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Control of spontaneous emission from a microwave-field-coupled three-level �-type atom in
photonic crystals
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The spontaneous emission spectrum of a three-level �-type atom driven by a microwave field was studied. For
the two transitions coupled to the same modified reservoir, we discussed the influence of photonic band gap and
Rabi frequency of the microwave field on the emission spectrum. The emission spectrum is given for different
locations of the upper band-edge frequency. With the transition frequencies moving from outside the band gap
to inside, the number of peaks decreases in the emission spectrum and the multipeak structure of spectral line is
finally replaced by a strong non-Lorentzian shape. With increase of the Rabi frequency of the microwave field, we
find the spectral line changes from a multipeak structure to a two-peak structure, originating from the inhibition
of spontaneous emission for the corresponding decay channel.
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I. INTRODUCTION

Coherent control of spontaneous emission has been an
active area of quantum optics because of its potential ap-
plications in short-wavelength lasers, photonics devices, and
quantum information processing, etc. There are two basic ways
of controlling atomic spontaneous emission. One is placing
the atom in different circumstances such as in free space,
an optical cavity, and in photonic crystals [1,2]. The early
works on spontaneous emission are mainly focused on an
atom embedded in the free space and a cavity. Agarwal [3]
gave a good review of several methods to study spontaneous
emission. The spontaneous emission properties for atomic
systems, including a two-level atom, a three-level atom,
and an atom driven by an external field, were investigated
using quantum statistical theory. The cavity is a typical
non-Markov reservoir in which the atom shows different
decay properties compared with that in free space. Since
the pioneering work of Purcell [4], the inhibition [5] and
enhancement [6] of spontaneous emission and quantum beats
in atomic populations [7] have been studied. The spontaneous
emission properties of lanthanon ions in asymmetric micro-
cavities [8] has also been researched. For atomic transition
near the photonic band edge, the emission dynamics are
modified relative to free space, and the investigation of decay
properties of atoms embedded in photonic crystals has been a
subject of interest. Some novel phenomena and effects were
found, such as oscillatory behavior of the population [9]
and enhanced quantum interference effects [10], etc. Wang
et al. [11] studied the decay kinetic properties of a two-level
atom in photonic crystals based on Green’s function for
evolution operators, and the Rabi oscillation and fractional
trapping behavior in the population of the excited state
were found. John and Quang studied [9] the spontaneous
emission from a three-level �-type atom considering one
transition coupled to a photonic band-gap reservoir and the
other to the free space, in which they found the oscillation
of the upper state population and spectral splitting. In our
previous work [12] we extended John and Quang’s work
and considered the two transitions coupled to the same

modified reservoir. The population evolution and the spon-
taneous emission spectra were obtained for cases where the
transition frequencies are outside and deeply inside of the
band gap.

The other way to control atomic spontaneous emission is
to drive the atom with an external field. Through changing
the Rabi frequency, phase, and detuning of the external field,
effective control of atomic decay properties can be achieved.
Javanainen [13] discussed the influence of spontaneous gen-
eration of coherence on the laser-driven transitions in a
three-level � system. Zhu and Scully [14] investigated the
quenching of spontaneous emission of an open V-type atom.
Later Berman [15] gave an analysis of dynamic suppression
of spontaneous emission for a similar atomic system; he
found that the origin of the suppression of spontaneous
emission proposed by Zhu and Scully can be traced to a
metastable state that is hidden in their calculations. The
phase dependence of the resonance fluorescence spectrum of
a �-type atom [16] is studied and a two-color coherent phase
control scheme is proposed by Paspalakis and Knight [17].
Certain studies have been done on the spontaneous emission
of driven multilevel atoms in photonic crystals [18–21]. In
this paper we study the influence of photonic band gap
and Rabi frequency of the external field on the spontaneous
emission spectrum, considering that the two lower levels
of three-level �-type atoms are coupled by a microwave
field.

