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We introduce discrete systems in the form of straight (infinite) and ring-shaped chains, with two symmetrically
placed nonlinear sites. The systems can be implemented in nonlinear optics (as waveguiding arrays) and Bose-
Einstein condensates (by means of an optical lattice). A full set of exact analytical solutions for symmetric,
asymmetric, and antisymmetric localized modes is found, and their stability is investigated in a numerical form.
The symmetry-breaking bifurcation, through which the asymmetric modes emerge from the symmetric ones, is
found to be of the subcritical type. It is transformed into a supercritical bifurcation if the nonlinearity is localized
in relatively broad domains around two central sites, and also in the ring of a small size, i.e., in effectively
nonlocal settings. The family of antisymmetric modes does not undergo bifurcations and features both stable and
unstable portions. The evolution of unstable localized modes is investigated by means of direct simulations. In
particular, unstable asymmetric states, which exist in the case of the subcritical bifurcation, give rise to breathers
oscillating between the nonlinear sites, thus restoring an effective dynamical symmetry between them.
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I. INTRODUCTION

Spontaneous symmetry breaking is a fundamental effect
caused by the interplay of nonlinearity with linear potentials
featuring basic symmetries, such as double-well structures. In
particular, while it is commonly known that the ground state
in one-dimensional quantum mechanics follows the symmetry
of the underlying double-well potential [1], the self-attractive
nonlinearity added to the respective Schrödinger equation
(which transforms it into the Gross-Pitaevskii equation for a
Bose-Einstein condensate (BEC) of interacting atoms loaded
into the double-well potential [2], or into the nonlinear
Schrödinger equation in optical counterparts of the system [3])
breaks the symmetry of the ground state, replacing it by a new
asymmetric state minimizing the system’s energy, provided
that the strength of the self-attraction exceeds a certain critical
value (see, e.g., Ref. [4] for the general consideration and
Ref. [5] for the analysis of the symmetry-breaking self-
trapping in BECs). The spontaneous symmetry breaking in
double-well potentials was realized experimentally in BECs
[6] and in nonlinear optics, where the symmetry breaking was
observed in a setup based on a photorefractive material [7].

The symmetry-breaking bifurcation (SBB), which destabi-
lizes the symmetric ground state and gives rise to an asym-
metric one in the nonlinear system, was originally discovered
in a discrete model of self-trapping [8]. In nonlinear optics,
a similar SBB was predicted in Ref. [9] for continuous-wave
(spatially uniform) states in the model of dual-core fibers.
For solitons in dual-core systems, this bifurcation was studied
in detail in Ref. [10]. Subsequently, the SBB was studied
for gap solitons in dual-core fiber Bragg gratings with the
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same Kerr (cubic) nonlinearity as in the ordinary fibers [11].
In another physical setting which also features the cubic
nonlinearity, the SBB was predicted for matter-wave solitons
in the self-attractive BEC loaded into a dual-trough potential
trap [12–15].

The self-focusing cubic nonlinearity gives rise to the soliton
bifurcations of the subcritical (alias backward) type, in which
the branches of asymmetric modes emerge as unstable ones,
going backward and getting stabilized after switching their
direction forward at turning points [16]. On the other hand, the
combination of the self-focusing nonlinearity with a periodic
potential acting in the free direction (perpendicular to the
direction of the action of the double-well potential) changes the
character of the bifurcation from subcritical to supercritical,
with the asymmetric branches emerging as stable ones and
immediately going in the forward direction [12,14]. The
SBB in the model of the dual-core fiber Bragg grating is of
the forward type too [11]. The subcritical and supercritical
(alias backward and forward) SBBs may be regarded as
examples of phase transitions of the first and second kinds,
respectively [16].

A physically interesting alternative to the linear double-well
potential is the setting with an effective pseudopotential
[17] induced by the double-peak spatial modulation of the
local nonlinearity coefficient, which may be implemented in
optics and BECs alike [18,19]. The ultimate form of such a
setting is the one with the nonlinearity concentrated at two
points, in the form of a symmetric pair of delta functions
or narrow Gaussians [20,21], as well as a two-dimensional
counterpart of the system, in the form of two parallel troughs in
which the nonlinearity is applied [22] (the underlying model,
with the self-attractive nonlinearity represented by a single
delta-function, was introduced much earlier in Ref. [23]).
The SBB of solitons in the symmetric double-well nonlinear
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pseudopotentials was studied recently, featuring the subcritical
type of symmetry breaking [20–22].

