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Coherent spin control by electromagnetic vacuum fluctuations
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In coherent control, electromagnetic vacuum fluctuations usually cause coherence loss through irreversible
spontaneous emission. However, since the dissipation via emission is essentially due to correlation of the
fluctuations, when emission ends in a superposition of multiple final states, correlation between different pathways
may build up if the “which way” information is not fully resolved (i.e., the emission spectrum is broader than the
transition energy range). Such correlation can be exploited for spin-flip control in a �-type three-level system,
which manifests itself as an all-optical spin echo in nonlinear optics with two orders of optical fields saved as
compared with stimulated Raman processes. This finding represents aclass of optical nonlinearity induced by
electromagnetic vacuum fluctuations.
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I. INTRODUCTION

Electromagnetic vacuum fluctuations are fundamental in
many physical processes (spontaneous emission, light scat-
tering, Casimir effect, lasing, etc.) [1,2] and in a wide
variety of applications (quantum information processing,
quantum metrology, laser cooling, photonic engineering, etc.)
[3–5]. Particularly in quantum coherence control, the vacuum
fluctuations are usually undesirable [3–7] since they cause
spontaneous photon emission and in turn irreversible loss of
coherence of the systems under control. However, there are
still some surprising effects. For instance, it was predicted
and observed that in the stimulated Raman process for spin
coherence generation in a �-type three-level system, the
irreversible spontaneous emission (SE) from the optically
excited state, when its spectrum is wide enough to cover both
emission pathways and the two pathways are coupled to the
same photon modes, will generate Raman coherence between
different spin states [8,9].

In this paper, we predict yet another striking effect of
the vacuum fluctuations and show how it manifests itself in
nonlinear optics. The irreversible SE in a �-type three-level
system can cause a spin flip and hence recover the dephased
spin coherence by spin echo [10]. Such spin-flip control by
vacuum fluctuations, when implemented in the standard spin
coherence pump-probe spectroscopy, can realize spin echo
in nonlinear optics, with two orders of optical fields saved
as compared with the conventional methods using stimulated
Raman processes. This effect shows that the vacuum field can
indeed replace some orders of the optical field in nonlinear
optical spectroscopy, which is consistent with the previous
results on spin coherence signatures in frequency-domain
nonlinear optical spectra [11]. By studying the nonlinear
optical signals of spin coherence in a fluctuating random field
(due to environmental noises) [12], we will also show that the
SE-assisted spin flip has the same effect as a usual coherent
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π -rotation control in restoring the spin coherence lost within
the memory time of the environmental noises [13].

The organization of this paper is as follows. After this
introductory section, Sec. II describes the basic idea of the
paper. Section III describes the model for the quantum dot
(QD) system and the master-equation approach to calculating
the nonlinear optical susceptibility. Section IV presents the
results and discussion. Section V concludes this paper. The
solution of the master equation is presented in the Appendix.

II. BASIC IDEA

To illustrate the basic idea of spin-flip control by vacuum
fluctuations, let us first examine the stimulated Raman pro-
cesses. Such processes are the fundamental mechanisms of
many physical phenomena such as electromagnetically in-
duced transparency [14], stimulated Raman adiabatic passage
[6], and optical control of spins in semiconductors [15–21]. As
shown in Fig. 1(a), we consider two spin states |±〉 coupled
to the same optically excited state by a short laser pulse. The
spin is flipped when |+〉 and |−〉 are exchanged, via two state
transfer processes in parallel, namely, the stimulated Raman
processes from |±〉 to |∓〉 mediated by the optically excited
state. Similar to the photon echo in four-wave mixing [22], the
signature of the spin flip will appear as spin echo in nonlinear
optics via a perturbation procedure with four orders of the
optical field involved in the spin flip.

