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Unusual spin Hall effect of a light beam in chiral metamaterials
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We present a solution to the problem of reflection and refraction of a polarized Gaussian beam at the interface
between the transparent medium and the chiral metamaterials. Some unusual spin Hall effects of reflected and
transmitted light have been found. It is shown that the spin-dependent displacements of the reflected beam
centroid can not only reach several tens of wavelengths at certain incident angles; the reversed effect for the
transmitted beams can also be realized by tuning the chiral parameters. These findings provide an alternative
pathway for controlling the spin Hall effects of light and thereby open up the possibility for developing new
nanophotonic devices.
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I. INTRODUCTION

In the past few years there has been a great deal of interest in
studying the spin Hall effect (SHE) owing to its potentialities
in spintronics [1–3]. The SHE is driven by the spin state of
the particles, which can be observed even in the absence of
any scattering impurities when an electric field is applied to
a semiconductor [1–3]. A photonic version of the effect was
recently proposed [4,5] in which the spin photons play the role
of the spin charges and a refractive index gradient plays the
role of the electric potential gradient. Such a spatial gradient
for the refractive index could occur at an interface between
two materials. Thus, the SHE of light should be observed
when a polarized light beam passes through the interface [4–8].
More recently, such an effect has been detected in experiments
[9,10]. Furthermore, the SHE of light has also been found
in other systems [11–18]. However, all these investigations
focused on conventional media and the shift is generally less
than one wavelength.

On the other hand, left-handed materials (LHMs) have
attracted a great deal of attention from both theoretical and
experimental sides [19–22]. These materials are characterized
by simultaneous negative permittivity and permeability, which
possess a number of unusual electromagnetic effects including
negative refraction, inverse Snell’s law, reversed Doppler
shift, and reversed Cerenkov radiation [23]. These anomalous
features allow considerable control over light propagation and
open the door for new approaches to a variety of applications.
However, recent studies show that the SHE of light in the
LHMs is unreversed, although the sign of the refractive
index gradient is reversed [24,25]. In fact, a negative index
can be achieved alternatively through a chiral route [26–30].
The investigation of chiral metamaterials has also attracted
much attention [26–31]. Although the reflection and refraction
properties of the plane electromagnetic wave in the chiral
negative refraction medium have been studied and the Goos-
Hänchen shift has been analyzed [31–34], the SHE of light by
the chiral metamaterials has not been discussed so far.

In this work, we provide an analytical solution for the
reflection and refraction of a polarized Gaussian beam at
the interface between the transparent medium and the chiral
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metamaterials, with attention mainly focused on the SHE of
light. We find that the SHE of light in the chiral metamaterials
can not only reach several tens of wavelength for the reflected
beam centroid at certain incident angles by tuning the chiral
parameters; the reversed effect for the transmitted beam can
also be realized. The rest of the paper is organized as follows.
In Sec. III we present the theory and formula for the problem.
The numerical results and discussions are described in Sec. III.
A conclusion is given in Sec. IV.

II. THEORY AND FORMULA

We assume that an arbitrarily polarized beam propagating
in a homogeneous isotropic dielectric medium is incident at
an angle θi upon the surface of a chiral medium as shown
in Fig. 1. The constitutive relations of the chiral medium are
defined by [31]

�D = ε �E + i
κ

c
�H, (1)

�B = µ �H − i
κ

c
�E, (2)

where κ is the chirality parameter and c is the optical
velocity in vacuum; ε and µ are the relative permittivity and
permeability of the chiral medium, respectively. Inside the
chiral medium the beam splits into two transmitted waves:
a right-handed circularly polarized (RCP) wave with phase
velocity ω/k1 and a left-handed circularly polarized (LCP)
wave with phase velocity ω/k2, where the wave numbers are
given by k1,2 = k0n1,2 = k0(

√
εµ ± κ). Here n1 = √

εµ + κ

(n2 = √
εµ − κ) is defined as the index of the RCP(LCP)

waves; k0 = ω/c denotes the wave number in the vacuum.
The z axis of the laboratory Cartesian frame (x,y,z) is normal
to the interface of the chiral medium located at z = 0. We use
the coordinate frames (xα, yα, zα) for individual beams, where
α = i, r, 1, 2 denotes incident, reflected, and two transmitted
beams, respectively. In paraxial optics, the incident field of an
arbitrarily polarized beam can be written as [5,7,24],

�Ei(xi,yi,zi) = (Eixêix + Eiyêiy) exp

[
−k0

2

x2
i + y2

i

ZR + izr

]
. (3)

053820-11050-2947/2011/83(5)/053820(9) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.053820


HAILEI WANG AND XIANGDONG ZHANG PHYSICAL REVIEW A 83, 053820 (2011)

y

x
1

z
1

x
2

z
2

y

z
rx

r

1

i

2Dielectric media

Chiral medium

z

x

y

x
i

z
i

y

Gaussian Beam

y
r

FIG. 1. (Color online) Geometry of the beam reflection and
transmission from an air-chiral medium interface. The subscripts i and
r represent the incident and reflection beams, respectively, whereas 1
and 2 correspond to transmitted RCP and LCP waves.