Spontaneous symmetry breaking was also analyzed for
solitons in dual-core discrete systems, with the uniform
coupling between two parallel chains [24] or with the coupling
established at a single site [25]. In the former case, the SBB is
subcritical, while in the latter case it is supercritical.

The objective of the present work is to consider the SBB in
one-dimensional discrete lattices with the nonlinearity tightly
concentrated at two symmetric sites, or in narrow regions
around them. This is a straightforward discrete counterpart
of the double-well nonlinear pseudopotential [20,21], which
offers a simple test bed for the study of symmetry-breaking
effects in discrete media. Physically, the linear chain with
two nonlinear sites can be readily implemented in optics
by embedding two nonlinear cores into an arrayed linear
waveguide [26], and in BECs by means of the Feshbach-
resonance technique applied locally to the condensate trapped
in a deep optical lattice [2]. An essential advantage of the
system is that, as we demonstrate below, it admits a fully
analytical solution (for the infinite chain), with an arbitrary
separation between the two symmetric nonlinear sites, while
the stability of the exact solutions may be efficiently predicted
following general principles of the elementary bifurcation
theory [16] and the Vakhitov-Kolokolov (VK) criterion [27].

The paper is organized as follows. The model is introduced
in Sec. II, which is followed by producing exact solutions for
symmetric, asymmetric, and antisymmetric localized modes
in Sec. III. Numerical results, obtained for finite lattices, are
reported in Sec. IV (in particular, it is demonstrated that the
SBB is subcritical in the system with two nonlinear sites).
In Sec. V, we consider an essentially different version of
the system, in the form of a ring-shaped chain, with the
two nonlinear sites placed at diametrically opposite points,
in which case an analytical solution for the SBB is available
too. The paper is concluded in Sec. VI.

II. THE MODEL

According to what was said above, the model is based on
the linear discrete Schrödinger equation with two nonlinear
sites embedded into it:

i
dun

dt
+ (1/2)(un+1 + un−1 − 2un)

+ (δn,0 + δn,l)|un|2un = 0, (1)

where l is the integer distance between the two nonlinear sites,
and δn,m is the Kronecker symbol. The evolutional variable t

is time in the application to a BEC, or propagation distance
in the case of an array of optical waveguides. In the former
case, the nonlinearity at two sites can be induced by focusing
laser beams, which may enhance the nonlinearity through the
Feshbach resonance [28], at two particular droplets of the
condensate trapped in a deep optical lattice. In the photonic
realization of the setting, strong nonlinearity in two particular
cores in the waveguiding array can be readily imposed by
doping them with resonant atoms (see, e.g., Ref. [29]), which
does not affect the linear coupling of these sites to adjacent
ones, as implied in Eq. (1). The same mechanisms can be used

for inducing the local nonlinearity in circular configurations
considered below in Sec. V.

Stationary solutions to Eq. (1) are sought for as un(t) =
e−iωtUn, where the real stationary field Un obeys the equation

ωUn + (1/2)(Un+1 + Un−1 − 2Un) + (δn,0 + δn,l)U
3
n = 0.

(2)

Along with this model, we will also consider its version with
a smoothed form of the discrete δ function, viz.,

δn,n0 → exp[−(n − n0)2/�2], (3)

where n0 = 0 or l, and � is the smoothing width.
A preliminary remark is that Eq. (2) with l = 0 corresponds

to the single nonlinear site with the double strength, placed at
n = 0. In that case, an obvious exact solution is [26]

(Un)single = Ae−κ|n|, A2 = (1/2) sinh κ , (4)

where κ is connected to ω by the dispersion relation for
evanescent waves in the linear lattice:

ω = −2 sinh2(κ/2). (5)

Taking relation (5) into consideration, the norm of solution (4)
is

N ≡
+∞∑

n=−∞
U 2

n = (1/2) cosh κ ≡ (1 − ω)/2. (6)

Note that this expression for N satisfies the VK stability
criterion, dN/dω < 0, hence solutions (4) may be stable [30].
On the other hand, the continuous counterpart of Eq. (2) with
the single nonlinear site is

ωU + 1

2

d2U

dx2
+ 2δ(x)U 3 = 0, (7)

where δ(x) is the delta function (this continuous equation
was first introduced in Ref. [23]). It has an obvious localized
solution,

U (x) = (−ω/2)1/4 exp(−√−2ω|x|), (8)

whose norm is degenerate (it does not depend on ω): N ≡∫ +∞
−∞ U 2(x)dx = 1/2. Being formally neutrally stable in terms

of the VK criterion, all solutions (8) are actually unstable [21].
The degeneracy and instability of solutions (8) resemble the
classical properties of Townes solitons [31].

