωj

∓ iπδ(ω − Re ωj ), (28)

where ω is real and P denotes the principal value.
The whole ensemble may consist of discrete and continuous

sets of spins, and K̃+(z) = ∑
j |gj |2k̃+

j (z) is defined for Im z >

supj Im ωj , while K̃−(z) is defined for Im z < infj Im ωj . For
simplicity, we assume that the decay rate is the same for all
spins, γj = γhom.

A continuous spin ensemble can be described by its
coupling-density profile, ρ(ω) ≡ ∑

j |gj |2δ(ω − Re ωj ). If
ρ(ω) is an analytic function of the real variable ω, then

K̃(z) =
∫

ρ(ω)

z − ω + i
2γhom

dω (29)

is a complex analytic extension of K̃±(z) that has a branch-cut
discontinuity along the line ω − i

2γhom, such that it approaches
different values from above and from below,

lim
η→0+

K̃

(
ω − i

2
γhom ± iη

)
= K̃±

(
ω − i

2
γhom

)
, (30)

as illustrated in Fig. 1. The real and imaginary parts of K̃±(z) =
�c(z) ∓ i

2�c(z) on the branch-cut line z = ω − i
2γhom follow

from Eqs. (28) and (29),

�c

(
ω − i

2
γhom

)
= P

∫
ρ(ω′)
ω − ω′ dω′, (31)

�c

(
ω − i

2
γhom

)
= 2πρ(ω). (32)

Re z

Im z

E − E +
ωc

K̃ + (z)

K̃ − (z)
ω− γ

FIG. 1. The branch cut of the level-shift function K̃(z) displayed
as the straight line ω − i

2 γhom (ω ∈ R) in the complex plane. K̃(z)
has a jump of K̃−(z) − K̃+(z) = i�c(z) when passing through the
cut from above. Depending on whether κ is smaller than, equal to,
or larger than 1

2 γhom, the poles of the cavity-cavity propagator, i.e.,
the roots E± of Eq. (26), may lie above the cut, on the cut, or on the
second Riemann sheet below the cut, respectively.

Thus the analytic continuation of K̃+(z) is given by Eq. (29)
above the branch cut, while it explores the second Riemann
sheet of K̃(z) below the cut,

K̃+(z) =

⎧⎪⎨
⎪⎩

K̃(z) if Im z > − 1
2γhom,

�c(z) − i
2�c(z) if Im z = − 1

2γhom,

K̃(z) − i�c(z) if Im z < − 1
2γhom.

(33)

The roots of Eq. (26), which give the position and width of
the resonance peaks, may be located above the branch cut of
K̃(z), on the cut line, or below it depending on whether κ or
1
2γhom is larger (see Fig. 1).

These considerations allow us to extract information about
the structure of the inhomogeneity (the shape of the coupling-
density profile) from the transmission spectrum. We can revert
Eq. (32) once the values of the level-shift function K̃+(ω) are
evaluated on the real axis (see end of Sec. II B),

ρ(ω) = − 1

π
Im K̃+

(
ω − i

2
γhom

)

≈ − 1

π
Im K̃+(ω) + 1

2π

∂Re K̃+(ω)

∂ω
γhom, (34)

where we truncated the Taylor series of Im K̃+(z) at first order
in γhom and obtained the derivative from the Cauchy–Riemann
equations.

Finally, we remark that we included γhom in Eq. (29)
merely in order to separate the effects of homogeneous and
inhomogeneous broadening. Alternatively, we could have
assumed a coupling-density profile that already included
homogeneous broadening via the convolution

ρ ′(ω) ≡
∫

γhom/2π

(ω − ω′)2 + 1
4γ 2

hom

ρ(ω′) dω′. (35)

The branch cut of the new level-shift function K̃ ′(z) =∫
ρ ′(ω)/(z − ω) dω is then on the real axis. However, the

analytic continuations of K̃ ′±(z) are the same as those of
K̃±(z), and the two models lead to the same dynamics.

D. Normal modes of discrete systems

As an alternative to the Green’s functions, the dynamics
of the oscillator operators can be given via the quasinormal
modes of the system. The matrix exponential in Eq. (8)
can, in principle, also be calculated by diagonalizing the
non-Hermitian matrix H:

∑
ν Hµνηνq = Eqηµq . Provided that

the spin transition frequencies ωj are all different, the N + 1
eigenvalues are, as in Eq. (26), the solutions of the equation

Eq − ωc −
∑

j

|gj |2/(Eq − ωj ) = 0. (36)

The columns of the diagonalizing matrix η are the right
eigenvectors of H, while the rows of η−1 are the left ones,
and it is easy to see that, including normalization,

η−2
cq = [η−1]−2

qc = 1 +
∑

j

|gj |2
|Eq − ωj |2 , (37)