II. THEORETICAL MODEL AND EQUATIONS

The atomic model considered here is shown in Fig. 1(a),
where two lower levels |1〉 and |2〉 are coupled by corre-
sponding electric dipoles to a common excited level |3〉. The
frequency spacing between the two lower states (|1〉and |2〉) is
ω21, and the atom is coupled by a microwave field with a carry
frequency ω0 and a Rabi frequency �0. Both |3〉 → |1〉 and
|3〉 → |2〉 transitions are coupled to the photonic band-gap
reservoir. The Hamiltonian in the interaction representation
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FIG. 1. Level scheme of the model atom, where ω0 and �0 denote
the carrier and the complex Rabi frequency of the microwave field,
respectively. (a) Bare-state representation. The two lower states |1〉
and |2〉 are coupled by a microwave field with frequency ω0 and phase
φ0. (b) Dressed-state representation.

takes the form

H = HA + HB(t) (1)

where

HA = −h̄δ0|2〉〈2| + ih̄(�0|2〉〈1| − �∗
0|1〉〈2|) (2)

HB(t) = ih̄
∑

k

g31
k (ak|3〉〈1|e−iδk t − a+

k |1〉〈3|eiδk t )

+ ih̄
∑

k

g32
k (ak|3〉〈2|e− i(δk+ω0)t−a+

k |2〉〈3|e−i(δk+ω0)t ),

(3)

where the detuning δ0 and δk are defined by δ0 = ω0 − ω21

and δk = ωk − ω31, respectively, and a+
k and ak are the

creation and annihilation operators for the kth mode of
the electromagnetic field. gk and g′

k are coupling constants
between the kth mode of the field and the atom, associated with
|3〉 → |1〉 transition and |3〉 → |2〉 transition, respectively.
From dressed-state theory, due to the interaction of the atom
with the microwave field, the levels |1〉 and |2〉 can be

replaced by dressed levels |α〉 and|β〉, respectively. The level
scheme in the dressed-state picture is given in Fig. 1(b).
The dressed states are defined by the eigenvalue equations
HA|α〉 = λα|α〉 and HA|β〉 = λβ |β〉, where λα = −δ0/2 +√

(δ0/2)2 + |�|2and λβ = −δ0/2 −
√

(δ0/2)2 + |�|2 are the
corresponding eigenvalue. The explicit expressions of the
dressed state are

|α〉 = sin θ |1〉 + ieiφ0 cos θ |2〉 (4)

|β〉 = cos θ |1〉 − ieiφ0 sin θ |2〉 (5)

where sin θ = |�0|/
√

λ2
α + |�0|2, cos θ = λα/

√
λ2

β + |�0|2.

We can set the Rabi frequency as �0 = |�0|eiφ0 , where φ0

is the phase of the microwave field. Under the dressed state
the wave function of the system is in the form

|
(t)〉 = c3(t)|3,0〉 +
∑

k

[αk(t)b+
k |α,0〉 + βk(t)b+

k |β,0〉],

(6)

where 〈0| denotes the vacuum state of the electromagnetic
field. From Eqs. (1)–(3) and (6) we can derive the equation of
motion for the expansion amplitudes:

d

dt
C3(t) =

∑
k

{gk[αk(t) sin θ + βk(t) cos θ ]e−iδk t

+ ig′
k[αk(t) cos θ − βk(t) sin θ ]eiφ0e−i(δk+ω0)t }, (7)

d

dt
(eiλαtαk(t)) = C3(t)[−gk sin θei(λα+δk )t

+ ig′
k cos θe−iφ0ei(λα+δk+ω0)t ], (8)

d

dt
(eiλβ tβk(t)) = C3(t)[−gk cos θei(λβ+δk )t

− ig′
k sin θe−iφ0ei(λβ+δk+ω0)t ]. (9)

By substituting Eqs. (8) and (9) into Eq. (7) we can get

d

dt
C3(t) = −

∫ t

0
dt ′C3(t ′) sin2 θ

∑
k

g2
ke

−i(λα+δk )(t−t ′) + i

∫ t

0
dt ′C3(t ′) sin θ cos θe−iφ0eiω0t

′ ∑
k

gkg
′
ke

−i(λα+δk )(t−t ′)

−
∫ t

0
dt ′C3(t ′) cos2 θ

∑
k

g2
ke

−i(λβ+δk )(t−t ′) − i

∫ t

0
dt ′C3(t ′) sin θ cos θe−iφ0eiω0t

′ ∑
k

gkg
′
ke

−i(λβ+δk )(t−t ′)