III. EXACT SOLUTIONS FOR THE INFINITE LATTICE

A. General analysis

Symmetric, antisymmetric, and asymmetric solutions to
Eq. (2) can be found in an exact form, following the pattern of
the exact solutions for the continuous counterpart of Eq. (2),
which was considered in Ref. [20]:

ωU + 1

2

d2U

dx2
+ [δ(x) + δ(x − l)]U 3 = 0, (9)

053844-2
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cf. Eq. (7). Exact symmetric and asymmetric solutions to the
discrete equation (2) are sought in the following form:

Un =
⎧⎨
⎩

Aeκn, at n � 0,

B cosh[κ(n − n0)], at 0 � n � l,

Ce−κ(n−l), at n � l.

(10)

Coordinate n0 determines the location of the center of the
intermediate part of the solution. Note that n0 does not need
to be an integer number. Symmetric and asymmetric modes
correspond, respectively, to n0 = l/2 and n0 �= l/2.

Ansatz (10) automatically satisfies the linear discrete
Schrödinger equation. It is still necessary to check Eq. (2)
at the nonlinear sites (of course, imposing the condition of
the continuity of the solution at these sites). With regard to
Eq. (5), the continuity condition yields relations between the
amplitudes:

B = A

cosh(κn0)
= C

cosh(κl − κn0)
, (11)

and the equation at the nonlinear sites amounts to the following
relations:

A2 = sinh κ

1 + e−2κn0
, C2 = sinh κ

1 + e−2κ(l+n0)
. (12)

After some algebra, the condition that Eqs. (11) and (12) yield
the same expression for B produces an equation for n0:

x4 + (3 − L)x3 + (1 − 3L−1)x − L−2 = 0, (13)

x ≡ e−2κn0 , L ≡ e2κl . (14)

B. Symmetric modes

Two roots of quartic equation (13) are x = ±L−1/2. The
negative one is unphysical, while the positive root corresponds,
according to Eq. (14), to n0 = l/2, which represents the
symmetric mode. The amplitudes of the symmetric solution,
as given by Eqs. (11) and (12), are (see also Ref. [26])

A2 = C2 = sinh κ

1 + e−κl
, (15a)

B2 = 4e−κl sinh κ

(1 + e−κl)3
. (15b)

It is relevant to note that, in the case of l = 0, Eqs. (15) yield
A2 = B2 = C2 = (1/2) sinh κ , which naturally coincides with
A2 as given by Eq. (4).

C. Asymmetric modes

Two other roots of Eq. (13) represent a pair of asymmetric
modes:

x± = 1

2

[
(L − 3) ± (L − 1)

√
L − 4

L

]
. (16)

Taking into regard Eq. (14), it is easy to check that roots (16)
correspond to two values (n0)± which are located mutually
symmetrically around the center: x+x− = L−1, i.e., (n0)+ +
(n0)− = l. Further, roots (16) are physical if they are real and
positive, which means L > 4. Thus, the symmetry-breaking
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FIG. 1. (Color online) (a) Bifurcation diagram in the plane of
the intrinsic frequency of the localized modes (ω) and their total
norm (N ), as produced by the analytical solution for the infinite
lattice with two symmetric nonlinear sites, separated by distance
l = 4. The black thick, red thin, and blue dotted lines correspond
to the symmetric (15), antisymmetric (23), and asymmetric (19)
solutions, respectively. In the insert, the zoom of the bifurcation
of the branch of asymmetric solutions (the blue dotted line) is
shown. The gray area determines the region of the existence of
the two-peak asymmetric solution, limited by critical frequencies
ω+

cr < ω < ω−
cr . Panels (b)–(d) show examples of analytically found

symmetric, antisymmetric, and asymmetric modes at ω = −0.016
and l = 4.

bifurcation, i.e., the appearance of the asymmetric modes from
the symmetric one [see Fig. 1(a)], happens, with the increase of
distance l between the nonlinear sites (at fixed κ , i.e., fixed ω),
at the critical point κcrl = ln 2 or, in terms of the frequency of
the localized mode, at

ω = ω−
cr = −2 sinh2

(
ln 2

2l

)
. (17)

In other words, for fixed l, the SBB occurs with the increase of
|ω| at point (17), the asymmetric modes existing at |ω| > |ω−

cr|.
The asymmetric mode keeps the double-peak shape if the

minimum point in expression (10), n0, is a really existing
minimum rather than a virtual one, i.e., it stays in interval 0 <

n0 < l. Further, this means that x± must fall into the following
interval: L−1 < x± < 1. It is easy to check, using Eq. (16), that
the latter condition places L and l into narrow intervals of their
values, namely, 4 < L < 2 + √