ηjq = gjηcq

Eq − ωj

, [η−1]qj = g∗
j [η−1]qc

Eq − ωj

. (38)
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FIG. 2. (Color online) Numerical calculation for N = 25 spins with an inhomogeneous width of �ω, sampled from a Gaussian distribution.
The individual spins decay at a rate γj = 0.1�ω and are uniformly coupled to the cavity. The cavity decay rate is κ = 0.05�ω. (a)–(c) The
real part of the exact eigenenergies as a function of the cavity detuning. Color red (blue) indicates that the corresponding polariton is
photon-like (spin-like). (d)–(f) Transmission spectrogram, the color hue (saturation) corresponds to the phase (logarithmic magnitude) of the
susceptibility (25). (a), (d) In the strong-coupling regime � = 4�ω, only the two extremal eigenmodes have photonic attribute. (b), (e) In the
intermediate-coupling regime � = �ω, a band of intermediate eigenmodes has significant cavity content, and the cavity can “decay” into any
of these modes. (c), (f) In the weak-coupling regime � = �ω/4, there is no collective effect, and only a few resonant spins are dressed by the
cavity.

Note that for lossless systems (κ = 0, γj = 0), the diagonal-
izing matrix is unitary, so [η−1]qµ = η∗

µq . The left and right
eigenvectors form a complete set, and at any time, the oscillator
operators can be expanded in the right eigenbasis as

âµ(t) =
∑

q

ηµq�̂q(t), (39)

where the expansion coefficient �̂q is the annihilation operator
of the quasinormal mode q and can be expressed using the left
eigenvectors as

�̂q(t) ≡
∑

µ

[η−1]qcâµ. (40)

For atomic spins in an optical cavity, excitations of these quasi-
normal modes are called cavity polaritons. It is straightforward

to show that the Heisenberg–Langevin equation of motion for
the operators of the quasinormal modes reads

d

dt
�̂q = −iEq�̂q + F̂q, (41)

where F̂q(t) ≡ ∑
µ[η−1]qµf̂µ(t) is the transformed noise

operator. (Note that the transformed noise operators may
not necessarily be independent of each other.) One can then
formally integrate Eq. (41) and obtain the time evolution of
the quasinormal modes,

�̂q(t) = e−iEq t �̂q(0) +
∫ t

0
e−iEq (t−τ )F̂q(τ ) dτ. (42)

As an example, Fig. 2 shows the eigenenergies and
transmission spectra for an ensemble of 25 spins in the regimes
of strong, intermediate, and weak coupling.
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III. EXAMPLES OF SPECTROSCOPIC SIGNATURES

With the results of the previous section, we are equipped
to predict the spectroscopic signature for a given system
as observed by transmission spectroscopy. While the output
signal could have been obtained more directly via classical
input-output theory [26], we shall see that the framework
developed in Sec. II provides additional insights into the
physics by explicitly considering the state of the spin bath.
We will first consider the limiting cases of infinitely nar-
row and infinitely wide coupling-density profiles, before
studying the qualitative differences between the interme-
diate cases for Lorentzian and Gaussian coupling-density
profiles.

A. Oscillation and decay

In certain situations, the detailed structure of the coupling-
density profile is not important. On time scales much smaller
than the inverse inhomogeneous width of the ensemble, that
is, when the inhomogeneous broadening cannot be resolved,
the ensemble behaves as a single oscillator with a collectively
enhanced coupling constant. In this case, the memory kernel
function (13) can be approximated by K(t) ≈ �2e−iωa t ,
or equivalently, K̃±(ω) = �c(ω) ∓ i

2�c(ω) with �c(ω) ≈
P�2/(ω − ωa) and �c(ω) ≈ 2π�2δ(ω − ωa), where the en-
semble’s mean transition frequency ωa is assumed to be real.
The inverse Fourier–Laplace transforms of Eqs. (17) and (21)
show that the cavity and the superradiant mode undergo Rabi
oscillation at the Rabi frequency �R =

√
�2 + δ2/4,

Gcc(t) = e−i(ωa+δ/2)t (cos �Rt − i cos θ sin �Rt), (43)

Gsc(t) = −ie−i(ωa+δ/2)t sin θ sin �Rt, (44)

where the detuning of the cavity, δ = ωc − ωa , and the mixing
angle, tan θ ≡ 2�/δ, are assumed to be real.

In the opposite limit, when the inhomogeneous width
is much larger than the collective coupling �, and the
spin transition frequencies are sufficiently dense to form
a continuum, we are in the Weisskopf–Wigner regime. In
analogy with the spontaneous emission of an excited atom,
the cavity excitation effectively decays into the continuum of
spin waves in this regime [29]. The key assumption in the
Weisskopf–Wigner approximation is that the kernel function
K(t) decays fast compared to the slowly varying envelope
Gcc(t)eiωct , and thus the frequency dependence of K̃±(ω)
can be neglected. The inverse Fourier–Laplace transform of
Eq. (17) then gives an exponential decay,

Gcc(t) = e−i[ωc+�c(ωc)− i
2 �c(ωc)]t . (45)

Here we see that �c(ωc) is the shift of the cavity frequency and
1
2�c(ωc) is an additional cavity decay rate due to the coupling
to the dense spin reservoir.