Here ZR = k0w
2
0/2 is the Rayleigh length; w0 is the

minimum waist which characterizes the Gaussian amplitude.
The complex-valued vectors Eix and Eiy determine the
polarization of the incident beam, which satisfies the relation
σ = i(EixE

∗
iy − E∗

ixEiy). The polarization operator σ = ±1
corresponds to the LCP and the RCP lights, respectively.
The reflected field can be solved by employing Fourier
transformations. The complex amplitude can be conveniently
expressed as

�Er (xr,yr ,zr ) =
∫

dkrxdkryẼr (krx,kry)

× exp[i(krxxr + kryyr + krzzr )], (4)

where krx = −kix and krz = kiy are the components of the
wave vector (kr ) of the reflection beam. By using the boundary
conditions at the interface in the paraxial approximation
[krz � kr − (k2

rx + k2
ry)/2kr ], the reflected angular spectrum

Ẽr (krx,kry) which is related to the boundary distribution of the
electric field can be expressed as

Ẽr (krx,kry) =
⎛
⎝r11 + kry

k0
(r21 − r12) cot θi r12 + kry

k0
(r11 + r22) cot θi

r21 − kry

k0
(r11 + r22) cot θi r22 + kry

k0
(r21 − r12) cot θi

⎞
⎠ (

Eix

Eiy

)
exp

[
−ZR

(
k2
rx + k2

ry

)
2k0

]
. (5)

Here r11, r12, r21, and r22 are the reflection coefficients which are given in Appendix A. Inserting Eq. (5) into Eq. (4), the reflected
field at zr > 0 can be expressed as

�Er (xr,yr ) =
[
r11

(
1 − i

xr

ZR + izr

∂

∂θi

ln r11

)
Eix + r12

(
1 − i

xr

ZR + izr

∂

∂θi

ln r12

)
Eiy + i

yr

ZR + izr

(r21 − r12)Eix cot θi

+ i
yr

ZR + izr

(r11 + r22)Eiy cot θi

]
exp

[
−k0

(
x2

r + y2
r

)
2(ZR + izr )

]
êrx +

[
r21

(
1 − i

xr

ZR + izr

∂

∂θi

ln r21

)
Eix

+ r22

(
1 − i

xr

ZR + izr

∂

∂θi

ln r22

)
Eiy − i

yr

ZR + izr

(r11 + r22)Eix cot θi + i
yr

ZR + izr

(r21 − r12)Eiy cot θi

]

× exp

[
−k0

(
x2

r + y2
r

)
2(ZR + izr )

]
êry . (6)

Similarly, the transmitted field is expressed as

�Ea(xa,ya,za) =
∫

dkaxdkayẼa(kax,kay) exp[i(kaxxa + kayya + kazza)], (7)

where a = 1,2 represents the RCP and the LCP transmitted fields, respectively. With kaz � ka − (k2
ax + k2

ay)/2ka and the boundary
distribution of the electric field, the transmitted angular spectrum can be expressed as

Ẽa(kax,kay) =
⎛
⎝ta11 − kay

k0

(
ta12 + ηat

a
21

)
cot θi ta12 + kay

k0

(
ta11 − ηat

a
22

)
cot θi

ta21 + kay

k0

(
ηat

a
11 − ta22

)
cot θi ta22 + kay

k0

(
ηat

a
12 + ta21

)
cot θi

⎞
⎠ (

Eix

Eiy

)
exp

[
−Zaxk

2
ax + Zayk

2
ay

2nak0

]
, (8)

where ta11, ta12, ta21, and ta22 are the corresponding transmission coefficients of the RCP and LCP waves which are given in
Appendix A. Here ηa = cos θa/cos θi ; θa is the refraction angle. From Snell’s law under the paraxial approximation, kax = kix/ηa

and kay = kiy , and Zax = naη
2
ak0w

2
0/2 and Zay = nak0w

2
0/2. Substituting Eq. (8) into Eq. (7), we obtain the transmitted field in
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the space za > 0,

�Ea(xa,ya) =
[
ta11

(
1 + i

naηaxa

Zax + iza

∂

∂θi

ln ta11

)
Eix + ta12

(
1 + i

naηaxa

Zax + iza

∂

∂θi

ln ta12

)
Eiy − i

naya

Zay + iza

(
ta12 + ηat

a
21

)

×Eix cot θi + i
naya

Zay + iza

(
ta11 − ηat

a
22

)
Eiy cot θi

]
exp

[
−nak0

2

(
x2

a

Zax + iza

+ y2
a

Zay + iza

)]
êax

+
[
ta21

(
1 + i

naηaxa

Zax + iza

∂

∂θi

ln ta21

)
Eix + ta22

(
1 + i

naηaxa

Zax + iza

∂

∂θi

ln ta22

)
Eiy + i

naya

Zay + iza

(
ηat

a
11 − ta22

)
Eix cot θi

+ i
naya

Zay + iza

(
ta21 + ηat

a
12

)
Eiy cot θi

]
exp

[
−nak0

2

(
x2

a

Zax + iza

+ y2
a

Zay + iza

)]
êay . (9)