Now if the stimulated photon emission from the optically
excited state is replaced by the SE [see Fig. 1(b)], the spin flip
can be realized by Raman processes involving only two orders
of the laser field. Similar to the stimulated Raman processes,
it is essential that the SE spectrum is broader than the spin
splitting and the two emission pathways couple to the same
photon mode. Such requirements indicate the fundamental
basis of the predicted effect: The SE (dissipation) is due to
the correlation of the vacuum fluctuations [23], so when there
are several final states in an SE process, coherent correlation
between different quantum pathways may be generated when
the “which way” information is not fully resolved. Such
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FIG. 1. (Color online) (a) Stimulated Raman processes for a spin-
flip control in a �-type three-level system. (b) Raman processes for a
spin-flip control, with emission caused by vacuum fluctuations (dotted
arrows) instead of a laser field as in (a).

correlation may lead to coherence generation by SE [8,9] and
even coherent spin control when there is initial spin coherence.

III. MODEL AND THEORY

To be specific, we will present the detailed analysis for
a model system of electron spins in QDs, a paradigmatic
system in research of quantum optics, quantum computing,
and mesoscopic physics. In a GaAs fluctuation QD doped with
a single electron [9], for example, a normal incident light with
circular polarization σ+ (or σ−) couples only to the optical
transition between the electron spin state |↑〉 (or |↓〉) to the
negatively charged exciton state, i.e., the trion state |t〉 (or |t̄〉),
with the spin basis quantized along the growth direction (the z

axis) [see Fig. 2(a)]. Under a transverse magnetic field [in the
Voigt geometry, see Fig. 2(b)], the electron spin is split into
two states |±〉 ≡ (|↑〉 ± |↓〉) /

√
2 quantized along the external

magnetic field direction (x axis), with Zeeman energy ω, but
the trion states remain nearly degenerate due to the large energy
mismatch between the heavy hole and the light hole and hence
can still be quantized along the growth direction [9]. Without
loss of generality, we set the pump, control, and probe pulses
all σ+ polarized. Then, only the trion state |t〉 will be excited
and thus the system is modeled by a �-type three-level system
consisting of |±〉 and |t〉. The all-optical spin echo is based
on a standard pump-probe setup [see Fig. 2(b)] and the basic
optical processes are illustrated in Fig. 2(c).

The Hamiltonian of the model system is

H = εt |t〉〈t | + ωSx +
∑

j

[|t〉〈↑|Ej (t) + H.c.], (1)
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FIG. 2. (Color online) (a) Selection rules of optical transitions in
a singly charged fluctuation quantum dot. (b) Setup for spin echo
by nonlinear optics. (c) Optical couplings (vertical solid arrows) and
spontaneous emission (vertical dotted arrows) for generation, flip
control, and detection of spin coherence.

where εt is the energy gap, ωSx is the Zeeman coupling
with Sx ≡ (|↑〉〈↓| + |↓〉〈↑|) /2, and Ej (t) ≡ χj (t) e−i�j t is
the positive-frequency component of the optical coupling from
the j th laser pulse with χj (t) denoting the pulse envelope. The
transition dipole moment is understood to be absorbed into the
field quantities. The first pulse centered at time 0 prepares
the spin coherence, the second pulse at time τ realizes the
spin control, and the third pulse probes the spin coherence at
time t .

The nonlinear optical response can be calculated directly
by solving the master equation perturbatively in powers of the
optical fields (see Appendix). The master equation reads

∂tρ = −i[H,ρ] − (�/2)(�†�ρ + ρ�†� − 2�ρ�†)

−T −1
2 (2SxρSx − ρ/2), (2)

where the irreversible SE of a rate � is described by the Lind-
blad form associated with the optical transition � ≡ |↑〉〈t |,
and the pure dephasing of the electron spin is characterized
by the T2 term in the second line. The extra dephasing due to
mechanisms such as phonon scattering and tunneling leakage
is negligible at low temperature and in electrically stable QDs
[9,16,17,19,21], and if included, would only quantitatively
modify the signal amplitudes without changing the main
results of this paper. The stimulated emission also contributes
to the stimulated Raman processes [Fig. 1(a)]. This effect,
being proportional to the optical fields, has been automatically
included in the coherent driving of the lasers.

The spin splitting ω consists of the Zeeman energy and the
local field fluctuation, the latter causing the spin dephasing.
At low temperature, the local field fluctuation in QDs is
mainly due to the hyperfine interaction with nuclear spins
[24], which includes both static inhomogeneous broadening
and dynamical spectral diffusion. To simplify the discussions
without affecting the essential physics, we will model the local
field fluctuation using a phenomenological random field with
certain correlation functions [12,13].