− i

∫ t

0
dt ′C3(t ′) sin θ cos θeiφ0e−iω0t

′ ∑
k

gkg
′
ke

−i(λα+δk+ω0)(t−t ′) −
∫ t

0
dt ′C3(t ′) cos2 θ

∑
k

g′2
k e−i(λα+δk+ω0)(t−t ′)

+ i

∫ t

0
dt ′C3(t ′) sin θ cos θeiφ0e−iω0t

′ ∑
k

gkg
′
ke

−i(λβ+δk+ω0)(t−t ′) −
∫ t

0
dt ′C3(t ′) sin2 θ

∑
k

g′2
k e−i(λβ+δk+ω0)(t−t ′), (10)

with the initial conditions C3(0) = 1, αk(0) = βk(0) = 1.
In our system, the two transitions from the upper level
to the lower levels were coupled to the same modified
reservoir, and therefore the Weisskopf-Wigner approximation
is not applicable as the density of modes of the photonic
band-gap reservoir vary much more quickly than those in
free space. To solve this problem the memory kernel is
introduced:

kα(t − t ′) =
∑

k

g2
ke

−i(λα+δk)(t−t ′) ≈ g3/2

×
∫

dωρ(ω)e−i(ωk−ω31+λα )(t−t ′), (11a)

kα0(t − t ′) =
∑

k

g′2
k e−i(λα+δk+ω0)(t−t ′) ≈ g3/2

×
∫

dωρ(ω)e−i(ωk−ω32+λα )(t−t ′), (11b)
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FIG. 2. The spontaneous emission spectrum S(ωk) as a function of (ωk − ωe)/g for various positions of the upper band edge with |�0| = 4,
φ0 = 0: (a) δ31 = 8, δ32 = 6; (b) δ31 = 6, δ32 = 4; (c) δ31 = 1, δ32 = −1; and (d) δ31 = −6, δ32 = −8.

kβ(t − t ′) =
∑

k

g2
ke

−i(λβ+δk )(t−t ′) ≈ g3/2

×
∫

dωρ(ω)e−i(ωk−ω31+λβ )(t−t ′), (11c)

kβ0(t − t ′) =
∑

k

g2
ke

−i(λβ+δk+ω0)(t−t ′) ≈ g3/2

×
∫

dωρ(ω)e−i(ωk−ω32+λβ )(t−t ′), (11d)

where g denotes the coupling constants of the atom to the non-
Markovian reservoir and ρ(ω) = �(ω − ωe)/

√
ω − ωe/π is

the density of modes of the photonic band-gap reservoir. To
avoid the singularity of density of modes at the band edge, we
use the modified isotropic model [22,23]

ρ(ω) = 1

π

√
ω − ωe

ε + ω − ωe

�(ω − ωe), (12)

where ωe is the upper band-edge frequency and ε the smooth
factor. Therefore Eq. (10) can be written as

d

dt
C3(t) = −

∫ t

0
dt ′C3(t ′) sin2 θkα(t − t ′) + i

∫ t

0
dt ′C3(t ′) sin θ cos θe−iφ0eiω0t

′
kα(t − t ′) −

∫ t

0
dt ′C3(t ′) cos2 θkβ(t − t ′)

− i

∫ t

0
dt ′C3(t ′) sin θ cos θe−iφ0eiω0t

′
kβ(t − t ′) − i

∫ t

0
dt ′C3(t ′) sin θ cos θeiφ0e−iω0t

′
kα0(t − t ′) (13)

−
∫ t

0
dt ′C3(t ′) cos2 θkα0(t − t ′) + i

∫ t

0
dt ′C3(t ′) sin θ cos θeiφ0e−iω0t

′
kβ0(t − t ′) −

∫ t

0
dt ′C3(t ′) sin2 θkβ0(t − t ′).