After the electric fields of the reflected and two transmitted
beams are obtained, the time-averaged linear momentum
density associated with the electromagnetic field can be shown
to be �pα ∝ Re( �E∗

α × �Hα). �Hα represents the magnetic field
in the dielectric and chiral media, which is given by �Hr =
−i(µω)−1∇ × �Er and �Ha = −i(µω)−1(∇ × �Ea − κk0 �Ea).
Then, the intensity distribution of the electromagnetic field,
I ∝ �pα · êαz, can be obtained. At any given plane zα = const,
the beam centroid is expressed as

〈xα〉 =
∫ ∫

xαI (xα,yα,zα)dxαdyα∫ ∫
I (xα,yα,zα)dxαdyα

(10)

〈yα〉 =
∫ ∫

yαI (xα,yα,zα)dxαdyα∫ ∫
I (xα,yα,zα)dxαdyα

.

Substituting Eq. (6) into Eq. (10), we can obtain the
longitudinal and the transverse shifts of the centroid of the
reflected beam in the following:

Drx = 	rx

k0τ
+ zr

ZR

δrx

k0τ
, (11)

Dry = 	ry

k0τ
+ zr

ZR

δry

k0τ
. (12)

Both Eqs. (11) and (12) can be written as a combination of
zr -dependent terms (	rx/k0τ or 	ry/k0τ ) and zr -independent
terms [zrδrx/(ZRk0τ ) or zrδry/(ZRk0τ )]. For a well-collimated
beam, the condition zr/ZR � 1 is trivially satisfied and the zr -
independent terms are dominant, while for a focused beam the
condition zr/ZR 	 1 may hold and the zr -independent terms
become relevant. The analytical expressions for 	rx , δrx , 	ry ,
δry , and τ are given in Appendix B. These expressions include
the coefficients fp and fs , which satisfy the relations Eix =
fp ∈ R and Eiy = fs exp(iψ), respectively. Here ψ denotes
the phase difference for two polarized fields. Similarly, the
corresponding shifts for the RCP and LCP transmitted beams
are given as

Dax = ηa	ax

k0τa

+ za

ZRx

ηaδax

k0τa

, (13)

Day = ηa	ay

k0τa

+ za

ZRy

ηaδay

k0τa

. (14)

The longitudinal and transverse shifts for the transmitted
beams can also be separated into two terms: a za-dependent
term and za-independent term. The analytical expressions for
	ax , δax , 	ay , δay , and τa are also given in Appendix B.
Based on Eqs. (11)–(14), the longitudinal and the transverse
shifts of the reflected and transmitted beams can be obtained
exactly.

III. NUMERICAL RESULTS AND DISCUSSION

We first consider the SHE of the reflected beam at an
air-chiral medium interface for a circularly polarized incident
Gaussian beam. The calculated results for the transverse spatial
shifts of the reflected beam (Dry/λ) as a function of the incident
angle are plotted in Fig. 2. Figures 2(a)–2(d), corresponding
to the cases with κ = 0, 0.5, 1.0, and 1.4, respectively. The
other parameters are taken as ε = 2.0, µ = 1, ψ = −π/2,
and fs = fp = 1. As κ = 0, our results are agreement with
the previous investigations [5,9,24], the shift is generally less
than one wavelength. However, with the increase of κ , the
SHE can be greatly tuned. At certain incident angles, large
SHE can be found. For example, Dry/λ is 0.67 at κ = 1.0 and
θi = 24.5◦, while it reaches 21.4 at κ = 1.4 and θi = 0.8◦. The
physical origin of these phenomena can be understood with the
angular-momentum conservation law. The z component of the
total angular momentum per one photon can be represented
as the sum of the extrinsic orbital angular momentum and
intrinsic spin angular momentum:

jrz = −	rykr sin θr + σr cos θr , (15)

j1z = −	1yk1 sin θ1 + σ1 cos θ1, (16)

j2z = −	2yk2 sin θ2 + σ2 cos θ2, (17)

where σr , σ1, and σ2 are the polarization degrees of the reflected
and two transmitted beams, which are described by

σr = 2fpfs[|r21||r12| sin(φ21 − φ12 − ψ) + |r11||r22| sin(φ22 − φ11 + ψ)]

f 2
s (|r22|2 + |r12|2) + f 2

p (|r11|2 + |r21|2)
, (18)

σ1 = −1 and σ2 = 1. (19)

053820-3



HAILEI WANG AND XIANGDONG ZHANG PHYSICAL REVIEW A 83, 053820 (2011)

0 30 60 90
0.00

0.03

0.06

0.09

0.12

D
ry

/

(a)

0 30 60 90
0.0

0.1

0.2

D
ry

/

(b)

0 30 60 90
0.0

0.2

0.4

0.6

0.8

D
ry

/

i
(deg)

i
(deg)

i
(deg)

i
(deg)

(c)

0 3 6 9
0

6

12

18

24

D
ry

/
(d)

FIG. 2. Normalized transverse spatial shifts of the reflection beam
(Dry/λ) as a function of the incident angle for a circularly polarized
incident Gaussian beam. (a), (b), (c), and (d) correspond to the cases
with κ =0, 0.5, 1.0, and 1.4, respectively. The other parameters are
taken as ε = 2.0, µ = 1, ψ = −π/2, and fs = fp = 1.