Finally, we consider the general case when an initially
photonic excitation decays into the continuum of spin-wave
modes, and we specify the asymptotic energy distribution of
the excited spin. If Gcc(t) converges to zero, it is either because
the initially photonic excitation leaks out of the cavity, or

because the photon is irreversibly converted into a spin-like
excitation. From Eq. (11), we have

lim
t→∞ Gjc(t)eiωj t = gj G̃

+
cc(ωj ), (46)

so the asymptotic probability that the j th spin is excited equals
limt→∞ |Gjc(t)|2 = |gj |2|G̃+

cc(ωj )|2, assuming that γj = 0.
Then the asymptotic energy distribution of the excited spin,
i.e., the probability that the transition frequency of the excited
spin is ω, reads

p(ω) ≡
∑

j

δ(ω − ωj )|Gjc(∞)|2 = ρ(ω)|G̃+
cc(ω)|2

= 1

2π

�c(ω)

[ω − Re ωc − �c(ω)]2 + [2κ + �c(ω)]2/4
.

(47)

In particular, it is proportional to a Lorentzian in the
Weisskopf–Wigner regime, in analogy to the energy distri-
bution of a photon spontaneously emitted by an atom.

B. Lorentzian coupling-density profile

When the cavity is coupled to a single atomic oscillator
(e.g., a degenerate ensemble of homogeneously broad but
identical atoms), we recover the well-known problem of a
driven two-level atom or that of two coupled oscillators. With
an atomic transition frequency ωa , natural atomic linewidth
γ , cavity detuning from the atomic transition δ, and cavity
linewidth 2κ , we take the complex frequencies ω1 = ωa − i

2γ

and ωc = ωa + δ − iκ .
The memory kernel function defined in Eq. (13) is K(t) =

�2e−iωa t−γ t/2 for such a single collective spin excitation,
which yields K̃+(z) = �2/(z − ωa + i

2γ ). The same memory
kernel function is obtained for a large, inhomogeneously
broadened ensemble with a Lorentzian coupling-density
profile. This is the case, for example, when each spin in
the ensemble is uniformly coupled to the cavity with the
same coupling constant g = �/

√
N , and the spin transition

frequencies are distributed according to

D(ω) = 1

2π

Nγ

(ω − ωa)2 + γ 2/4
, (48)

where now γ is the ensemble’s inhomogeneous width (full
width at half maximum) and the individual spins do not decay,
and the coupling-density profile is ρ(ω) = g2D(ω). All the
dynamical properties of both the cavity and the superradiant
spin-wave mode are determined by K̃+(z) alone, and thus
they are the same for a single (homogeneously broad) atomic
oscillator and for an inhomogeneous ensemble with Lorentzian
coupling density. Therefore, it cannot be determined from the
linear response of the cavity whether the broadening is of
homogeneous or inhomogeneous origin.

The forward propagator (17) reads

G̃+
cc(ω) = ω − ωa + i

2γ

(ω − E+)(ω − E−)
, (49)

with the two complex poles

E± = ωa − i

2
γ + �R cos θ ± �R, (50)

053852-6



SPECTROSCOPIC PROPERTIES OF INHOMOGENEOUSLY . . . PHYSICAL REVIEW A 83, 053852 (2011)

where

�R ≡
√

�2 + [
δ − i

(
κ − 1

2γ
)]2

/4 (51)

is the (complex) Rabi frequency, and for the (complex) mixing
angle, we have

cos θ ≡ δ − i
(
κ − 1

2γ
)

2�R

, sin θ ≡ �

�R

. (52)

The two poles correspond to two peaks in the transmission
spectrum: The position and the width of the peaks are
determined by the real and imaginary parts of E±, respectively.
The system undergoes damped Rabi oscillations, as can be seen
by taking the inverse Fourier transform of Eqs. (49) and (21),

Gcc(t) = e−i(ωa+δ/2)t−(γ /2+κ)t/2

×
(

cos �Rt − i
cos Re θ

cos Im θ
sin �Rt

)
, (53)

Gsc(t) = −ie−i(ωa+δ/2)t−(γ /2+κ)t/2

× (sin Re θ sin �Rt − tan Im θ cos �Rt). (54)

As an illustrative example, let us consider the resonant
case δ = 0. Depending on the value of (γ − 2κ)/(4�), we see
a transition from (a) damped Rabi oscillations at a reduced
effective Rabi frequency to (b) an overdamped situation [see
also Figs. 3(a)–3(b)].