5 ≈ 4.24, and, accordingly,

ln 2 ≈ 0.69 < κl < (1/2) ln(2 +
√

5) ≈ 0.72, (18)

cf. Eq. (17). At κl > (1/2) ln(2 + √
5), i.e., ω < ω+

cr =
−2 sinh2[(4l)−1 ln(2 + √

5)] [in other words, at |ω| > |ω+
cr|,

cf. Eq. (17)], n0 leaves the region of 0 < n0 < l, hence the
asymmetric mode becomes single-peaked (“strongly asym-
metric”). The transition from the double-peak asymmetric
mode to the single-peak shape is illustrated in Fig. 3(b).
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The final expressions for the amplitudes of the asymmetric
mode are obtained by the substitution of expressions (16) and
(14) into Eqs. (11) and (12):

{A2,C2} =
{

2eκl sinh κ

(e2κl − 1)(eκl ± √
e2κl − 4)

}
, (19a)

B2 = 16e2κl[eκl(e2κl − 3) ± (e2κl − 1)
√

e2κl − 4] sinh κ

(e2κl − 1)3(eκl ± √
e2κl − 4)3

,

(19b)

where signs ± pertain to the two conjugate asymmetric modes.
Note that at the SBB point, eκl = 2, expressions (19) coincide
with their counterparts (15) obtained above for the symmetric
mode: at this point, the amplitudes are A2 = C2 = (2/3) sinh κ

and B2 = (16/27) sinh κ .
As a natural measure of their asymmetry, we will use

� ≡ A2 − C2

A2 + C2
= ±

√
1 − 4e−2κl . (20)

Obviously, � = 0 at the SBB point, e−κl = 1/2, and ex-
pression (20) makes sense past the bifurcation point, i.e.,
at e−κl < 1/2. In particular, at the above-mentioned point
of the transition from the double- to single-peak profile,
κl = (1/2) ln(2 + √

5), the asymmetry is still relatively small,
|�| = √

5 − 2 ≈ 0.24.

D. Antisymmetric modes

Antisymmetric solutions, and their counterparts with bro-
ken antisymmetry (if any) are looked for by dint of the
following ansatz, cf. Eq. (10):

Un =

⎧⎪⎨
⎪⎩

Aeκn, at n � 0,

B sinh[κ(n − n0)], at 0 � n � l,

Un = Ce−κ(n−l), at n � l.

(21)

Looking for a bifurcation occurring to the antisymmetric
mode, one arrives at the respective roots for x [with x defined
as in Eq. (14)]:

x± = 1

2

[
− (L − 3) ± (L − 1)

√
L − 4

L

]
, (22)

which differs from Eq. (16) by the opposite sign in front of
the first term in the square brackets. This difference makes
both roots (22) negative (unphysical), hence the antisymmetric
solutions do not undergo the bifurcation, similar to the situation
known in the continuous model [20].

The mode with the unbroken antisymmetry is given by the
exact solution in the form of ansatz (21) with amplitudes

A = −C =
√

sinh κ

1 − e−κl
, (23a)

B = −2
√

sinh κe−κl/2

(1 − e−κl)3/2
. (23b)

Finally, it is natural to call the antisymmetric modes,
corresponding to even and odd l, onsite and intersite
ones, respectively, as they have the zero point, n0 = l/2,
either coinciding or not with the (central) site of the
lattice.

IV. NUMERICAL RESULTS FOR A FINITE LATTICE

The objective of the numerical solution is to obtain solutions
of stationary equation (2) for a finite lattice, compare them to
the exact solutions found above for the infinite lattice, and
identify the stability of the symmetric, asymmetric, and anti-
symmetric solutions. In addition, the numerical calculations
help to identify the type of the SBB (sub- or supercritical), as
the analytical solution produces a very cumbersome result, in
this respect. Numerical stationary solutions were constructed
in the lattice of 71 sites. Highly asymmetric modes were
obtained by means of the continuation in ω, using Newton’s
iteration procedure that started from the analytical asymmetric
solution given by Eqs. (10) and (19). For all numerical
solutions, we analyzed the linear stability by solving the
corresponding linear eigenvalue problem. The results were
checked by direct simulations of the underlying equation (1).