The transverse shifts of the wave packet fulfill the conser-
vation law for the total angular momentum:

Qrjrz + Q1j1z + Q2j2z = jiz. (20)

Here Qr = f 2
s (|r22|2 + |r12|2) + f 2

p (|r11|2 + |r21|2), Q1 =
n1η1[f 2

p (|t1
11|2 + |t1

21|2) + f 2
s (|t1

12|2 + |t1
22|2)], and Q2 =

n2η2[f 2
p (|t2

11|2 + |t2
21|2) + f 2

s (|t2
12|2 + |t2

22|2)] are the energy
reflection and transmission coefficients for the RCP and the
LCP waves, respectively; jiz = σ cos θi . As κ = 0, Eq. (20)
reduces to the form in Refs. [5,24]:

Qrjrz + Qtjtz = jiz, (21)

with jrz = jo
rz + j s

rz and jtz = jo
tz + j s

tz. In such a case, the
transmitted beam is not split into the RCP and the LCP waves.
Thus, the subscripts 1 and 2 in Eq. (20) are replaced by
t. Here jo

rz = −	rykr sin θr and jo
tz = −	tykt sin θt are the

orbital angular momentums for the reflected and transmitted
beams, respectively; j s

rz = σr cos θr and j s
tz = σt cos θt are

the corresponding spin angular momentums. The analytical
expressions for σr , σt , Qr , and Qt in Eq. (21) are given in
Ref. [24].

In order to reveal the physics underlying the maximums
of transverse spatial shifts at certain incident angles, we plot
angular momentums as a function of the incident angle in
Fig. 3. Here κ = 0 is taken, which corresponds to the case
in Fig. 2(a). The solid line, dashed line, and dotted line
represent the total angular momentums for incident, reflected,
and transmitted beams, respectively. As can be seen, they
satisfy the conservation law for the total angular momentum
very well. At θi = 45◦, a sharp transition appears for the total
angular momentums of reflected and transmitted beams due to
the total reflection. As θi > 45◦, the total angular momentum
of the transmitted beam vanishes. To ensure the conservation
of total angular momentum, the total angular momentum of
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FIG. 3. The angular momentums as a function of the incident
angle. (a) The total angular momentums for incident, reflected, and
transmitted beams. (b) The spin angular momentum, orbital angular
momentum, and total angular momentum for the reflected beam. The
parameters are taken identical to those in Fig 2(a).

the reflected beam is equal to the incident one. It consists of the
spin angular momentum and the orbital angular momentum.
At the critical angle (θi = 45◦) of the total reflection, the
spin angular momentum of the reflected beam reaches the
positive maximum, which leads to the negative maximum of
the orbital angular momentum (or the transverse spatial shift).
Such a phenomenon is shown clearly in Fig. 3(b). For the
cases of κ �= 0 [Figs. 2(b), 2(c), and 2(d)], the phenomena
can be understood in the same way. That is to say, tuning the
chirality parameter can cause the change of the total and the
spin angular momentums, which results in the large transverse
spatial shift of the reflected beam.

Figure 4 shows normalized transverse spatial shifts of
the reflection beams (Dry/λ) as a function of the chirality
parameter κ for the circularly polarized incident Gaussian
beam. The solid line, dashed line, and dotted line correspond
to the cases with the incident angle θi = π/12, π/6, and π/3
respectively. Recent investigations show that an important
feature of the chiral metamaterials is that the negative index
can be realized by tuning the chiral parameters. For example,
as κ > 1.414, it is the negative refraction region for the present
chiral medium, whereas κ < 1.414 corresponds to the positive
refraction region. From Fig. 4, we see that the SHE in the two
regions is symmetrical; the transverse shifts caused by the
SHE in the negative refraction region are unreversed, although
the sign of the refractive index gradient is reversed. Such a
phenomenon is similar to the case in the conventional LHMs,
which has been analyzed in Refs. [24,25].

In general, there is no transverse spatial shift when the
polarized Gaussian beam with fs = 0 or fp = 0 is incident
on the interface between two transparent media. However, for
the chiral metamaterials, it is not real. Figure 5(a) displays
normalized transverse spatial shifts of the reflection beam
(Dry/λ) as a function of the incident angle for the polarized
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FIG. 4. Normalized transverse spatial shifts of the reflection beam
(Dry/λ) as a function of the chirality parameter for a circularly
polarized incident Gaussian beam. The other parameters are taken
as ε = 2, µ = 1, ψ = −π/2, and fs = fp = 1. Solid, dashed, and
dotted lines correspond to the incident angle θi = π/12, π/6, and π/3
respectively.

incident Gaussian beam with fs = 0. The solid line, dashed
line, and dotted line correspond to the cases with κ = 0.01,

