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Controlling the delocalization-localization transition of light via electromagnetically
induced transparency
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We propose a scheme to realize a transition from delocalization to localization of light waves via
electromagnetically induced transparency. The system we suggested is a resonant cold atomic ensemble having
N configuration, with a control field consisting of two pairs of laser beams with different cross angles, which
produce an electromagnetically induced quasiperiodic waveguide (EIQPW) for the propagation of a signal field.
By appropriately tuning the incommensurate rate or relative modulation strength between the two pairs of
control-field components, the signal field can exhibit the delocalization-localization transition as it transports
inside the atomic ensemble. The delocalization-localization transition point is determined and the propagation
property of the signal field is studied in detail. Our work provides a way of realizing wave localization via atomic
coherence, which is quite different from the conventional, off-resonant mechanism-based Aubry-Andre model,
and the great controllability of the EIQPW also allows an easy manipulation of the delocalization-localization
transition.
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I. INTRODUCTION

Wave propagation in periodic and disordered structures is
of great importance in the study of modern physics [1,2]. One
of most interesting phenomena is the wave localization in
disordered media, such as the Anderson model [3]. Detailed
studies on wave localization are very fundamental and useful
for understanding a large amount of physical phenomena
occurring in systems ranging from superfluid helium in
porous media [4], disordered superconductors [5], and light
propagation in disordered materials, etc. [6]. However, in
condensed-matter systems the Anderson localization itself
has never been observed directly due to the existence of
complicated many-body interaction and other uncontrollable
effects. Instead, in recent years various engineered systems
have been proposed in which transportation of particles or
propagation of waves can be significantly manipulated by
controllable disorder. Successful examples include sound and
light waves in disordered structures [6–15], quantum chaotic
systems [16], and Bose-Einstein condensates (BECs) with
optical potentials [17–21].

In the original Anderson model [3], the transition from
extended to localized phases is expected to occur only in
three dimensions (3Ds) as the strength of disorder is above
a critical value [1]. It has been shown that for low-dimensional
systems, only a crossover from extended to localized phases
can be observed [6,13]. But other kinds of delocalization-
localization transition may occur in some one-dimensional
(1D) models. A well-known example is the Aubry-Andre
(AA) model [22], in which a 1D quasiperiodic potential is
introduced and a delocalization-localization transition can
appear. In recent years there has been renewed interest in
wave propagation in quasiperiodic systems [23]. Although
the quasiperiodic systems are deterministic and suffer no
randomness, they actually can present localization behaviors

similar as in the Anderson model, thus providing intermediate
situations between ordered (e.g., periodic) and disordered
systems. In recent experiments, both photonic lattices [14]
and BECs [18] have been used to realize the AA model and a
delocalization-localization transition has been observed.

In this work, we propose a scheme to realize a new
kind of AA-like delocalization-localization transition of light
waves via electromagnetically induced transparency (EIT).
EIT is a destructive quantum interference effect induced
by a controlling field, by which the absorption of a signal
field can be largely eliminated [24]. The wave propagation
in EIT systems possesses many striking features, such as
the significant reduction of group velocity and the giant
enhancement of Kerr nonlinearity for very weak signal field,
etc. Based on these features many EIT-based applications, in-
cluding high-efficient multiwave mixing [24], optical quantum
memory [25], optical atomic clocks [26–28], and slow-light
solitons, etc. [29–32], have been investigated. In addition,
if the control field is designed to have various transverse
distributions, the signal field may experience refractive index
modulation, which can lead to many interesting transverse
effects, such as electromagnetically induced focusing [33],
grating [34], waveguide [35], self-imaging [36], and some
related phenomena [37,38]. Recently, based on the study of
photon scattering by a two-level emitter in 1D waveguides [39],
the EIT in a 1D photonic waveguide has been studied [40].

In our proposal, the system is a cold four-level atomic
system with N -configuration. The control field consists of
two pairs of laser beams with different cross angles, which
can produce an electromagnetically induced quasiperiodic
waveguide (EIQPW) for a signal field. By suitably adjusting
the incommensurate rate or the relative modulation strength
between the two pairs of control-field components, it is easy
to realize a transition of the signal-field eigen wave functions
from delocalization to localization. Our work provides a way of
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realizing light-wave localization by using atomic coherence. It
is quite different from the conventional Aubry-Andre systems
that are based on an off-resonant scheme [14,18]. Furthermore,
because the system we suggest is a coherent, resonant one, the
high degree of control over the system parameters also allows
us an easy manipulation of the delocalization-localization
transition.