A. Symmetric modes

In Fig. 2, families of numerically generated symmetric
solutions are shown for different distances l between the two
nonlinear sites. As said above, the stability of the numerically
found solutions was identified through the calculation of the
corresponding eigenvalues of small perturbations. The borders
between stable and unstable segments of the solution branches
correspond to the SBB which destabilizes the symmetric solu-
tions. The numerical solutions are practically indistinguishable
from their analytical counterparts (10) and (15), therefore the
analytically found curves are not plotted separately (strictly
speaking, the numerical results cannot be identical to the
analytical ones, because the numerical computations were
performed for the finite chain, while the analytical findings
pertain to the infinite one).

To check the predictions of the linear stability analysis,
we simulated the underlying equation (1), with initial profiles

ω

N

-0.3 -0.2 -0.1 0

1

2
l=4

l=3

l=2

l=0

l=1

FIG. 2. (Color online) Left panel: Families of numerically
generated symmetric solutions (their analytical counterparts are
indistinguishable from the numerical ones). The corresponding values
of the distance between the nonlinear sites, l, are indicated. The
solid and dashed lines depict, respectively, stable and unstable
portions of the solution families. Right panel: The evolution of
stable (a) and unstable (b) symmetric modes with l = 4, taken at
ω = −0.014 and ω = −0.02, respectively. Here and in similar plots
below, the spatiotemporal evolution is displayed by means of the
density contour plots. Small perturbations (∼1%) were added to
initiate the evolution. Dashed lines show the position of nonlinear
sites.

053844-4
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FIG. 3. (Color online) (a) Families of asymmetric (bold lines) and
symmetric (thin lines) solutions. As in Fig. 2, solid and dashed lines
correspond to stable and unstable portions of the solution families.
In fact, the lines for the symmetric solutions are identical to those
displayed in Fig. 2. (b) Example of the transition from the double-peak
shape for ω > ω+

cr to the single-peak one for ω < ω+
cr , obtained from

numerical (circles and squares) and analytical (red dashed and black
solid lines) asymmetric solutions.

for symmetric modes taken in regions where these solutions
are expected to have different stability. Typical examples,
presented in the right panel of Fig. 2, show that the unstable
symmetric stationary solution transforms into a pulsating
single-peak mode, which breaks the symmetry, getting spon-
taneously localized on one of the nonlinear sites.

B. Asymmetric modes

The numerical results for the asymmetric modes are
displayed in Fig. 3(a). In particular, unstable parts of the
families of asymmetric solutions are those which are related
to the SBB of the subcritical type [see Fig. 4(b) below]. The
SBB displayed by the numerical results closely follows the
analytical solution for the infinite lattice. In particular, generic
numerically found profiles of the double-peak (above ω+

cr)
and single-peak (below ω+

cr) asymmetric modes are compared
with their analytical counterparts in Fig. 3(b), the difference
between the numerical and analytical solutions being <∼1%.

In Fig. 4 the numerical results obtained for the asymmetric
solutions are collected in the form of plots showing the
asymmetry measure defined, as per Eq. (20), through the
difference between squared amplitudes of the solution at the
two nonlinear sites, as a function of frequency ω and total norm
N . The corresponding discrepancy between the numerical and

ω

Θ

-0.2 -0.15 -0.1 -0.05 0

-1

0

1

cr=-0.015ω

l=4
l=3

-0.061

l=2

-0.026

(a)

N

Θ

1 1.1 1.2 1.3 1.4

-1

0

1
(b)

l=4

l=2l=3

FIG. 4. (Color online) Family of the numerically found asymmet-
ric solutions in the planes of (�,ω) (a) and (�,N ) (b) for different
distances between the nonlinear sites (l). As above, the stable and
unstable portions of the solution families are depicted by solid and
dashed lines, respectively.

FIG. 5. (Color online) Evolution of unstable (a) and stable (b)
asymmetric modes with l = 4, taken at ω = −0.02 and ω = −0.05,
respectively. Dashed lines show the position of nonlinear sites.

analytical results is <1%. In Fig. 4(a), the numerically found
bifurcation points are compared to those predicted analytically
by Eq. (17) (they correspond to values of ω−

cr indicated in the
figure), which demonstrates a precise agreement. An important
conclusion clearly suggested by Fig. 4(b) is that the bifurcation
has the subcritical character, with the asymmetric branches
being unstable exactly between the SBB and turning points, as
might be expected.