0.05, and 0.1, respectively. It is seen clearly that the resonant
transverse spatial shift appears around the incident angle
θi = 54.8◦. This corresponds to the resonant transmission at
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FIG. 5. (a) Normalized transverse spatial shifts of the reflection
beam (Dry/λ) as a function of the incident angle for a linearly
polarized incident Gaussian beam. Solid, dashed, and dotted lines
correspond to the cases with κ = 0.01 0.05, and 0.1, respectively.
(b) The corresponding reflection matrix elements |r22| (solid line)
and |r12| (dashed line). (c) Normalized transverse spatial shifts of the
reflection beam (Dry) as a function of the chirality parameter for a
linearly polarized incident Gaussian beam at θi = 54.8◦. The other
parameters are taken as ε = 2, µ = 1, fp = 1, and fs = 0.

the interface of the chiral medium. Figure 5(b) shows the
reflection matrix elements |r22| (solid line) and |r12| (dashed
line) as a function of the incident angle. Comparing Fig. 5(a)
with Fig. 5(b), we find that the maximum of the transverse
spatial shift of the reflected beam corresponds to the minimum
of the reflection matrix elements |r22|. Such a phenomenon can
also be tuned by the chiral parameter as shown in Fig. 5(c),
which results in the appearance of large SHE at certain incident
angles. For example, the transverse spatial shift can reach
59.2λ at θi = 54.8◦ and κ = 0.01.

The above discussions focused on the SHE of the reflected
beam. We now turn to the case of the transmitted beam.
The previous investigations have shown that the LCP beam
undergoes a negative (positive) transverse shift, while the
RCP beam exhibits a positive (negative) transverse shift in
the case of the beam incident from air to the conventional
medium [9,24]. The shifts for two kinds of polarized beams
are symmetrical. However, with the introduction of the chiral
parameters, the situation becomes different. Figures 6(a)–6(d)
show transverse spatial shifts of the transmitted beam (Dty/λ)
as a function of the incident angle for the cases with κ = 0,
0.2, 0.4, and 0.6, respectively. The solid line and dashed
line correspond to the RCP and the LCP transmitted waves,
respectively. As can be seen, with the increase of κ , the shifts
for two kinds of polarized beams become asymmetrical. As
κ = 0.414, the transition from negative shift to positive shift
for the LCP transmitted waves occurs.

Such a transition is not related to the negative index.
Figure 7(a) shows transverse spatial shifts of the RCP (solid
line) and the LCP (dashed line) transmitted beams (Dty/λ) as
a function of the chiral parameter for the elliptical polarized
incident Gaussian beam. The symmetric properties in two
regions are observed again. At the same time, the resonant
phenomenon of the transverse spatial shift for the RCP
transmitted beam (the total reflection appears for the LCP
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FIG. 6. Normalized transverse spatial shifts of the transmission
beam (Dty/λ) as a function of the incident angle for an elliptical
polarized incident Gaussian beam. (a), (b), (c), and (d) correspond to
the cases with κ = 0, 0.2, 0.4, and 0.6, respectively. Solid line and
dashed line correspond to the RCP and the LCP transmission waves,
respectively. The other parameters are taken as ε = 2, µ = 1, ψ = 0,
and fs = fp = 1.
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sion beam (Dty/λ) as a function of the chirality parameter for a
linearly polarized incident Gaussian beam. Solid line and dashed
line correspond to the RCP and the LCP transmission waves,
respectively. (b) The corresponding amplitude of the transmission
electric field with RCP light. The other parameters are taken as
ε = 2, µ = 1, ψ = −π/3, θi = π/6, and fs = fp = 1.

transmitted beam in some regions) has also been observed.
At the resonant points, the transverse spatial shifts by the
SHE reach maximum, which correspond to the resonant peaks
of the transmission electric field of the RCP light as shown
in Fig. 7(b). This means that the resonant transmission of
the wave at the interface not only causes large SHE for the
reflected beam; it also leads to large SHE for the transmitted
beam. The physical origin is similar for both cases, which
can be understood very well given the angular-momentum
conservation law.

IV. CONCLUSION

In summary, we have presented an analytical solution to the
problem of reflection and refraction of the polarized Gaussian

beam at the interface between the transparent medium and
the chiral metamaterials. We have paid special attention to the
transverse shifts of the centers of the reflected and refracted
beams. It has been shown that the spin-dependent displace-
ments of the reflected beam centroid can reach several tens
of wavelengths at certain incident angles for both circularly
and linearly polarized incident Gaussian beams. The reversed
effect for the transmitted beam can also be observed by tuning
the chiral parameters. With the development of recent technol-
ogy, the chiral metamaterials can be fabricated successfully
[30,31,33]. Thus, our findings provide an alternative pathway
for controlling the SHE of light and open up the possibility for
developing new nanophotonic devices.
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APPENDIX A

In this appendix we give the concrete expressions of
the reflection and transmission coefficients at the interface
between the transparent medium and the chiral metamaterials.
If we define Eix and Eiy as the amplitudes of the incident TM
and TE waves, Erx and Ery as the corresponding values of
the reflection wave, and E1 and E2 as the amplitudes of the
transmitted RCP and LCP waves, the relations among them can
be obtained by using the Maxwell equation and the boundary
conditions: (