The paper is organized as follows. In the next section we
give a description of the theoretical model under study. In
Sec. III, we investigate the delocalization-localization transi-
tion of the signal field by manipulating the incommensurate
rate and the relative modulation strength of the control field.
In the final section, a summary and a discussion of our main
results are given.

II. THE MODEL

We consider a cold, resonant four-level atomic system with
an N -type configuration, as shown in the left lower corner of
Fig. 1, in which �s , �p, and �c are the Rabi frequencies of
signal, pump, and control fields, respectively. δ and � are the
detunings for the transition from the state |1〉 to the state |3〉
and from the state |2〉 to the state |4〉, respectively. The signal
(pump) field Es (Ep) is incident in the medium (with length
L) from the left (right)-hand side. The control field consists
of two pairs of laser beams (E±

c1 and E±
c2) with different cross

angles θ1 and θ2, which are used to produce two different spatial
periods and create a quasiperiodically modulated susceptibility
distribution, and hence the EIQPW for the signal field. We
assume that the system is prepared to have the population in
the atomic ground state |1〉; the signal field is weak and travels
along the positive z direction; the pump field is strong enough
so that it will not be depleted; the control fields are a little
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FIG. 1. (Color online) Schematic of the system for realizing the
delocalization-localization transition of the signal field by using
control-field-induced EIQPW. The left lower corner is the atomic
energy-level configuration, in which �s , �p , and �c are, respectively,
the Rabi frequencies of signal, pump, and control fields, and δ and �

are, respectively, detunings for the transition from the state |1〉 to the
state |3〉 and from the state |2〉 to the state |4〉. The signal (pump) field
Es (Ep) is incident in the medium from the left (right)-hand side. The
control field consists of two pairs of laser beams (E±

c1 and E±
c2) with

different cross angles θ1 and θ2. x is the transverse coordinate and z

is the coordinate along which the signal field travels.

weak but stronger than the signal field. Since the control field
couples to the states |2〉 and |4〉, which always have vanishing
population during the propagation of the signal field, it will
also be nearly undepleted. For simplicity, we consider only
one transverse dimension (with coordinate x).

The plane-wave control fields shown in Fig. 1 have the
Rabi frequency �±

c1 = 1
2�c1 exp[ikc(∓x sin θ1 − z cos θ1 ∓

ψ1)],�±
c = 1

2�c2 exp[ikc(∓x sin θ2 − z cos θ2 ∓ ψ2)], where
kc is the wave vector, �cj and ψj (j = 1,2) are, respectively,
the amplitudes and phases of the j th component of the
control field. In our studies, the cross angles are very small,
sin θ1,2 � 1 and cos θ1,2 � 1, then the transverse distribution
of the control field can be written in the following form:

�c(x) = [�c1 cos(xkc sin θ1 + ψ1)

+�c2 cos(xkc sin θ2 + ψ2)], (1)

and the full control field is �c(x)e−ikcz. In the following,
suppose ψ1 = ψ2 = −π/2, �0 = �c1, η = �c2/�c1, β =
sin θ2/ sin θ1, d = (kc sin θ1)−1; we can write the standard
formula of the control field used in this work,

�c(x) = �0{sin(x/d) + η sin(βx/d)}, (2)

where β and η represent the incommensurate rate and relative
modulation strength. This kind of field distribution is similar
to the 1D incommensurate bichromatic lattice employed in
the experiment of Anderson localization of BECs [18], but we
shall see the difference between them soon later.

Starting from Maxwell-Bloch equations and making
rotating-wave and slowly varying envelope approximations,
one can obtain the equation for the envelope E of the signal
field in steady state,

2iks∂zE + ∂xxE + k2
s χ (x)E = 0, (3)

where we have assumed that the signal field takes the form
�s = E(x,z) exp[−i(ωst − ksz)], with ks = ωs/c. The sus-
ceptibility χ (x) (or equivalently refractive index [42]) depends
on the control field intensity |�c(x)|2; its concrete expression
under the EIT condition has been given in Ref. [41]. Using the
scaling transform x ∼ x/(Nλ/2π ), z ∼ z/(N2λ/2π ) (N is a
constant), Eq. (3) reduces to the standard form,

i
∂E

∂z
= −1

2

∂2E

∂x2
+ V (x)E, (4)

with the effective potential V (x) = −χ (x)N2/2.
Because χ (x) is a function of |�c(x)|2, it is also a quasiperi-

odic function of x. Thus we expect that the propagation of the
signal field in the EIQPW should display a transition from
delocalization to localization as shown in the AA model.