(a) Regime of oscillations. The Rabi frequency (51) is real
when γ − 2κ < 4�, giving rise to a Rabi splitting of �R =

−
2

Im
Ε

±
/γ

F
W

H
M

Ω/γFWHM

(b)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

− 1.0

− 0.5

0.0

0.5

1.0

(R
e

(R
e

Ε
±

aω
)/

γ
F

W
H

M (a)

Lorentzian

0.0 0.2 0.4 0.6 0.8 1.0

Ω/γFWHM

(d)

(c)

Gaussian

FIG. 3. (a), (c) Real and (b), (d) imaginary parts of the poles of the
susceptibility (17) as a function of the collective coupling strength
for (a), (b) a Lorentzian and (c), (d) a Gaussian coupling density
profile. The quantities are directly related to the position and width
of the peaks in the transmission spectrum. The cavity is tuned at the
center of the ensemble (ωc = ωa), and κ = γhom = 0 was assumed.
The full width at half maximum of the coupling density is γFWHM =
γ for the Lorentzian and γFWHM = √

8 ln 2 σ for the Gaussian.
(a), (c) Dashed lines show the lowest order solutions of the asymptotic
expansion given by Eq. (79), and correspond to the strong-coupling
approximation described in Sec. III A. (c), (d) Dotted curves show
the asymptotic solutions in the next orders as given by Eqs. (64)
and (65). (c) Dash-dotted curve shows Eq. (60) corresponding to the
Weisskopf–Wigner approximation in the weak-coupling regime.

√
�2 − ( 1

2γ − κ)2/4 around the atomic transition frequency
ωa [Fig. 3(a)], and the width of the peaks in the transmission
spectrum is −2Im E± = 1

2γ + κ [Fig. 3(b)]. Here we see two
important facts about a Lorentzian coupling-density profile:
the resonant Rabi splitting is smaller than the actual collective
coupling strength �, and the linewidth of the peaks is
determined by the inhomogeneous width of the ensemble,
independent of the coupling strength. As we shall see, the
cavity does not provide protection for the superradiant mode
in this case.

(b) Overdamped regime. The Rabi frequency (51) is
purely imaginary for γ − 2κ > 4�. There is no Rabi split-
ting at all, for we have two overlapping peaks at ωa

of width −2Im E± = (γ + 2κ)/2 ∓
√

(γ − 2κ)2/4 − 4�2. In
the Weisskopf–Wigner regime (γ � �,2κ), the dynamics
reduces to the exponential decay given by Eq. (45), and the
peaks in the spectrum become clearly distinguishable: On top
of a wide background peak with γ+ ≈ γ , corresponding to the
weakly perturbed superradiant mode, there is superimposed
a narrow peak of the cavity, whose width γ− ≈ 2κ + 4�2/γ

equals the overall decay rate of the cavity excitation as given
in Eq. (45) with �c = 4�2/γ .

Finally we note that the oscillating–decaying dynamics
of our cavity photon interacting with an inhomogeneously
broadened, highly polarized spin ensemble shows some
similarity with the dynamics of a single atom in a damped,
zero-temperature cavity [30]. In the latter case, the atom
interacts with the lossy cavity, and the cavity itself is coupled
to a collection of external radiation modes. In our case, the
cavity interacts with the superradiant spin-wave mode, and the
superradiant mode itself is coupled to a collection of subradiant
spin-wave modes.

C. Gaussian coupling-density profile

We consider now a Gaussian coupling-density profile,

ρ(ω) = 1√
2π

�2

σ
exp

[
− (ω − ωa)2

2σ 2

]
, (55)

and show that the spectrum of an ensemble with such an
inhomogeneity is qualitatively different from what we learned
from the Lorentzian profile in the previous section. From the
integral in Eq. (29), we obtain

K̃+(z) =
√

π

2

�2

σ
e−ξ 2

[erfi(ξ ) − i], (56)

where we have introduced the dimensionless parameter
ξ ≡ (z − ωa + i

2γhom)/(
√

2σ ). Equation (56) is composed of
complex analytic functions with no branch-cut singularities,
and Im K̃+(ω − i

2γhom) = −πρ(ω). Therefore, Eq. (56) is
indeed the analytic continuation of K̃+(z) on the entire
complex plane. To determine the position and width of
the peaks in the transmission spectrum, we solve Eq. (26)
numerically [Figs. 3(c)–3(d)]. Here we observe two regimes:
an overdamped one without Rabi splitting (�/γFWHM � 0.23)
and another one with two Rabi-split peaks (�/γFWHM � 0.23).
The most important difference from the case with Lorentzian
coupling density is that the width of the split peaks decreases
with the coupling strength, and for strong coupling it is
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dominated by the ensemble’s homogeneous width or the cavity
κ , as has been pointed out in Refs. [25,26].

To estimate the position and width of the resonances, let
us first consider the overdamped regime, �  σ . The Taylor
series expansion of Eq. (56) around ξ = 0 reads

K̃+(z) = �2

√
2σ

[
2ξ

∞∑
n=0

(−2ξ 2)n

(2n + 1)!!
− i

√
π

∞∑
n=0

(−ξ 2)n

n!

]
.