IV. RESULTS AND DISCUSSION

A. Spin coherence generation

The first step is optical pumping of spin coherence. We
assume that the system initially has no spin coherence;
i.e., ρ = 1

2 |↑〉〈↑| + 1
2 |↓〉〈↓| = 1

2 |+〉〈+| + 1
2 |−〉〈−|. A short

σ+-polarized pulse, with a bandwidth greater than the spin
splitting, excites population from the spin state |↑〉 to the trion
state |t〉, leaving the spins polarized along the −z direction and
initiated to precess about the external field. The SE will bring
the trion population back to the spin state |↑〉, which tends to
cancel the spin coherence generated by the stimulated Raman
processes. As the SE takes a finite time during which the spins
precess, the spin coherence will be only partially canceled and
phase delayed [8,9]. Starting from the initial population at |+〉,
for example, the second-order optical processes for the spin
coherence generation are described by [see Fig. 2(c)]

ρ
(0)
++

E1−→ ρ
(1)
t+

E∗
1−→ ρ

(2)
−+ or ρ

(2)
++, (3a)

ρ
(0)
++

E1−→ ρ
(1)
t+

E∗
1−→ ρ

(2)
t t

SE−→ ρ
(2)
↑↑, (3b)
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where ρ
(n)
αβ is the density matrix element between |α〉 and |β〉 in

the nth order of the optical field. The evolution starting from
the population ρ

(0)
−− is similar. The spin coherence after the

pump, quantified as the off-diagonal matrix element, is [9]

ρ
(2)
+−(t) = G1

2

ω

ω + i�
e−iωt−t/T2 , (4)

where T2 is the spin decoherence time, and the excitation prob-
ability under the resonance condition (εt = �1) is determined
by the pulse area through

G1 ≡
∣∣∣∣
∫ +∞

−∞
χ1 (t) dt

∣∣∣∣
2

∝ E1E
∗
1 . (5)

In the presence of inhomogeneous broadening [a probability
distribution of ω assumed as e−(ω−ω0)2/(2σ 2) around the central
frequency ω0], the ensemble-averaged spin coherence is

〈ρ(2)
+−(t)〉 ∝ E1E

∗
1

ω0

ω0 + i�
e−iω0t−t/T2−σ 2t2/2. (6)

Here we have used the condition that � � σ . As usually
σ � 1/T2, the spin polarization decay is dominated by the
inhomogeneous broadening effect. To resolve the “true” spin
decoherence, spin echo may be invoked.

B. Spin coherence control

The key step in the all-optical spin echo is the control of
spins. To illustrate the idea, let us start with the rotation of spins
by the optical ac Stark shift which has been demonstrated in
QDs [17,19,21]. We consider a σ+-polarized pulse detuned
well below the trion resonance. The virtual transition between
|t〉 and the spin state |↑〉 induces an ac Stark energy shift of the
spin state, which in turn induces a rotation of the spin about
the z axis, with an angle θ ∝ |E2|2 + O(|E2|4). If θ = π , the
spins are flipped. In reality, it is nontrivial to realize an exact π

rotation [19,21]. The idea of using nonlinear optical response
to realize spin echo comes from the perturbation expansion

exp(iθSz) = 1 + iθSz + O(θ2). (7)

Thus, an infinitesimal rotation contains the rotation generator
Sz, i.e., the spin operator along the z axis, which exchanges
the states |+〉 and |−〉.

From Eq. (7), it is tempting to conclude that two orders
of the control field can flip the spin coherence. A closer
examination, however, reveals that we need actually four
orders of the control field. To see the problem, let us consider
a general spin state |ψ〉 = C+|+〉 + C−|−〉. A small rotation
about the z axis transforms it into

eiSzθ |ψ〉=
(

C+ + i
θ

2
C−

)
|+〉 +

(
C− + i

θ

2
C+

)
|−〉 + O(θ2).