Plotted in Fig. 2 is a typical example of the control
field intensity Ic(x) ≡ |�c(x)|2 [Fig. 2(a)], the susceptibility
function χ (x) [Fig. 2(b)], and the effective potential V (x)
[Fig. 2(c)]. The parameters used are atomic density ρ =
1012 cm−3, the transition dipole µ = 3 × 10−29 m C, the
decay rate of the level |2〉 γ2 = 1.5 × 103/s, the decay
rate of the levels |3〉 and |4〉 γ3,4 = 1.5 × 107/s, the signal
(control) field detuning δ = 0 (� = 109/s), the amplitude of
the Rabi frequency of the pump (control) field �p = 108/s
(�0 = 0.75�p). The structure parameters of the control field

are given by β =
√

5−1
2 , η = 0.12, λ = 780 nm, and N = 100.
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FIG. 2. (Color online) (a) Intensity distribution of the control field
Ic(x) = |�c(x)|2, normalized with its maximum value. (b) Profile of
the susceptibility function χ (x); blue solid line denotes Re[χ (x)],
green dashed line denotes Im[χ (x)]. (c) The effective potential V (x);
blue solid line is Re[V (x)], green dashed line is Im[V (x)]. The system
parameters for plotting the figure have been given in the text.

These parameters can be realized with a cold 87Rb atomic
gas. From the figure we see that the effective potential V (x)
takes nearly the same shape as the control-field intensity Ic(x).
Specifically, the imaginary part of V (x), i.e., Im[V (x)] (green
dashed line), is much smaller than its real part, i.e., Re[V (x)]
(blue solid line), which means that the absorption of the signal
field is very small. The suppressed absorption of the signal
field is due to the destructive quantum interference effect
induced by the pump field [24]. A key property of our EIQPW
is that all the minimum values of V (x) are zero, while in
the AA model, the potential minimums are quasiperiodically
distributed, corresponding to quasiperiodically modulated on-
site energies. Instead, in our model, the tunneling rates between
neighboring potential wells are quasiperiodically modulated.
However, localization transitions are still possible to occur in
this model, as will be demonstrated in the following section.

III. DELOCALIZATION-LOCALIZATION TRANSITION
OF THE SIGNAL FIELD

With the EIQPW designed above, we now start to inves-
tigate the delocalization-localization transition of the signal
field. We first consider the ground state of the system described
by Eq. (4) using numerical simulations. Notice that under the
EIT condition the absorption of the system is negligible; it can
thus be neglected safely in the calculation without affecting
our conclusion given below. By increasing the modulation
strength η from zero to large values, the effective potential
V (x) is found to change from periodic, to nearly periodic, and
then to highly modulated quasiperiodic functions. Shown in
Fig. 3(a) is the amplitude profile of the ground state presented
as a function of the propagating distance x and the modulation
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FIG. 3. (Color online) (a) Calculated amplitude profile of the
ground state of the EIQPW with negligible absorption vs the
transverse coordinate x and the modulation strength η. (b), (c), and
(d) The amplitude of the ground state for η = 0.05, 0.12, and 0.2,
respectively. Other parameters are the same as in Fig. 2.

strength η. We see clearly that when η is near zero, the ground
state is extended to the whole region of x. When increasing η,
the ground state becomes rugged, but it is still an extended
function. However, if increasing η to a very large value,
the ground state will be localized in small regions. A sharp
transition is found around η = 0.12. For a better illustration,
in Figs. 3(b), 3(c), and 3(d) we have plotted the amplitudes
of the ground-state wave function for η = 0.05, 0.12, and 0.2,
respectively. From these results we conclude that a transition
from extended state to localized state of the ground-state wave
function can be obtained by tuning the modulation strength η

of the control-field continuously. Such tuning is easy to realize
in the present-day experiment using cold atomic gases. It is
interesting to note that the ground state exhibits two localized
peaks for large η, as shown in Figs. 3(c) and 3(d).