(57)

A good approximation for the first peak, which corresponds to
the dressed cavity mode, can be readily obtained by keeping
only the first term in both sums,

Re (E+ − ωa) = δ/(1 − �2/σ 2), (58)

−2Im E+ = 2κ + 2κ − γhom + √
2πσ

σ 2/�2 − 1
. (59)

For δ = κ = γhom = 0 [dash-dotted curve in Fig. 3(d)],

−2Im E+ =
√

2π �2/σ + O(�4) (60)

has quadratic dependence on the collective coupling �, which
confirms the Weisskopf–Wigner approximation. Keeping the
ξ 2 term in Eq. (57), we find a second root,

Re (E− − ωa) = −δ + O(�2), (61)

−2Im E− = 2γhom − 2κ + 8σ√
2π

(
σ 2

�2
− 1

)
+ O(�2).

(62)

It is worth mentioning that we have not only two, but infinitely
many roots with an increasingly large negative imaginary part
(not shown in Fig. 3). This is a mathematical consequence of
the dynamics of the subradiant modes and causes the cavity not
to follow a simple exponential decay [31]. In the limit of weak
coupling, however, the first root with a finite imaginary part
yields exponential decay in accordance with the Weisskopf–
Wigner approximation.

We consider now the strong-coupling regime � � σ . The
asymptotic expansion of Eq. (56) reads

K̃+(z) ∼ �2

√
2σ

[
−i

√
πe−ξ 2 + 1

ξ

∞∑
n=0

(2n − 1)!!

(2ξ 2)n

]
. (63)

Although the asymptotic power series does not converge, for
any given ξ , we still get a good approximation if we truncate the
series at n � |ξ |2. In fact, the strong coupling approximation
in Sec. III A corresponds to keeping only the n = 0 term of the
series, and it yields eigenenergies similar to Eq. (50) with γ =
γhom, which are shown as dashed lines in Fig. 3(c). Focusing
on the resonant case δ = 0 and κ = γhom = 0, we first neglect
the imaginary part in Eq. (63) and truncate the series after the
n = 1 term. This gives the position of the peaks in the next
order [dotted curves in Fig. 3(c)],

Re (E(1)
± − ωa) = ±

√
�2 + σ 2, (64)

or equivalently, ξ
(1)
± = ±

√
(�2 + σ 2)/2σ 2. To obtain the

imaginary part of the eigenenergies, we look for the solutions
in the form ξ = ξ

(1)
± + ε. We write ξ

(1)
± in place of ξ in

the exponent in Eq. (63), and we use the facts that 1/ξ ≈

1/ξ
(1)
± − ε/ξ

(1)2
± and 1/ξ 3 ≈ 1/ξ

(1)3
± − 3ε/ξ

(1)4
± . With these

approximations, we have, for the imaginary parts [dotted curve
in Fig. 3(d)],

−2Im E
(2)
± =

√
2π

e
e
− �2

2σ2

[
�2 − σ 2

2σ
+ O(�−2)

]
. (65)

We see that for large coupling strength, the width of the
spectral peaks rapidly decreases. This is a manifestation of the
gapping mechanism, which will be investigated in more details
in the next section.

IV. PROTECTIVE ENERGY GAP IN THE
STRONG-COUPLING REGIME

Ideally, when a spectrally narrow ensemble is strongly
coupled to a cavity, excitations undergo coherent Rabi os-
cillation between the cavity and the superradiant spin-wave
mode at a collectively enhanced Rabi frequency �, without
involving the subradiant modes. In reality, however, the
inhomogeneity in the spin transition frequencies will gradually
mix in the subradiant modes, thus resulting in decoherence
of the cavity-superradiant subspace [31]. The time scale
for the latter process can vary, depending not only on the
ensemble’s inhomogeneous width, but also on the structure of
the inhomogeneity. For a Lorentzian coupling-density profile,
e.g., it is always dominated by the inverse of the ensemble’s
inhomogeneous width, as we have seen in Sec. III B. For other
distributions, like the Gaussian, this “decoherence” time can
be significantly longer—an effect conventionally explained by
a gapping mechanism [31,32]. In this section, we investigate
how the strong coupling to the cavity prevents the mixing of the
superradiant and subradiant modes, thus leading to narrowing
of the linewidth of the superradiant spin-wave mode. For the
cavity to have an effect, we will assume that the cavity is not
too far from resonance (δ  �2/�ω).

A. Appearance of the energy gap

In the absence of inhomogeneity, the dressed polariton
modes, which are defined as combinations of the superradiant
spin-wave mode and the cavity mode,

�̂
(0)
+ = cos

θ

2
âc + sin

θ

2
b̂, (66)