(8)

Before the pulse applied at t = τ , the spin coherence is
ρ+−(τ − 0) = C+C∗

− ∝ exp (−iωτ ). For spin echo, we wish
to pick up the spin-flipped term ρ−+(τ + 0) after the control
pulse. Such a term in the leading order of θ is θ2C+C∗

−/4.
Thus at least four orders of the control field are needed. This
problem can also be understood from the picture of stimulated
Raman processes shown in Fig. 1(a) or from the excitation
pathways of the control process (see formula below). Starting

from the spin coherence generated by the pump pulse, ρ
(2)
+−,

the excitation by two orders of the control pulse follows the
pathways

ρ
(2)
+−

E2−→ ρ
(3)
t−

E∗
2−→ ρ

(4)
−−, ρ

(4)
+−, or ρ

(4)
t t , (9a)

ρ
(2)
+−

E∗
2−→ ρ

(3)
+t

E2−→ ρ
(4)
++, ρ

(4)
+−, or ρ

(4)
t t , (9b)

none of which results in a spin-flipped term ρ
(4)
−+. Note that the

excitation pathways are independent of the detuning of light,
and thus the problem discussed above is not limited to the spin
rotation by the ac Stark effect of virtual excitation but applies
also to real excitation.

We note that in Eq. (9) the trion population is also obtained
if the excitation is in resonance with the trion. As discussed
earlier for the optical pump of spin coherence, the SE will
bring the trion population to the spin population ρ

(4)
↑↑. Thus

with the SE included, the spin-flipped coherence is obtained
through the quantum pathway [see Fig. 2(c)]

ρ
(2)
+−

E2E
∗
2−→ ρ

(4)
t t

SE−→ ρ
(4)
↑↑ = 1

2 (ρ(4)
++ + ρ

(4)
−+ + ρ

(4)
+− + ρ

(4)
−−).

(10)

Indeed, one can regard the SE as the contribution of two orders
of the vacuum field to the nonlinear optical response, which
is consistent with the observation that at least four orders of
control field are needed to flip the spin coherence. Similar to
the stimulated Raman processes, we also need the bandwidth
of the SE to be comparable to or greater than the spin splitting
(i.e., � >∼ ω).

Considering the spin precession during the SE, the spin
coherence generated by the SE is [9]

ρ
SE(4)
−+ (t) = 1

2
ρ

(4)
t t

i�

ω − i�
eiω(t−τ )−(t−τ )/T2 , (11)

where the fourth-order trion population is

ρ
(4)
t t = G2ρ

(2)
↑↑ = G2

2
(ρ(2)

++ + ρ
(2)
−− + ρ

(2)
+− + ρ

(2)
−+), (12)

with the excitation probability under the resonance condition
(εt = �2)

G2 ≡
∣∣∣∣
∫ +∞

−∞
χ2(t)dt

∣∣∣∣
2

∝ E2E
∗
2 . (13)

Thus we obtain the spin-flipped coherence term

ρ̄
(4)
−+(t) = G2

4

i�

ω − i�
eiω(t−τ )−(t−τ )/T2ρ

(2)
+−(τ ). (14)

With the spin coherence generated by the pump pulse given in
Eq. (4), the ensemble average of the spin-flipped term is

〈ρ̄(4)
−+(t)〉 ∝ |E1|2|E2|2 iω0�

ω2
0 + �2

〈eiω(t−2τ )−t/T2〉. (15)

The spin echo is seen by noticing that the phase factor e−iωτ

accumulated in ρ
(2)
+−(τ ) is canceled in ρ̄

(4)
−+(t) at t = 2τ .

The relative magnitude of the echo signal depends on the
ratio of the spin splitting ω0 to the SE rate �. In generation of
the spin coherence by the first pump pulse, faster SE would
lead to weaker spin coherence, but in the spin-flip control by
the second pulse, faster SE would induce more spin coherence
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flipped. Competition between the two effects makes the overall
amplitude of the echo signal peak at ω0/� = 1 and decreasing
to zero when ω0/� → 0 or ∞ [see Fig. 3(a)].