Erx

Ery

)
=

(
r11 r12

r21 r22

)(
Eix

Eiy

)
(A1)

and (
E1

E2

)
=

(
t1
11 t1

12

t2
11 t2

12

) (
Eix

Eiy

)
, (A2)

where the reflection and transmission coefficients r11, r12, r21,
r22, ta11, ta12, ta21, and ta22 are expressed as

r11 = −cos θi(1 − g2)(cos θ1 + cos θ2) − 2g(cos2 θi − cos θ1 cos θ2)

cos θi(1 + g2)(cos θ1 + cos θ2) + 2g(cos2 θi + cos θ1 cos θ2)
, (A3)

r12 = 2ig cos θi(cos θ1 − cos θ2)

cos θi(1 + g2)(cos θ1 + cos θ2) + 2g(cos2 θi + cos θ1 cos θ2)
, (A4)

r21 = −2ig cos θi(cos θ1 − cos θ2)

cos θi(1 + g2)(cos θ1 + cos θ2) + 2g(cos2 θi + cos θ1 cos θ2)
, (A5)

r22 = cos θi(1 − g2)(cos θ1 + cos θ2) + 2g(cos2 θi − cos θ1 cos θ2)

cos θi(1 + g2)(cos θ1 + cos θ2) + 2g(cos2 θi + cos θ1 cos θ2)
, (A6)

t1
11 = 2 cos θi(cos θi + g cos θ2)

cos θi(1 + g2)(cos θ1 + cos θ2) + 2g(cos2 θi + cos θ1 cos θ2)
, (A7)

t1
12 = −2i cos θi(g cos θi + cos θ2)

cos θi(1 + g2)(cos θ1 + cos θ2) + 2g(cos2 θi + cos θ1 cos θ2)
, (A8)

t1
21 = χ1

2 cos θi(cos θi + g cos θ2)

cos θi(1 + g2)(cos θ1 + cos θ2) + 2g(cos2 θi + cos θ1 cos θ2)
, (A9)
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t1
22 = χ1

−2i cos θi(g cos θi + cos θ2)

cos θi(1 + g2)(cos θ1 + cos θ2) + 2g(cos2 θi + cos θ1 cos θ2)
, (A10)

t2
11 = 2 cos θi(cos θi + g cos θ1)

cos θi(1 + g2)(cos θ1 + cos θ2) + 2g(cos2 θi + cos θ1 cos θ2)
, (A11)

t2
12 = 2i cos θi(g cos θi + cos θ1)

cos θi(1 + g2)(cos θ1 + cos θ2) + 2g(cos2 θi + cos θ1 cos θ2)
, (A12)

t2
21 = χ2

2 cos θi(cos θi + g cos θ1)

cos θi(1 + g2)(cos θ1 + cos θ2) + 2g(cos2 θi + cos θ1 cos θ2)
, (A13)

t2
22 = χ2

2i cos θi(g cos θi + cos θ1)

cos θi(1 + g2)(cos θ1 + cos θ2) + 2g(cos2 θi + cos θ1 cos θ2)
. (A14)

Here g =
√

ε
µ

, χ12 = ±i, and θ12 correspond to the refrac-

tion angle of the RCP and the LCP waves in the chiral medium.

APPENDIX B

In this appendix we give the concrete expressions for 	rx ,
δrx , 	ry , δry , τ , 	ax , δax , 	ay , δay , and τain Eqs. (11)–(14):

	rx = f 2
s (|r22|2ξ22 + |r12|2ξ12) + f 2

p (|r11|2ξ11 + |r21|2ξ21)

+ fpfs[|r22||r21|(ξ22 + ξ21) cos(φ22 − φ21 + ψ)

+ |r11||r12|(ξ11 + ξ12) cos(φ12 − φ11 + ψ)

+ |r11||r12|(ρ12 − ρ11) sin(φ12 − φ11 + ψ)

+ |r22||r21|(ρ21 − ρ22) sin(φ21 − φ22 − ψ)], (B1)

δrx = −f 2
s (|r22|2ρ22 + |r12|2ρ12) − f 2

p (|r11|2ρ11 + |r21|2ρ21)

+ fpfs[−|r22||r21|(ρ22 + ρ21) cos(φ22 − φ21 + ψ)

− |r11||r12|(ρ11 + ρ12) cos(φ12 − φ11 + ψ)

+|r11||r12|(ξ12 − ξ11) sin(φ12 − φ11 + ψ)

+ |r21||r22|(ξ21 − ξ22) sin(φ21 − φ22 − ψ)], (B2)

	ry = − cot θi

[(
f 2

p + f 2
s

)|r22||r21| sin(φ21 − φ22)

+ 2f 2
s |r22||r12| sin(φ22 − φ12)

+ f 2
p |r21||r11| sin(φ21 − φ11)

+ (
f 2

p + f 2
s

)|r12||r11| sin(φ11 − φ12)

+2fpfs |r21||r12| sin(φ21 − φ12 − ψ)

+ 2fpfs |r11||r22| sin(φ22 − φ11 + ψ)

+fpfs(|r11|2 + |r12|2 + |r21|2 + |r22|2) sin ψ
]
, (B3)

δry = − cot θi

{(
f 2

p − f 2
s

)
[(|r11||r12| cos(φ12 − φ11)