�̂
(0)
− = sin

θ

2
âc − cos

θ

2
b̂, (67)

are quasinormal modes which are uncoupled to the subradiant
spin-wave modes and form a closed subsystem. In the presence
of inhomogeneity, however, these polariton modes are only
approximate eigenmodes. Their equations of motion read

d

dt
�̂

(0)
+ = −iE

(0)
+ �̂

(0)
+ − i�ω sin

θ

2
ĉ + · · · , (68)

d

dt
�̂

(0)
− = −iE

(0)
− �̂

(0)
− + i�ω cos

θ

2
ĉ + · · · , (69)

where we omit the Langevin noise terms, and where E
(0)
± =

(ω + ωc)/2 ± �R are the (complex) eigenenergies of the
respective polariton modes, ĉ ≡ �ω−1 ∑

j (ωj − ω)α∗
j âj is an

annihilation operator corresponding to a subradiant mode or-
thogonal to both âc and b̂, and the ensemble’s inhomogeneous
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width �ω is defined as the variance of the spin transition
frequencies,

�ω2 ≡
∑

j

|ωj − ω|2|αj |2 =
∫

(ω − Re ω)2 ρ(ω)

�2
dω,

(70)

ω ≡
∑

j

ωj |αj |2 =
∫ (

ω − i

2
γhom

)
ρ(ω)

�2
dω, (71)

where we assume Im ωj = Im ω = − 1
2γhom for all spins.

For a cavity not too far from resonance (δ  �2/�ω), the
limit of strong coupling is identified by the condition � � �ω.
If the tail of the coupling-density profile falls off sufficiently
fast so that the Rabi-split eigenenergies E

(0)
± lie far from all

the spin transition frequencies, then the operators �̂
(0)
± rotate

fast with respect to ĉ, and the contribution of ĉ in Eqs. (68)
and (69) can be neglected (rotating-wave approximation). In
other words, the spin dephasing processes induced by the
inhomogeneous broadening have to bridge the energy gap
between the dressed modes and the subradiant modes, and
if this energy gap is large enough, the dressed modes are
efficiently protected from decoherence (see Fig. 4).

Finally, we note that the gapping mechanism may be
observed even when the cavity is out of resonance (�ω 
�  δ  �2/�ω). Provided that the tail of the coupling-
density profile falls off sufficiently fast, the cavity can be
adiabatically eliminated in the Born–Markov approximation.
In this case, the cavity only has a dispersive effect, and its
presence results in an energy shift of the superradiant mode
equivalent to the ac Stark shift in optics. Namely, Ĥ1 can be
replaced by

Ĥgap = �gap b̂†b̂, �gap = −�2

δ
, (72)

independent of the state of the cavity. The superradiant
mode, b̂† ≡ ∑

j αj â
†
j , is an eigenmode of Ĥgap, but due to

the dephasing effects of the inhomogeneity in Ĥ0, it gets

Φ+
(0)

Φ−
(0)

2ΩR

ac

b

Ω δ

c
∆ ω

c

FIG. 4. (Color online) Level diagram showing the quasiclosed
subspace consisting of the dressed polariton modes (superpositions
of the cavity and the superradiant spin-wave mode) coupled to a
chain of subradiant spin-wave modes. In the strong-coupling regime
�R � �ω, the coupling between the dressed modes �± and the
subradiant mode c is off-resonant, therefore, the inhomogeneity does
not induce decoherence of the dressed modes: the dressed levels are
not broadened.

mixed with the subradiant modes, as shown by the Heisenberg
equation of motion

d

dt
b̂† = i[Ĥ0 + Ĥgap,b̂

†] = i(ω + �gap)b̂† + i�ω ĉ†.

(73)

For a large gap (�gap � �ω), and provided that the tail
of the coupling-density profile falls off sufficiently fast,
the superradiant mode is energetically separated from the
subradiant modes. Therefore, the inhomogeneous broadening
cannot induce real transitions involving the superradiant
mode. This energy gap may efficiently protect the quantum
information stored in the superradiant spin-wave mode from
the dephasing effects of the inhomogeneous broadening or
spin diffusion [32].

B. Corrections to the eigenenergies

In this section, we estimate how fast the tail of the coupling-
density distribution should fall off in order for the cavity-
superradiant subspace to become protected and for the line
narrowing to manifest. In the strong-coupling limit, the
eigenenergies E± lie far away from the typical spin transition
frequencies, and in this region (|z − ω| � �ω), we make an
asymptotic power-series expansion of K̃+(z) in the form

K̃+(z) =
n∑

k=0

�2Ak

(z − ω)k+1
+ O

(
1

(z − ω)n+2

)
. (74)

For the Lorentzian (48), An = (− i
2γ )n, while A2n =

(2n − 1)!!σ 2n and A2n+1 = 0 for the Gaussian (55). In general,
inserting the identity

P 1

ω − ω′ ∼
∞∑

n=0

(ω′ − Re ω)n

(ω − Re ω)n+1
(75)

into (31) yields the asymptotic power-series expansion

�c

(
ω − i

2
γhom

)
∼

∞∑
n=0

�2Mn

(ω − Re ω)n+1
, (76)

as long as the statistical moments of the coupling density,

Mn ≡ 1

�2

∫
(ω − Re ω)nρ(ω) dω, (77)

are well defined. In what follows, we will assume that
the coupling density also has an asymptotic power-series
expansion,

ρ(ω) ∼
∞∑

n=1

�2Bn

(ω − Re ω)n+1
. (78)

Then Im Ak = −πBk . However, if the nth moment (75) exists,
we must have Bk = 0, and Ak = Mk for all k � n.