For comparison, we also consider the direct spin coherence
control by the laser pulse without involving the SE. As
discussed in the beginning of this subsection, at least four
orders of the optical field are needed to realize the spin flip.
The spin coherence directly flipped by the laser pulse in the
leading order is

ρ̄
(6)
−+(t) = g2

4
ρ

(2)
+−(τ )eiω(t−τ )−(t−τ )/T2 , (16)

with

g2 ≡
∣∣∣∣∣
∫ +∞

−∞
χ∗

2 (t ′)dt ′
∫ t ′

−∞
χ2(t)dt

∣∣∣∣∣
2

= 1

4
G2

2, (17)

where in the equation above we have used the resonance
condition (εt = �2) and assumed that the pulse envelope χ2(t)
is a real function. The relative strength of the echo signal
induced by the SE [in Eq. (12)] as compared with that induced
by the laser pulse [in Eq. (16)] is

R5/7 = 4

G2

√
1 + ω2

0/�2
. (18)

This ratio is plotted in Fig. 3(b) as a function of the laser
pulse intensity. For � ∼ ω0, the SE-induced echo signal will
dominate the higher order signal induced by the laser pulse,
since G2 � 1 is satisfied in the perturbative response regime.
For example, for GaAs fluctuation QDs with exciton dipole
moments of 75 debyes (i.e., 15 eÅ) [25], to achieve G2 ∼ 1,
a laser pulse of 1 picosecond duration needs to have a
peak energy flux to be as high as 0.5 MW/cm2, or there
should be as many as about 2 × 103 photons per pulse per
QD for a QD density of 109 cm−2. Such surprisingly high
nonlinearity induced by the electromagnetic vacuum field can
be understood by virtue of the fact that the laser approaches

the QD in only one mode, while all modes of the vacuum field
participate in the SE process.

C. Differential transmission signal

The differential transmission of a σ+-polarized pulse probes
the population change of the spin state |↑〉 due to the pump and
the control pulses. With two orders of the pump field and two
orders of the control field carried by the spin coherence, the
optical polarization induced by the probe pulse is a fifth-order
optical response

ρ
(5)
t↑ (t) = −i

∫ t

−∞
ρ

(4)
↑↑(t ′)χ3(t ′) dt ′. (19)

In heterodyne detection [26], the differential transmission
(DTS) of the probe pulse arriving at time t is

�T (5)(t) = G−1
3 Im

[∫ +∞

−∞
χ∗

3 (t ′)ρ(5)
t↑ (t ′) dt ′

]
, (20)

where the absorption of the probe pulse in absence of the pump
and control pulses is

G3 ≡ 1

2

∣∣∣∣
∫ +∞

−∞
χ3(t)dt

∣∣∣∣
2

. (21)

With the spin coherence given by

ρ
(4)
↑↑(t) = (ρ(4)

++ + ρ
(4)
−− + 2Reρ(4)

+−)/2, (22)

the DTS is

�T (5)(t) = C + IechoRe〈eiω(t−2τ )−t/T2〉, (23)

where C consists of all the background terms and the oscilla-
tion terms without spin flip, and the spin-echo signal strength is

Iecho = G1G2

4

ω0�

�2 + ω2
0

. (24)

Figure 3(b) shows the dependence of the signal strength on
the laser power under realistic experimental conditions. For
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FIG. 3. (Color online) (a) Overall spin-echo amplitude as a function of the ratio of the Zeeman splitting to the spontaneous emission rate
(ω0/�). (b) The solid line is the estimated amplitude of the echo induced by the spontaneous emission relative to that induced by direct laser
pulse control [R5/7 in Eq. (18)], and the dashed line is the estimated χ (5) differential transmission (in percentage of the absorption without the
pump and control pulses) at the echo time [Eq. (24)], both plotted as a function of the laser pulse intensity. For the estimation, the pump and
the control pulses have the same amplitude (G1 = G2) and the same duration (1 picosecond), the dipole moment of the exciton is 75 debye
(15 eÅ), the dielectric constant of the material is 10, and ω0 = � is assumed.
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an ensemble with inhomogeneous broadening σ , the signal
at a long time (t � σ−1) will present oscillation only near the
echo time t = 2τ . The decay of the echo signal as a function of
τ reveals the “true” decoherence excluding the inhomogeneous
broadening effect.