+ |r21||r22| cos(φ21 − φ22))]

+ fpfs(|r22|2 − |r21|2 + |r12|2 − |r11|2) cos ψ
}
, (B4)

τ = f 2
s (|r22|2 + |r12|2) + f 2

p (|r11|2 + |r21|2)

+2fpfs{|r22||r21| cos(φ22 − φ21 + ψ)

+|r11||r12| cos(φ12 − φ11 + ψ)}, (B5)

where raa′ = |raa′ | exp(iφaa′), ρaa′ = Re[∂ ln raa′/∂θi], ξaa′ =
Im[∂ ln raa′/∂θi], and a′ = 1,2. For the RCP and LCP trans-
mitted waves,

	ax = na

[
f 2

p

(
ξa

11

∣∣ta11

∣∣2 + ξa
21

∣∣ta21

∣∣2) + f 2
s

(
ξa

12

∣∣ta12

∣∣2 + ξa
22

∣∣ta22

∣∣2)]
+ f 2

p

(
ρa

21 − ρa
11

)∣∣ta11

∣∣∣∣ta21

∣∣κ cos
(
φa

11 − φa
21

) + f 2
s

(
ρa

22 − ρa
12

)∣∣ta12

∣∣∣∣ta22

∣∣κ cos
(
φa

12 − φa
22

)
+ f 2

p

(
ξa

11 + ξa
21

)∣∣ta11

∣∣∣∣ta21

∣∣κ sin
(
φa

11 − φa
21

) + f 2
s

(
ξa

12 + ξa
22

)∣∣ta12

∣∣∣∣ta22

∣∣κ sin
(
φa

12 − φa
22

)
+ fpfsna

∣∣ta11

∣∣∣∣ta12

∣∣ cos
(
φa

11 − φa
12 − ψ

)(
ξa

11 + ξa
12

) + fpfsκ
∣∣ta11

∣∣∣∣ta22

∣∣ cos
(
φa

11 − φa
22 − ψ

)(
ρa

22 − ρa
11

)
+ fpfsna

∣∣ta21

∣∣∣∣ta22

∣∣ cos
(
φa

21 − φa
22 − ψ

)(
ξa

21 + ξa
22

) + fpfsκ
∣∣ta12

∣∣∣∣ta21

∣∣ cos
(
φa

12 − φa
21 − ψ

)(
ρa

21 − ρa
12

)
+ fpfsna

∣∣ta11

∣∣∣∣ta12

∣∣ sin
(
φa

11 − φa
12 − ψ

)(
ρa

11 − ρa
12

) + fpfsna

∣∣ta11

∣∣∣∣ta22

∣∣ sin
(
φa

11 − φa
22 − ψ

)(
ξa

11 + ξa
22

)
+ fpfsna

∣∣ta21

∣∣∣∣ta22

∣∣ sin
(
φa

21 − φa
22 − ψ

)(
ρa

21 − ρa
22

) + fpfsna

∣∣ta12

∣∣∣∣ta21

∣∣ sin
(
φa

12 − φa
21 − ψ

)(
ξa

12 + ξa
21

)
, (B6)

δax = na

[
f 2

p

(
ρa

11

∣∣ta11

∣∣2 + ρa
21

∣∣ta21

∣∣2) + f 2
s

(
ρa

12

∣∣ta12

∣∣2 + ρa
22

∣∣ta22

∣∣2)] + f 2
p

(
ξa

11 − ξa
21

)∣∣ta11

∣∣∣∣ta21

∣∣κ cos
(
φa

11 − φa
21

)
+ f 2

s

(
ξa

12 − ξa
22

)∣∣ta12

∣∣∣∣ta22

∣∣κ cos
(
φa

12 − φa
22

) + f 2
p

(
ρa

11 + ρa
21

)∣∣ta11

∣∣∣∣ta21

∣∣κ sin
(
φa

11 − φa
21

)
+ f 2

s

(
ρa

12 + ρa
22

)∣∣ta12

∣∣∣∣ta22

∣∣κ sin
(
φa

12 − φa
22

) + fpfsna

∣∣ta11

∣∣∣∣ta12

∣∣ cos
(
φa

11 − φa
12 − ψ

)(
ρa

11 + ρa
12

)
+ fpfsκ

∣∣ta11

∣∣∣∣ta22

∣∣ cos
(
φa

11 − φa
22 − ψ

)(
ξa

11 − ξa
22

) + fpfsna

∣∣ta21

∣∣∣∣ta22

∣∣ cos
(
φa

21 − φa
22 − ψ

)(
ρa

21 + ρa
22

)
+ fpfsκ

∣∣ta12

∣∣∣∣ta21

∣∣ cos
(
φa

12 − φa
21 − ψ

)(
ξa

12 − ξa
21

) + fpfsna

∣∣ta11

∣∣∣∣ta12

∣∣ sin
(
φa

11 − φa
12 − ψ

)(
ξa

12 − ξa
11

)
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+ fpfsna

∣∣ta11

∣∣∣∣ta22

∣∣ sin
(
φa

11 − φa
22 − ψ

)(
ρa

11 + ρa
22

) + fpfsna

∣∣ta21

∣∣∣∣ta22

∣∣ sin
(
φa

21 − φa
22 − ψ

)(
ξa

22 − ξa
21

)
+ fpfsna

∣∣ta12

∣∣∣∣ta21

∣∣ sin
(
φa

12 − φa
21 − ψ

)(
ρa

12 + ρa
21

)
, (B7)