To check the predictions of the linear-stability analysis, we
simulated the underlying equation (1) with initial profiles for
asymmetric modes taken in the regions where these solutions
are expected to be stable and unstable, respectively. Typical ex-
amples, presented in Fig. 5, show that the unstable asymmetric
stationary solution transforms itself, after a transient period,
into a robust breather oscillating between two asymmetric
configurations (in that sense, the breathers restore an effective
dynamical symmetry).
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U
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1

l=4 (numer)
l=4 (analyt)
l=2 (numer)
l=2 (analyt)

(c)
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l=4

(a)

ω

N

-1.5 -1 -0.5 0
2

4

6

l=3

l=1

(b)

n

U
n

-5 0 5

-1

0

1

l=3 (numer)
l=3 (analyt)
l=1 (numer)
l=1 (analyt)

(d)

FIG. 6. (Color online) Panels (a) and (b) display N (ω) curves for
families of the antisymmetric solutions of onsite and intersite types,
respectively (i.e., with even or odd distance l between the nonlinear
sites). The solid and dashed portions of the curves refer, as usual,
to stable and unstable solutions. Panels (c) and (d) display typical
profiles of the antisymmetric onsite and intersite modes, as obtained
in the numerical and analytical forms at ω = −0.5.
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FIG. 7. (Color online) Evolution of unstable (a)–(c) and stable
(d) antisymmetric modes. Initial profiles are taken from Figs. 6(c)
and 6(d) with ω = −0.5 for l = 1,2,3,4.

C. Antisymmetric modes

Families of numerically found onsite (a) and intersite (b)
antisymmetric modes are shown in Fig. 6. As in the previous
cases, the curves are practically indistinguishable from their
analytically found counterparts. In contrast to the symmetric
and asymmetric solutions, norm N of the antisymmetric ones
is bounded by a minimum value (the existence threshold). It is
also seen that each curve features stable and unstable portions,
the border between which approaches the bottom of the curve
with the increase in the distance between the nonlinear sites,
l. Figures 6(c) and 6(d) display typical profiles of the onsite
and intersite antisymmetric modes, again showing very good
agreement with the respective analytically predicted profiles.
Note that according to Figs. 6(a) and 6(b), the antisymmetric
solution shown for l = 4 is stable, while the ones for l = 1,2,3
are unstable.

To check the linear-stability predictions for the antisym-
metric modes, we took initial profiles of the antisymmetric
solutions from Figs. 6(c) and 6(d) at ω = −0.5, when the
onsite or intersite modes with l = 1,2,3 are unstable while
the one with l = 4 is stable, and we simulated Eq. (1) with
small initial perturbations (∼1%). The results are presented
in Fig. 7. The unstable solutions spontaneously transform into
single-peak modes localized on one of the nonlinear sites,
which demonstrates decaying oscillations of the amplitude.
On the other hand, the linearly stable antisymmetric mode,
with l = 4, is indeed robust in the direct simulations.

ω

N

-0.6 -0.4 -0.2 02

3

∆ = 1
∆ = 0.1

FIG. 9. (Color online) N (ω) curves of antisymmetric solu-
tion families for l = 4 with � = 0.1 (black curves) and � = 1
(red curves), cf. Fig. 8.

D. Effects of the finite extension of the nonlinear region

In the model with two finite nonlinearity domains, defined
as per Eq. (3), results were obtained in the numerical
form. They are displayed for the families of symmetric and
asymmetric modes in Fig. 8 and for the antisymmetric ones in
Fig. 9. In particular, Fig. 8 demonstrates that the increase of
the width of the nonlinearity domain transforms the subcritical
bifurcation into a supercritical one, thus completely stabilizing
the asymmetric modes and making the value of N at the SBB
point lower. It is also worth noting that, for antisymmetric
modes as seen in Fig. 9, the broader nonlinearity gives rise to
an additional stability window close to the existence threshold
(minimum value of N ).

V. THE RING MODEL

If the infinite linear chain is replaced by a circle (ring) with
the nonlinear sites placed at diametrically opposite points,
Eq. (2) is replaced by the following one:

ωUn + 1
2 (Un+1 + Un−1 − 2Un) + (δn,n− + δn,n+ )U 3

n = 0,

(24)

where n = n± may be defined as the top and bottom points
of a vertical diameter cutting the circle. In fact, it is more
convenient to replace Eq. (24) by a system of two identical
equations for two semicircles, left and right ones. In each
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FIG. 8. (Color online) (a) Curves N (ω) of the symmetric and asymmetric solution families for l = 4 with � = 0.1 in Eq. (3) (black thin
lines, which are actually tantamount to their counterparts with the δ-like nonlinearity), and with � = 1 (red thick lines), which correspond to
a relatively broad Gaussian. In (b) and (c), the corresponding asymmetry ratio � is shown vs ω and N .
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equation, n takes values n− < n < n+ (n− < 0 and n+ > 0
are assumed). In a BEC, the circular chain can be realized as a
combination of a toroidal trap and periodic potential created in
it [32], and in optics it corresponds to an array of waveguides
created in a hollow cylindrical shell, or written in the form of
the ring in a bulk sample [33].