D. Numerical results

To check whether the spin-flip control by SE can suppress
the decoherence in a “slow” bath the same way as a coherent
π rotation in spin echo [13], we simulate the decoherence by
a spectral diffusion model in which the local magnetic field
ω(t) = ω + X(t) contains a dynamically fluctuating part X(t)
[12]. The accumulated random phase φ(t2,t1) ≡ ∫ t2

t1
X(t)dt

causes the spin decoherence. For a Gaussian fluctuation to
which Wick’s theorem applies, the spin-flipped coherence term
in Eq. (15) becomes [12,13]

〈ρ̄(4)
−+(t)〉 ∝ eiω0(t−2τ )−σ 2(t−2τ )2/2−〈[φ(t,τ )−φ(τ,0)]2〉/2. (25)

To be specific, we employ a noise correlation of the form [13]
〈X(t1)X(t2)〉 = 〈X2(0)〉 exp(−|t1 − t2|/τc). The spin echo not
only eliminates the inhomogeneous broadening effect but
also partially suppress the decoherence resulting from the
dynamical fluctuation if the pulse delay time τ is comparable
to or shorter than the noise correlation time τc [13].

The partial recovery from the spin decoherence is seen in
Fig. 4, which is obtained by numerical solution of Eq. (2). To
show the effect of dynamical fluctuation, the inhomogeneous
broadening σ is artificially set to zero in Fig. 4. When the pulse
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FIG. 4. (Color online) χ (5) DTS of singly charged QDs, calculated
analytically using Eq. (25) (lines) or numerically (symbols). (a) and
(b) are the envelopes of real-time signals with the control pulse
applied at τ = 0.5 µs or τ = 1.5 µs [signal in (b) amplified by
100], respectively, with insets showing the oscillations in a few small
time windows. Corresponding to realistic conditions, the parameters
are chosen as τc = 1 µs, ω0 = 10 µeV, T2 ≡ 〈X2(0)〉−1τ−1

c = 0.1 µs,
and � = 10 µeV. The inhomogeneous broadening is artificially set
to zero.
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0.0

0.5

1.0
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χ

−2τ (µ )

2τ (µ )
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(b)

(a)

FIG. 5. (Color online) χ (5) DTS of singly charged QDs, calculated
analytically using Eq. (25) (lines) or numerically (symbols). (a) is the
spin-echo signal at t = 2τ , with the free-induction decay (FID) with-
out the inhomogeneous broadening at t = 2τ plotted for comparison
(dotted line with circle symbols). (b) shows the real-time dependence
of the signal near the echo time for τ = 0.5 µs. The parameters
are the same as in Fig. 4, but the inhomogeneous broadening
σ = 0.1 ns−1.

delay time is shorter than the noise correlation time [Fig. 4(a)],
the coherence is recovered near t = 2τ , the same as in spin
echo for inhomogeneous broadening which can actually be
understood as spectral diffusion with infinite correlation time
[13]. For longer pulse delay times, the recovery is less perfect
and the peak time approaches t = τ + τc ln 2 (as derived in
Ref. [13]), as evidenced in Fig. 4(b).

When the inhomogeneous broadening is included, the sig-
nal for τ � 1/σ is visible only near the echo time 2τ , as shown
in Fig. 5(b). Figure 5(a) plots the echo signal as a function of
the pulse delay time. When τ <∼ τc, the spin coherence lost
by the dynamical fluctuation is partially recovered, and the
echo signal decays slower than the free-induction decay signal
[∝ Re〈eiφ(2τ,0)〉] without the inhomogeneous broadening
(σ = 0).

V. CONCLUSION

We have discovered a striking effect of correlation between
different quantum pathways of spontaneous emission in a
�-type three-level system, namely, the coherent spin control
by SE and its role in all-optical spin echo. It is shown that two
orders of optical field can be replaced by the vacuum field in the
nonlinear optical spectroscopy of spin coherence. The effect,
demonstrated in this paper for spins in quantum dots, should
exist in general two-level systems with splitting comparable to
the rate of emission from an excited state, and may be induced
by other dissipation processes such as phonon emission. It is
conceivable that in more general multilevel systems, (higher
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order) correlations between multiple decay pathways could
lead to a wealth of new physics.
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APPENDIX: PERTURBATIVE SOLUTION
OF MASTER EQUATION