Taking the Laplace transform of Eq. (13) yields

sC3(s) − C3(0)

= −kα(s)C3(s) + i sin θ cos θe−iφ0kα(s)C3(s − iω0) − cos2 θkβ(s)C3(s) − i sin θ cos θe−iφ0kβ(s)C3(s − iω0)

− i sin θ cos θeiφ0kα0(s)C3(s + iω0) − cos2 θkα0(s)C3(s) + i sin θ cos θeiφ0kβ0(s)C3(s + iω0) − sin2 θkβ0(s)C3(s), (14)
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FIG. 3. The spontaneous emission spectrum S(ωk) as a function of (ωk − ωe)/g for the various Rabi frequencies of the microwave field
with δ31 = 8, δ32 = 6, φ0 = 0: (a) |�0| = 2, (b) |�0| = 4, (c) |�0| = 6, and (d) |�0| = 8.

where ki(i0)(s) is the Laplace transform of ki(i0)(t − t ′).
Performing the Laplace transform of Eq. (11a) we have

kα(s) = g3/2

i
√

ε + √
is + δ31 − λα

, (15a)

kα0(s) = g3/2

i
√

ε + √
is + δ32 − λα

, (15b)

kβ(s) = g3/2

i
√

ε + √
is + δ31 − λβ

, (15c)

kβ0(s) = g3/2

i
√

ε + √
is + δ32 − λβ

, (15d)

where δ31 = ω31 − ωe, δ32 = ω32 − ωe are detunings of the
two transition frequencies from the band edge. The positive
(negative) δij means the transition frequency ωij is outside
(inside) the band gap. Here we used the iterative method once
in Eq. (14) to obtain

{1 + i sin θ cos θe−iφ0 [kα(s) − kβ(s)]C0
3 (s − iω0).

C3(s) = − i sin θ cos θeiφ0 [kα0(s) − kβ0(s)]C0
3 (s + iω0)}

s + sin2 θ [kα(s) − kβ0(s)] + cos2 θ [kα0(s) − kβ(s)]
,

(16)

with C0
3 (s) = 1

s+sin2 θ[kα(s)−kβ0(s)]+cos2 θ[kα0(s)−kβ (s)] . By using the
Laplace transform and final-value theorem in Eqs. (8) and (9)

we can get the amplitudes for time t sufficiently long:

αk(t → ∞) = −gk sin θC3(−iλα − iδk)

+ ig′
k cos θe−iφ0C3(−iλα − iδk − iω0), (17)

βk(t → ∞) = −gk cos θC3(−iλβ − iδk)

− ig′
k sin θe−iφ0C3(−iλβ − iδk − iω0). (18)

The spontaneous emission spectrum S(ωk)is given by

S(ωk) = ρ(ωk)(|αk(t → ∞)|2 + |βk(t → ∞)|2). (19)

If the transition frequenciesω31and ω32 are coupled to free
space or far from the band edge (δ31 	 0,δ32 	 0), the spectral
lines associated with |αk|2 are replaced by the mirror image
of the spectral lines associated with |βk|2 when the phase of
the microwave field is increased from 0 to π [16]. However,
when the transition frequencies are close to the band edge or
inside the band gap, due to the existence of the photonic band
gap the emission spectrum does not show obvious variation
with the phase of microwave field changes. Meanwhile the
properties of the mirror-originated phase disappear and the
phase just influences the height of spectral lines associated
with |αk|2and|βk|2. Therefore we do not discuss the influence
of phase of the microwave field on spontaneous emission
spectra. Here, we consider only the impact of photonic band
gap and Rabi frequency of the external field on the spontaneous
emission spectrum. The results are illustrated in Figs. 2 and 3,
respectively. For simplicity we set gk = g′

k = g in all the
figures; the other parameters are in units of g(g = 1).
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III. RESULTS AND DISCUSSION