Given the power-series expansion (74), we now look for the
resonance peaks in an iterative way. Since M0 = 1, we start
with K̃+(0)(z) ≈ �2/(z − ω) in the zeroth order. Equation (26)
then yields two roots, the same as those given by Eqs. (50)–(52)
with γ = γhom, namely,

E
(0)
± − ω = ±�

(
cot

θ

2

)±1

. (79)
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In the first order, we look for the solution in the form z =
E(0) + ε and write

K̃+(1)(z) = �2

E(0) − ω

[
1 + A1 − ε

E(0) − ω

]
. (80)

Then we obtain the corrections to E
(0)
+ and E

(0)
− ,

ε
(1)
+ = A1 sin2 θ

2
, ε

(1)
− = A1 cos2 θ

2
. (81)

In the case of a Lorentzian coupling density, A1 = − i
2γ

immediately leads to wide resonance peaks dominated by the
ensemble’s inhomogeneous width γ . In general, if the tail of
the coupling-density profile falls off as (ω − ω)−2, then the
imaginary part of the correction ε(1) reads

−2Im ε
(1)
± = 2πB1

{
sin2 θ

2

cos2 θ
2

}
, (82)

and it is not reduced by a strong-coupling constant �. If,
however, the first moment of ρ(ω) exists (and ω is such that
M1 = 0) and ρ(ω) has the asymptotic power-series expansion
(78), then B1 must be zero, and so A1 = 0. In this case, we
have to proceed further in the expansion.

In the second order, we assume that A1 = 0, so we look for
the solution in the form z = E(0) + ε and write

K̃+(2)(z) = �2

E(0) − ω

[
1 − ε

E(0) − ω
+ ε2 + A2

(E(0) − ω)2

]
.

(83)

To simplify the roots of the resulting quadratic equation, we
assume that |A2|  �2 and make a series expansion with
respect to A2/�2. For the corrections, we obtain

ε
(2)
± = ±A2

�

{
sin2 θ

2 tan θ
2

cos2 θ
2 cot θ

2

}
+ O

(
A2

2

/
�4

)
, (84)

and the resonance peaks are at

E
(2)
+ ≈ ω + ωc

2
+ �R

[
1 +

(
2 sin4 θ

2

)
A2

�2

]
, (85)

E
(2)
− ≈ ω + ωc

2
− �R

[
1 +

(
2 cos4 θ

2

)
A2

�2

]
. (86)

We see that the contribution from A2 is suppressed for large �.
If the second moment of ρ(ω) exists, then A2 = �ω2 is purely
real, and corrections to the resonance widths may only come
from a complex mixing angle θ . As an example, let us consider
the resonant case δ = 0. The Rabi frequency is reduced, �R =
[�2 − ( 1

2γhom − κ)2/4]1/2, and the mixing angle is θ ≈ π/2 −
i( 1

2γhom − κ)/2�R . The real and imaginary parts of the two
poles then read

Re (E(2)
± − ω) = ±�R

(
1 + 1

2

�ω2

�2

)
, (87)

−2Im E
(2)
± = 1

2
γhom + κ +

(
1

2
γhom − κ

)
�ω2

�2
. (88)

A small inhomogeneous broadening enhances the Rabi split-
ting, while the width of the peaks is predominantly determined
by the homogeneous width, and not the inhomogeneous one.
We mention that in contrast to Eq. (88), Eq. (65) was obtained

for κ = γhom = 0, and therefore we had to consider higher
orders of ρ(ω) to estimate the peak widths.

C. Losses due to inhomogeneous broadening

Here we show that the inhomogeneity alone does not
necessarily lead to a complete extinction of an excitation
in the protected cavity-superradiant subspace. To estimate
the magnitude of the leakage from the two-dimensional
subspace of the dressed states due only to the inhomogeneous
broadening, we consider an otherwise lossless system (κ = 0
and γj = 0) and examine an initial excitation in the mode
(66). The exact time evolution of this mode in the Heisenberg
picture follows from Eq. (42),

�̂
(0)
+ (t) =

∑
q

φqe
−iEq t �̂q, (89)

with real eigenenergies Eq and without noise operators. The
coefficients are φq = cos θ

2 ηcq + sin θ
2 �−1 ∑

j g∗
j ηjq , and we

will index the normal mode closest to (89) by q = +, so that
φ+ is the largest coefficient. We expect that the transition
amplitude between the original and the evolved modes, given
by

G++(t) ≡ 〈[�̂(0)
+ (t),�̂(0)†

+ (0)]〉 =
∑

q

|φq |2e−iEq t , (90)

rotates with an amplitude that is only slightly decreased
compared to the homogeneous case. Indeed, we can place
a lower bound on |G++(t)| using the triangle inequality,

|G++(t)| � |φ+|2 −
∑
q �=+

|φq |2 = 2|φ+|2 − 1. (91)