	ay = − cot θi

([−f 2
p

(∣∣ta11

∣∣2 + ∣∣ta21

∣∣2) − f 2
s

(∣∣ta12

∣∣2 + ∣∣ta22

∣∣2)]
ηaκ + κ

(
f 2

p + f 2
s

)[∣∣ta11

∣∣∣∣ta22

∣∣ cos
(
φa

11 − φa
22

)
− ∣∣ta12

∣∣∣∣ta21

∣∣ cos
(
φa

12 − φa
21

)] − 2fpfsηa cos ψ
[
κ
∣∣ta11

∣∣∣∣ta12

∣∣ cos
(
φa

11 − φa
12

) + κ
∣∣ta21

∣∣∣∣ta22

∣∣ cos
(
φa

21 − φa
22

)
+ na

∣∣ta12

∣∣∣∣ta21

∣∣ sin
(
φa

12 − φa
21

) + na

∣∣ta11

∣∣∣∣ta22

∣∣ sin
(
φa

11 − φa
22

)] − na

{(
f 2

p + f 2
s

)∣∣ta11

∣∣∣∣ta12

∣∣ sin
(
φa

11 − φa
12

)
+2ηa

[
f 2

p

∣∣ta11

∣∣∣∣ta21

∣∣ sin
(
φa

11 − φa
21

) + f 2
s

∣∣ta12

∣∣∣∣ta22

∣∣ sin
(
φa

12 − φa
22

)]} − (
f 2

p + f 2
s

)
na

∣∣ta21

∣∣∣∣ta22

∣∣ sin
(
φa

21 − φa
22

)
s

−fpf
{
na

(∣∣ta11

∣∣2 + ∣∣ta12

∣∣2 + ∣∣ta21

∣∣2 + ∣∣ta22

∣∣2) + 2naηa

[∣∣ta12

∣∣∣∣ta21

∣∣ cos
(
φa

12 − φa
21

) − ∣∣ta11

∣∣∣∣ta22

∣∣ cos
(
φa

11 − φa
22

)]}
+ 2κ

[∣∣ta11

∣∣∣∣ta12

∣∣ηa sin
(
φa

11−φa
12

)+∣∣ta11

∣∣∣∣ta21

∣∣ sin
(
φa

11 − φa
21

)+∣∣ta12

∣∣∣∣ta22

∣∣ sin
(
φa

12 − φa
22

)+∣∣ta21

∣∣∣∣ta22

∣∣sin
(
φa

21 − φa
22

)]
sin

(
ψ

))
,

(B8)
δay = cot θi

((
f 2

s − f 2
p

){
na

[∣∣ta11

∣∣∣∣ta12

∣∣ cos
(
φa

11 − φa
12

) + ∣∣ta21

∣∣∣∣ta22

∣∣ cos
(
φa

21 − φa
22

)] + κ
[∣∣ta11

∣∣∣∣ta22

∣∣ sin
(
φa

11 − φa
22

)
+∣∣ta12

∣∣∣∣ta21

∣∣ sin
(
φa

12 − φa
21

)]} + fpfs cos ψ
{
na

(∣∣ta11

∣∣2 − ∣∣ta12

∣∣2 + ∣∣ta21

∣∣2 − ∣∣ta22

∣∣2)
+2κ

[∣∣ta11

∣∣∣∣ta21

∣∣ sin
(
φa

11 − φa
21

) − ∣∣ta12

∣∣∣∣ta22

∣∣ sin
(
φa

12 − φa
22

)]})
, (B9)

τa = na

[
f 2

p

(∣∣ta11

∣∣2 + ∣∣ta21

∣∣2) + f 2
s

(∣∣ta12

∣∣2 + ∣∣ta22

∣∣2)] + 2fpfsna

[∣∣ta11

∣∣∣∣ta12

∣∣ cos
(
φa

11 − φa
12 − ψ

)
+ ∣∣ta21

∣∣∣∣ta22

∣∣ cos
(
φa

21 − φa
22 − ψ

)] + 2κ
[
f 2

s

∣∣ta12

∣∣∣∣ta22

∣∣ sin
(
φa

12 − φa
22

) + f 2
p

∣∣ta11

∣∣∣∣ta21

∣∣ sin
(
φa

11 − φa
21

)
+ fpfs

∣∣ta11

∣∣∣∣ta22

∣∣ sin
(
φa

11 − φa
22 − ψ

) + fpfs

∣∣ta12

∣∣∣∣ta21

∣∣ sin
(
φa

12 − φa
21 + ψ

)]
,

[1pt]taaa′ = ∣∣taaa′
∣∣ exp

(
iφa

aa′
)
, ρa

aa′ = Re
[
∂ ln taaa′/∂θi

]
, ξ a

aa′ = Im
[
∂ ln taaa′/∂θi

]
. (B10)
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