The master equation of the density matrix elements in the
basis of {|t〉,|+〉,|−〉} in Eq. (2) is expanded in powers of the
optical fields as

∂tρ
(2n+1)
t,± = −i (εt ∓ ω/2 − i�/2) ρ

(2n+1)
t,± − iE(t)ρ(2n)

t,t

+ iE(t)ρ(2n)
∓,± + iE(t)ρ(2n)

±,±, (A1a)

∂tρ
(2n)
t,t = −�ρ

(2n)
t,t + 2Im

[
E∗(t)ρ(2n−1)

t,+ + E∗(t)ρ(2n−1)
t,−

]
,

(A1b)

∂tρ
(2n)
±,± = (�/2)ρ(2n)

t,t − 2Im
[
E∗(t)ρ(2n−1)

t,±
]
, (A1c)

∂tρ
(2n)
±,∓ = (�/2) ρ

(2n)
t,t ∓ iωρ

(2n)
±,∓ − T −1

2 ρ
(2n)
±,∓

+ iE∗(t)ρ(2n−1)
t,∓ − iE(t)ρ(2n−1)

±,t , (A1d)

where E(t) ≡ ∑
j Ej (t). In the rotating wave reference frame,

the energy gap εt is set to be zero and the optical frequency �j

are measured from the gap. We assume that the initial density
matrix in the equilibrium state is

ρ(0) = 1
2 |↑〉〈↑| + 1

2 |↓〉〈↓| = 1
2 |+〉〈+| + 1

2 |−〉〈−|; (A2)

i.e., there is no spin coherence. The master equation can be
solved perturbatively in the order of optical fields,

ρ(0) E1−→ ρ(1) E∗
1−→ ρ(2) E2−→ ρ(3) E∗

2−→ ρ(4) E3−→ ρ(5). (A3)

The derivation of the density matrix elements up to the fifth
order is lengthy but straightforward.

We consider an ultrashort optical pulse exciting electrons
from |↑〉 to the trion state |t〉. Such an excitation can be taken
as instantaneous. Right after the pulse excitation, the second-
order density matrix can be formulated in the Lindblad form
as

ρ(0) excitation−→ ρ(2) = −G1

2
[��†ρ(0) + ρ(0)�†� − 2�ρ(0)�†]

= G1

2
|t〉〈t | − G1

2
|↑〉〈↑|

= G1

2
|t〉〈t | − G1

4
(|+〉〈+| + |−〉〈−|

+ |+〉〈−| + |−〉〈+|), (A4)

where the excited trion population G1/2 ∝ E1E
∗
1 . After the

excitation, a portion of population (G1/2) at the |↑〉 state
is moved to the trion state |t〉, and the spin population is

unbalanced in the z axis. Thus off-diagonal coherence in the
x basis is generated.

Now let us consider the SE. The Lindblad form for the SE is
given in Eq. (2). If the SE is much faster than the spin preces-
sion, the trion would return to the spin state |↑〉 immediately
after the excitation. The induced second-order density matrix
(obtained by direct integration of the master equation) is

ρ(2) emission−→ ρ(2)′

= ρ(2) − 1
2 [�†�ρ(2) + ρ(2)�†� − 2�ρ(2)�†]

= 0. (A5)

The spin coherence is canceled. In this extreme case, the
optical process in Eq. (3a) cannot generate spin coherence.

In reality, the spontaneous emission has a finite lifetime
1/�, so the spin population returning to the |↑〉 state at
different times would precess with different phase shifts and
the summation would not cancel the spin coherence generated
by the optical excitation. The spontaneous emission during a
finite time can be described by the quantum jump theory as [8]

ρ(2)′(t) = U(t)[ρ(2)] −
∫ t

0
U(t − t ′)LU(t ′)[ρ(2)]e−�t ′�dt ′,

(A6)

where L[ρ] ≡ �†�ρ(2) + ρ(2)�†� − 2�ρ(2)�† is the Lind-
blad form for the emission and U(t)[ρ] ≡ exp(−iωtSx)ρ
exp(iωtSx) is the spin precession process. The net off-diagonal
spin coherence in the x basis would be reduced and phase
shifted to be

ρ
(2)
+−(t) = G1

2

(
1 − �

� − iω

)
e−iωt−t/T2

∝ E1E
∗
1

ω

ω + i�
e−iωt−t/T2 , (A7)

where we have included the spin decoherence time T2 which
comes from the dynamical fluctuation of ω. Thus spin
coherence is generated through SE in the optical process
illustrated in Eq. (3b).