In principle, one may expect two types of symmetry
breaking in this setting: between the top and bottom, which is a
counterpart of what was considered above in the framework of
the rectilinear chain, or between the left and right semicircles.

The linear solutions for the left (l) and right (r) semicircles
can be looked for as

(Un)l,r = Al,r cosh[κ(n − nl,r )], (25)

with κ related to ω by Eq. (5), and some constants Al,r and
nl,r (nl and nr are not necessarily integer numbers). Then,
the continuity conditions should be imposed at points n = n±,
where the two semicircles are linked into the entire circle:

Al cosh(n± − nl) = Ar cosh(n± − nr ). (26)

After simple manipulations, one may eliminate the amplitudes
from Eqs. (26), which leads to the following consistency
condition: cosh[κ(n+ − n− − nl + nr )] = cosh[κ(n+ − n− +
nl − nr )]. It is obvious that the consistency condition can be
met in the case of n+ = n−, which is trivial (zero length of the
ring), or

nl = nr ≡ n0. (27)

Further, it then follows from Eqs. (26) that a consequence
of Eq. (27) is Al = Ar ≡ A, hence the symmetry breaking
between the left and right semicircles is impossible.

However, the top-bottom symmetry breaking is possible.
Substituting ansatz (25) with the left-right symmetry into
Eq. (24) at points n = n±, the result of a straightforward
analysis is a system of two equations, corresponding to +
and −,

tanh[κ(n± − n0)]{1 − tanh2[κ(n± − n0)]} = ±A2/ sinh κ ,

(28)

where n0 is defined as per Eq. (27). In Eqs. (28), A2 and
n0 are considered as two unknowns for given κ and n±. As
follows from Eqs. (28), the symmetric solution, with n0 =
(1/2)(n+ + n−), has the amplitude

A2
symm = (sinh κ) tanh[(κ/2)(n+ − n−)]

×{1 − tanh2[(κ/2)(n± − n0)]}. (29)

An obvious corollary of Eqs. (28) is the relation

tanh[κ(n+ − n0)]{1 − tanh2[κ(n+ − n0)]}
− tanh[κ(n0 − n−)]{1 − tanh2[κ(n0 − n−)]} = 0. (30)

The SBB point can be found by setting n0 = (1/2)(n+ −
n−) + δn0, with infinitesimal δn0, and demanding that the
coefficient in front of δn0 in the respective expansion of
the left-hand side of Eq. (30) vanishes. The result is that
this happens at point cosh[(κ/2)(n+ − n−)] = √

3/2, which
is equivalent to

[κ(n+ − n−)]cr = ln(2 +
√

3). (31)
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FIG. 10. (Color online) (a) Family of symmetric (thin) and asym-
metric (thick) solutions for three different lengths of the ring (6, 8, and
10). The solid and dashed lines correspond to the stable and unstable
solutions, respectively. (b) Amplitude of the symmetric solution at
the bifurcation point, for different lengths of the ring (indicated by
numbers at the points). (c), (d) Dependence of asymmetry � on the
frequency (c) and norm N (d), showing the change of the bifurcation
type in the ring with the increase of the ring’s size.

At this point, the amplitude is

A2
cr = (2/33/2) sinh κ. (32)

The asymmetric state exists, for given κ , i.e., given ω, for the
length of the semicircle, n+ − n−, which is larger than the one
corresponding to Eq. (31). Alternatively, at given n+ − n−, the
asymmetric state exists for κ exceeding the value defined by
Eq. (31).

In Fig. 10 we summarize the results related to the ring
configuration. In Fig. 10(a), families of the symmetric and
asymmetric solutions are displayed for three different lengths
of the ring. We checked the linear stability of the corresponding
solutions through the numerical computation of the eigenval-
ues for small perturbations. The respective stable and unstable
regions of the existence curves are shown by the solid and
dashed lines, respectively. As in the case of the linear chain, at
critical frequency ωcr calculated from Eq. (31), the branches
of the asymmetric solutions bifurcate from the branch of
symmetric solutions. The amplitude of the symmetric solutions
at the bifurcation point is displayed in Fig. 10(b) for different
lengths of the ring.