The ground-state distribution presented above suggests
there exists a delocalization-localization transition of the signal
field in the EIQPW. Such a kind of localization transition
will doubtlessly affect the propagation of the signal field
significantly. To study this we consider a Gaussian distributed
signal field that is initially localized tightly within a very small
spatial region,

E(x,0) = E0 exp{−x2}. (5)

We simulate the propagations of this signal fields in the EIQPW
numerically by using Eq. (4) with different control-field
modulation strength η. The result of the amplitude distribution
of the signal field |E(x,z)| is presented in Fig. 4. When η = 0,
the effective potential is purely periodic, and hence the signal
field expands ballistically [Fig. 4(a)]. When η increases (i.e.,
the quasiperiodic part of the potential takes action), but below
its critical value, the signal field still expands but with reduced
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FIG. 4. (Color online) Propagation of an initially localized signal
field as a function of x, z, and the control-field modulation strength
η. The transverse amplitude is normalized to the corresponding
maximum value at each z. Other parameters are the same as in Fig. 2.
(a) η = 0, (b) η = 0.04, (c) η = 0.08, (d) η = 0.12, (e) η = 0.16, and
(f) η = 0.2.

expanding rates. See Fig. 4(b) (for η = 0.04) and Fig. 4(c)
(for η = 0.08). When increasing η to the value around 0.12,
the signal field expands first, but the expansion stops at some
distance z, i.e., it does not propagate and localizes near x = 0
[Fig. 4(d)]. For larger η, as depicted in Fig. 4(e) (for η = 0.16),
the signal field is highly localized with a small spatial width.
When η increases to 0.2, the signal field experiences only very
small distortion, corresponding to a nearly perfect localization.
Notice that since the initial wave packet (5) used in the
simulation is not exactly the ground state of Eq. (4), some
small side lobes appear in the localized signal fields.

The width of the signal-field wave packet during propaga-
tion in the EIQPW can be quantitatively characterized by the
participation ratio (PR), defined by [14]

PR = (
∫ |E(x,z)|2dx)2

∫ |E(x,z)|4dx
, (6)

which is a function of the propagation distance z and the
modulation strength η. Shown in Fig. 5(a) is a 3D plot of the
PR. We see clearly that for small η the value of PR increases
almost linearly during the propagation of the signal field. For
intermediate value of η, the PR first grows to a very large
value, then it decreases gradually. When η is large enough,
PR is slightly oscillated around its small initial value. The
localization transition can be identified more clearly from
Fig. 5(b), in which PR as a function of η for five propagation
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FIG. 5. (Color online) (a) 3D plot of the participation ratio (PR)
as a function of the modulation strength η and propagation distance
z. (b) PR as a function of the modulation ratio η for five different
propagation distances z = 20 (blue, curve 1), 40 (green, curve 2), 60
(red, curve 3), 80 (cyan, curve 4), and 100 (black, curve 5). Each
curve is normalized between 0 and 1.

distances, i.e., z = 20 (blue, curve 1), 40 (green, curve 2), 60
(red, curve 3), 80 (cyan, curve 4), and 100 (purple, curve 5),
is presented. We see that the localization transition is sharper
for larger distances.

Because our system has a high degree of control over
the system parameters, which provides us an opportunity to
manipulate the delocalization-localization transition conve-
niently. In the consideration given above the incommensurate
rate β is chosen to be the golden mean (β =

√
5−1
2 ), which

is the typical value in the AA model. What will happen
for the delocalization-localization transition in our EIQPW
for different β? To answer this, we make a new simulation
with a new incommensurate rate β = 0.83. The result is
provided in Fig. 6. Panels (a)–(e) of the figure are for the
control-field modulation strength η = 0.04, 0.08, 0.12, 0.16,
and 0.2, respectively. Panel (f) is the participation ratio as
a function of z for η = 0.04 (blue, curve 1), 0.08 (green,
curve 2), 0.12 (red, curve 3), 0.16 (cyan, curve 4), and 0.2
(purple, curve 5), respectively. From the figure, we see that the
amplitude distribution of the signal field may still be localized,
but with increased widths and side lobes, in comparison with
Figs. 4 and 5. In particular, for η = 0.2 the PR increases
first and then changes slightly around 5.0; but for the golden
mean β =

√
5−1
2 the corresponding PR is oscillated around

2.0. Consequently, the incommensurate rate β can be used to
significantly adjusting the degree of localization in the system.