To realize the spin echo, we wish to transform the off-
diagonal spin coherence ρ

(2)
+− to be ρ

(4)
−+ after a pulse of

quantum control. Let us first consider the excitation. The
leading order effect of the excitation on the spin coherence
is a small removal of the spin population from |↑〉, G2, which
is proportional to the light intensity. By the Lindblad form
for the excitation as in Eq. (A4), the change of the density
matrix is

ρ(4) = G2

(
ρ

(2)
↑↑|t〉〈t |− ρ

(2)
↑↑|↑〉〈↑|− 1

2
ρ

(2)
↑↓|↑〉〈↓|−1

2
ρ

(2)
↓↑|↓〉〈↑|

)
;

(A8)

the off-diagonal term in the x basis is

ρ
(4)
+,− = −G2

2

(
ρ

(2)
↑↑ − 1

2
ρ

(2)
↑↓ + 1

2
ρ

(2)
↓↑

)

= −G2

4

(
ρ

(2)
++ + ρ

(2)
−− + 2ρ

(2)
+−

)
. (A9)

There is no spin-index flip for the off-diagonal term (ρ(2)
−+ →

ρ
(4)
+−). Thus no spin echo could be realized through optical

processes in Eqs. (9a) or (9b).
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The SE brings the trion population to the spin state |↑〉,
which generates the off-diagonal spin coherence in the x

basis. For simplicity, let us first consider instantaneous SE;
the resultant state is

ρ̄(4) = G2ρ
(2)
↑↑|↑〉〈↑|, (A10)

which in the x basis is

ρ̄
(4)
+− = G2

2
ρ

(2)
↑↑ = G2

4

(
ρ

(2)
++ + ρ

(2)
−− + ρ

(2)
+− + ρ

(2)
−+

)
. (A11)

Thus we get a spin-index flipped term, which contributes to
the spin-echo signal. For a finite SE time, the spin coherence
generated by the SE can be derived with the quantum jump
theory as given in Eq. (A7). The contribution to the spin-echo
signal is

ρ̄
(4)
+−(t) = G2

4

�

� − iω
e−iω(t−τ )−(t−τ )/T2ρ

(2)
−+. (A12)

Thus the optical processes in Eq. (10) realize the spin echo.

[1] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-
Photon Interactions (Wiley Interscience, New York, 1992).

[2] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge
University Press, Cambridge, 1997).

[3] R. B. Liu, W. Yao, and L. J. Sham, Adv. Phys. 59, 703 (2010).
[4] M. Orszag, Quantum Optics: Including Noise Reduction,

Trapped Ions, Quantum Trajectories, and Decoherence, 2nd ed.
(Springer, New York, 2007).

[5] H. M. Wiseman and G. J. Milburn, Quantum Measurement and
Control (Cambridge University Press, Cambridge, 2009).

[6] K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys. 70,
1003 (1998).

[7] P. Chen, C. Piermarocchi, L. J. Sham, D. Gammon, and D. G.
Steel, Phys. Rev. B 69, 075320 (2004).

[8] S. E. Economou, R. B. Liu, L. J. Sham, and D. G. Steel, Phys.
Rev. B 71, 195327 (2005).

[9] M. V. Gurudev Dutt et al., Phys. Rev. Lett. 94, 227403
(2005).

[10] E. L. Hahn, Phys. Rev. 80, 580 (1950).
[11] R. B. Liu, S. E. Economou, L. J. Sham, and D. G. Steel, Phys.

Rev. B 75, 085322 (2007).
[12] R. Kubo, in Stochastic Processes in Chemical Physics, edited

by K. Shuler (Interscience, New York, 1969).
[13] R. F. Loring and S. Mukamel, Chem. Phys. Lett. 114, 426

(1985).
[14] S. E. Harris, J. E. Field, and A. Imamoğlu, Phys. Rev. Lett. 64,
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