Using the method of Sec. IV B, we obtain

ηc+ ≈ cos
θ

2

[
1 − sin4 θ

2

(
2 + sec2 θ

2

)
�ω2

2�2

]
, (92)

ηs+ ≈ sin
θ

2

[
1 + tan2 θ

2
cos θ

(
1 + cos2 θ

2

)
�ω2

2�2

]
, (93)

and the inequality (91) reads, to second order in �ω/�,

|G++(t)| � 2|φ+|2 − 1 ≈ 1 − 2Re

(
sin2 θ

2
tan2 θ

2

)
�ω2

�2
,

(94)

which yields |G++(t)| � 1 − �ω2/�2 for the resonant case
δ = 0, and |G++(t)| � 1 − 4�ω2/�2

gap for the off-resonant
gapping regime (δ  �2/�ω, i.e., �ω  �gap).

The leakage (1 − |G++(t)|) is thus bounded from above by
a quantity proportional to �ω2/�2. A similar bound can be
derived for a �̂

(0)
− excitation. The bound given by Eq. (91)

is exact for a lossless system and valid for arbitrary coupling
density. We emphasize, however, that these bounds are ob-
tained by considering only the inhomogeneous distribution of
the spin transition frequencies. Other relaxation mechanisms
of the individual spins, such as spontaneous decay, dephasing,
or spin diffusion, may still be significant sources of losses.
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V. CONCLUSION

We have studied highly polarized, inhomogeneously broad
spin ensembles interacting with a single mode of a cavity.
Using the resolvent formalism, we have shown how the trans-
mission spectrum of the cavity depends on the density of spin
states and the coupling-density profile, and how this coupling
density can be obtained from the transmission spectrum.

The strong superradiant coupling provides an energy gap
for both the cavity and the superradiant spin-wave modes
with respect to the subradiant modes. This gap may, in
certain cases, efficiently protect the superradiant polariton and
decrease its linewidth. We have investigated the criterion for
the appearance of this gapping mechanism in the presence of

inhomogeneity, and provided corrections to the conventionally
used picture of a driven two-level system. We have also con-
sidered two specific inhomogeneous coupling-density profiles:
Lorentzian and Gaussian. We have shown that the gapping
mechanism does not work for the former, and the polariton
linewidth does not decrease with the collective coupling
strength. For the latter, however, the gapping mechanism can
efficiently reduce the polariton linewidth to a limit depending
only on the cavity linewidth and the homogeneous linewidth
of the individual spins. In general, we have found that the
ensemble’s coupling density ρ(ω) should fall off as ω−3 or
faster in order for the gapping mechanism to manifest itself as
line narrowing.
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T. Esslinger, Nature (London) 450, 268 (2007); Y. Colombe,
T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel,
ibid. 450, 272 (2007).

[11] P. F. Herskind, A. Dantan, J. P. Marler, M. Albert, and
M. Drewsen, Nature Phys. 5, 494 (2009).

[12] A. André, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell,
P. Rabl, R. J. Schoelkopf, and P. Zoller, Nature Phys. 2, 636
(2006).

[13] K. Tordrup, A. Negretti, and K. Mølmer, Phys. Rev. Lett. 101,
040501 (2008).

[14] J. H. Wesenberg, A. Ardavan, G. A. D. Briggs, J. J. L. Morton,
R. J. Schoelkopf, D. I. Schuster, and K. Mølmer, Phys. Rev. Lett.
103, 070502 (2009).

[15] D. I. Schuster et al., Phys. Rev. Lett. 105, 140501 (2010).
[16] Y. Kubo et al., Phys. Rev. Lett. 105, 140502 (2010).

[17] P. Bushev, A. K. Feofanov, H. Rotzinger, I. Protopopov, J. H.
Cole, G. Fischer, A. Lukashenko, and A. V. Ustinov, e-print
arXiv:1102.3841.
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Science 328, 1248 (2010).

[19] H. Wu, R. E. George, J. H. Wesenberg, K. Mølmer, D. I. Schuster,
R. J. Schoelkopf, K. M. Itoh, A. Ardavan, J. J. L. Morton, and
G. A. D. Briggs, Phys. Rev. Lett. 105, 140503 (2010).

[20] H.-P. Breuer, D. Burgarth, and F. Petruccione, Phys. Rev. B 70,
045323 (2004).

[21] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-
Photon Interactions: Basic Processes and Applications (Wiley,
New York, 1992); M. E. Peskin and D. V. Schroeder, Introduc-
tion to Quantum Field Theory (Westview, Boulder, CO, 1995).

[22] T. D. Lee, Phys. Rev. 95, 1329 (1954); K. O. Friedrichs,
Commun. Pure Appl. Math. 1, 361 (1948).

[23] Lectures on Field Theory and the Many-Body Problem, edited
by E. R. Caianiello (Academic, New York, 1961).

[24] S. Stenholm, Opt. Commun. 179, 247 (2000).
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