Shown in Fig. 7(a) is a 3D plot of participation ratio as
a function of β and propagation distances z. The modulation
strength of the control field is fixed to η = 0.2. Other system
parameters are the same as in Fig. 2. The panel (b) of the
figure is the PR as a function of β for five different propagation
distances, i.e., z = 20 (blue, curve 1), 40 (green, curve 2), 60
(red, curve 3), 80 (cyan, curve 4), and 100 (black, curve 5).
Each curve in the figure is normalized between 0 and 1. We see
that for large β, the PR grows as z increases; but for small β,
PR remains small and only changes slightly around its initial
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FIG. 6. (Color online) Propagation of signal field for the incom-
mensurate rate β = 0.83. Panels (a)–(e) are for the control-field
modulation strength η = 0.04, 0.08, 0.12, 0.16, and 0.2, respectively.
Other system parameters are the same as in Fig. 2. The transverse
amplitude of the signal field is normalized to its maximum value at
each z. Panel (f) is the participation ratio (PR) as a function of z for
η = 0.04 (blue, curve 1), 0.08 (green, curve 2), 0.12 (red, curve 3),
0.16 (cyan, curve 4), and 0.2 (purple, curve 5), respectively.

value. The result in Fig. 7(b) shows that a sharp localization
transition will occur for β = 0.75 at z = 100. Thus we see
that when fixing the control-field modulation strength η, the
delocalization-localization transition can also be observed via
varying the incommensurate rate β of the EIQPW.

IV. DISCUSSION AND SUMMARY

Note that the present work is based on a quasiperiodic
model, which is deterministic and has no randomness. It is
close to the AA model and very different from the Anderson
model. It is possible to use the EIT technique to realize the
Anderson model, in which the disorder can be induced by
taking optical speckles [17] as control fields. In addition,
our work can be easily extended to 2D cases. There are two
possible generalizations. One is to use another two pairs of
control fields [similar to Eq. (2)] to generate a quasiperiodic
distribution in the y direction, so that one has 2D control-field
distribution:

�c(x,y) = �x{sin(x/dx) + ηx sin(βxx/dx)}
+�y{sin(y/dy) + ηy sin(βyy/dy)}. (7)

In this case of separable �c(x,y), besides the localization-
delocalization transition, it is possible to have localization
in one direction and delocalization in the other direction.
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FIG. 7. (Color online) (a) 3D plot of participation ratio (PR) as a
function of β and propagation distances z. The modulation strength
of the control field is fixed to η = 0.2. Other system parameters are
the same as in Fig. 2. (b) PR as a function of β for five different
propagation distances, i.e., z = 20 (blue, curve 1), 40 (green, curve
2), 60 (red, curve 3), 80 (cyan, curve 4), 100 (black, curve 5). Each
curve is normalized between 0 and 1.

Other possible 2D generalization is to generate a nonseparable
�c(x,y) having a quasicrystal structure, such as the 2D
Penrose tiling [43]. The delocalization-localization transition
properties of 2D systems are very different from the 1D one,
which is an interesting topic and deserves to be explored in
future studies.

In summary, we have proposed a scheme to realize the
delocalization-localization transition of light waves by using
EIT in a cold, resonant four-level atomic system. In this
system the pump field is used to suppress absorption and the
control field is used to produce an electromagnetically induced
quasiperiodic waveguide for the propagation of the signal field.
By suitably adjusting the incommensurate rate and relative
modulation strength between the two pairs of control-field
components, the signal field may exhibit a clear transition from
delocalization to localization as it transports inside the atomic
ensemble. The transition point has been determined and the
propagation property of the signal field has been investigated
in detail.

We stress that the proposal for observing delocalization-
localization transition of light waves presented here is based
on the coherent manipulation of the prepared cold atomic
medium. In such system one can easily tune the pump and
control fields to actively modify the susceptibility (or refractive
index) distribution (and hence the effective potential) of
the signal field, which provides a flexible and controllable
method to manipulate the dynamics of the signal field. In
comparison with other schemes by using BECs or passive
photonic waveguides, our proposal has particular advantages
such as the flexible controllability and very weak signal
beams. In fact, we can generate a susceptibility distribution
with any shape as needed in a coherently prepared atomic
medium with real-time tunability. Our work is the first step to
simulate problems in condensed-matter physics via using the
powerful EIT technique. In addition, from the basic physical
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viewpoint we have also found a kind of wave localization
model in which the on-site energies are constants and
tunneling rates between neighbor sites are quasiperiodically
changed, which is quite different with the familiar Aubry-
Andre model and can increase our understanding on the
nature of wave localization. More detailed studies, such as
the inclusion of nonlinear effect, will be presented in a future
work.
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