Also for different lengths of the ring, we analyzed the
type of the corresponding SBB, calculating the asymmetry
parameter � as per Eq. (20). The dependences of � on
frequency ω and norm N are shown in Figs. 10(c) and 10(d).
As one can see, the length of the ring plays a crucial role in the
determination of the bifurcation type. In the small ring (e.g.,
of length 6), the bifurcation is supercritical, while increasing
the length to �8 changes it into a subcritical one.
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FIG. 11. (Color online) Evolution of stable (a) and unstable (b)
asymmetric solutions with initial profiles taken at ω = −0.5 and
ω = −0.05, respectively. The length of the ring is 10 sites. Initial
profiles were taken with small perturbations.

In Figs. 11 and 12, the evolution of stable and unstable
asymmetric and symmetric solutions is shown. The direct
simulations corroborate the linear-stability analysis. As one
can see, the solutions taken on stable parts of the existence
curves are stable indeed. The unstable asymmetric solution
[see Fig. 11(b)] starts to oscillate between two asymmetric

FIG. 12. (Color online) Evolution of stable (a) and unstable (b)
symmetric solutions with initial profiles taken at ω = −0.05 and
ω = −0.03, respectively. The length of the ring is 10 sites. Initial
profiles were taken with small perturbations.

configurations, while the unstable symmetric solution in
Fig. 12(b) rapidly transforms into an oscillating single-peak
mode. It is relevant to stress that, similar to the situation in the
straight chain (cf. Fig. 5), the instability of symmetric modes
transforms them into asymmetric ones, while the instability
of asymmetric modes leads to the restoration of the effective
dynamical symmetry.

Finally, it is relevant to note that in the case of the circle of
a finite length, it is also possible to consider values ω > 0, i.e.,
imaginary wave numbers, κ = i|κ|, see Eq. (5). This means
that the exponentially decaying discrete waves are replaced by
oscillatory ones. After a simple analysis, the respective version
of Eq. (28) can be derived in the following form:

tan[|κ|(n± − n0)]{1+tan2[|κ|(n± − n0)]}=∓A2/[2 sin(|κ|)].
(33)

A straightforward analysis of Eq. (33) demonstrates that, on
the contrary to Eq. (28), it does not give rise to symmetry
breaking (the crucial difference is the opposite sign in front of
tan2 in the curly brackets).

VI. CONCLUSION

The objective of this work is to elaborate the simplest
setting for the study of the spontaneous symmetry breaking
in dynamical chains. For this purpose, we introduced two
one-dimensional discrete systems in the form of straight and
ring-shaped linear chains, with two symmetrically inserted
nonlinear sites. This pair of sites introduces the symmetry that
may be spontaneously broken. The chains, both rectilinear and
circular ones, can be realized in BECs (with the help of optical
lattices) and in optics, in the form of waveguiding arrays. A
full set of analytical solutions for symmetric, asymmetric, and
antisymmetric localized states has been obtained in the explicit
form for both geometries. The stability of the stationary modes
was investigated through the numerical computation of the
eigenvalues for small perturbations and also by means of
the VK criterion. The SBB (symmetry-breaking bifurcation),
which is responsible for the asymmetric modes emerging from
the symmetric ones, is of the subcritical type in the straight
lattice and in the circular one of a sufficiently large size.
The bifurcation becomes supercritical if the system is made
effectively nonlocal, i.e., in the ring of a smaller size, or if
the nonlinearity is spread over relatively broad areas around
the two central sites in the straight chain. The antisymmetric
modes are not subject to bifurcations, although they too may
be both stable and unstable. The development of the instability
(when it occurs) was tested with the help of direct simulations.
It was found that the unstable stationary asymmetric states,
which are part of the subcritical bifurcation, spontaneously
transform into breathers oscillating between the two nonlinear
sites, which may be considered as the restoration of an effective
dynamical symmetry.

Note added in proof. Recently, a related article [34] became
available. In that work, spontaneous symmetry breaking is
considered in a model which is different from ours, but is
related to it: two nonlinear sites symmetrically side-coupled
to an infinite linear chain. We are indebted to A. Sadreev, who
has brought that paper to our attention.
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[22] N. V. Hung, P. Ziń, M. Trippenbach, and B. A. Malomed, Phys.

Rev. E 82, 046602 (2010).
[23] B. A. Malomed and M. Ya. Azbel, Phys. Rev. B 47, 10402

(1993).
[24] G. Herring, P. G. Kevrekidis, B. A. Malomed, R. Carretero-
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