We know that if there is no external field, the spectral line
will show a superposition of two Lorentzian shapes. Due to
the existence of a microwave field, according to dressed state
theory, the levels |1〉 and |2〉 are replaced by two dressed levels
|α〉 and |β〉, which are the linear superpositions of levels |1〉
and |2〉. Therefore, both transitions |3〉 → |α〉 and |3〉 → |β〉
consist of two transitions, respectively. Consequently, the
emission spectrum shows four-peak structure as shown in
Fig. 2(a), in which the left (right) two peaks associate with
|αk|2 (|βk|2) when both transition frequencies are outside the
band gap and far from the band edge (δ31 = 8, δ32 = 6) for a
fixed Rabi frequency. It is seen from Eqs. (17) and (18) that
the spectral structure of |αk|2 consists of two lines centered
near ω32 − ωe − |�0| and ω31 − ωe − |�0|, while that of |βk|2
consists of two lines centered near ω32 − ωe + |�0| and ω31 −
ωe + |�0|, respectively. From δ31 = 8, δ32 = 6 and |�0| = 4,
we get ω32 − ωe − |�0| = 2 > 0, ω31 − ωe − |�0| = 4 > 0,
ω32 − ωe + |�0| = 10 > 0, and ω31 − ωe + |�0| = 12 > 0.
These suggest that all the transition frequencies associated
with |3〉 → |α〉 and |3〉 → |β〉 fall outside the band gap.
Therefore the emission spectrum shows the superposition
of four Lorentzian shapes. As shown in Fig. 2(b), when
both of the transition frequencies move closer to the band
gap (δ31 = 6, δ32 = 4), one transition frequency of |3〉 → |α〉
associated with the spectral line centered near ω32 − ωe − |�0|
falls within the band gap and the corresponding transition is
inhibited initially, and the other three transition frequencies
remain outside the band gap; hence the emission spectrum
shows a three-peak structure. When the transition frequency
ω32 drops into the band gap (δ31 = 1, δ32 = −1), where
ω32 − ωe − |�0| = −5 and ω31 − ωe − |�0| = −3, the two
transition frequencies associated with transition |3〉 → |α〉
fall into the band gap and the corresponding transitions are
forbidden totally. In this case since ω31 − ωe + |�0| = 5 and
ω32 − ωe + |�0| = 3, the transition frequencies associated
with |3〉 → |β〉 are still outside the band gap; hence the
emission spectrum shows a double-peak structure. From
Fig. 2(d) we can see that when both transition frequencies
are deeply inside the band gap (δ31 = −6, δ32 = −8), all the
transitions are suppressed and the emission spectrum shows a
strong non-Lorentzian with a very small amount of radiation.

In Fig. 3 we present the results for the spontaneous emission
spectrum at different Rabi frequencies |�0| of microwave field
and for the case that δ31 = 8, δ32 = 6. If ω32 − ωe + |�0| −
(ω31 − ωe − |�0|) > 0, that is, ω21 < 2|�0|, the two spectral
structures |αk|2 and |βk|2 are without interlacement, located
on the left of ω31 and the right of ω32, respectively. From
Fig. 3 we can see that with increase of Rabi frequency |�0|,

the transition frequencies associated with transition |3〉 → |β〉
are always outside the band gap and hence the right part of
the emission spectrum shows two peaks. For the transition
|3〉 → |α〉 we define two new transition frequencies ω′

32 =
ω32 − |�0| and ω′

31 = ω31 − |�0|. When the Rabi frequency
increases from 2 to 4, although the distances between two pairs
of resonances associated with |αk|2 and |βk|2 become larger,
all the transition frequencies are outside the band gap and the
emission spectrum shows a four-peak structure. As depicted in
Fig. 3(c), when Rabi frequency is increased to |�0| = 6, ω′

32 =
ω32 − |�0| = 0 and ω′

31 = ω31 − |�0| = 2. This implies that
the left peak for |αk|2 is pushed into the band gap. As a result,
the emission spectrum displays triple-peak structure. When the
Rabi frequency is further increased to |�0| = 8, the transition
frequencies ω′

32 = ω32 − |�0| = −2 and ω′
31 = ω31 − |�0| =

0. This means the two transitions associated with |3〉 → |α〉
are both pushed into the band gap. In this case the emission
spectrum shows only two peaks that belong to |βk|2, as given
in Fig. 3(d).

IV. CONCLUSION

In summary, we have studied the control of spontaneous
emission from a three-level �-type atom coupled by a
microwave field in photonic crystals. We can carry out the
control of spontaneous emission by changing the position of
the upper band edge and Rabi frequency of the external field.
When the two transition frequencies are far from the band gap,
the spectral properties are similar to the case in free space. If
one transition is outside the band gap and the other inside,
the emission associated with transition |3〉 → |α〉 will be
inhibited and the emission spectrum shows two-peak structure.
If both the transition frequencies are deep within the band gap,
the spontaneous emission will be inhibited strongly and the
spectral line shows strong non-Lorentzian. With increase of
the Rabi frequency of the microwave field, the corresponding
transition frequency is pushed into the photonic band gap,
which results in a disappearance of the partial spectral line.
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