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Optical amplifier-powered quantum optical amplification
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I show that an optical amplifier, when combined with photon subtraction, can be used for quantum state
amplification, adding noise at a level below the standard minimum. The device could be used to significantly
decrease the probability of incorrectly identifying coherent states chosen from a finite set.
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I. INTRODUCTION

Deterministic optical amplifiers must add noise photons
to any input optical signal in order to satisfy the uncertainty
principle [1]. Typically, amplifiers are based on population
inversion, so the amplified signal and noise, respectively,
come from stimulated emission initiated from signal and
spontaneously emitted photons [2–7]. These two types of
output cannot be distinguished, and so the extra noise photons
often destroy useful quantum properties of a signal [8],
although this does not always render amplifiers useless in
quantum optical systems [9–12].

Perfect deterministic quantum optical amplifiers are pro-
scribed by quantum mechanics. Such devices would be able
to transform a coherent state by simply increasing its input
coherent amplitude α multiplicatively without adding noise:
|α〉 → |gα〉 with |g| > 1 as the amplitude gain. The transfor-
mation can be performed, but only nondeterministically. The
quantum scissors device [13,14] provides a means of perfect
amplification in a limited state space [15–18], and it has been
adapted for polarization qubit amplification [19]. Also, the
addition and subtraction of photons [20–22] performs the re-
quired transformation with g = 2 [21,22]. Weak measurement
can also be used as a means of amplification [23]. The main
drawback with most of these schemes is that they require
quantum resources, such as single photons, typically produced
in a heralded fashion from downconversion pairs.

The addition and subtraction scheme can also amplify
approximately if the single-photon addition is replaced by a
noisy photon source, where the noise photons have a standard
thermal chaotic probability distribution [20,24]

P (n) = n̄n

(n̄ + 1)n+1
, (1)

where n̄ is the mean photon number. The added noise is
displaced in phase space by the input coherent amplitude, after
which one or more photons are subtracted from the beam by a
weakly reflecting beam splitter and a photodetector. This has
the approximate effect of applying the annihilation operator
to the state. The associated bosonic enhancement biases the
output toward higher photon numbers and thus provides the
amplification.

This noise-powered amplification (NPA) mechanism pro-
duces an amplifier that works better than the deterministic
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limit. Although the amplification is not perfect, it is good
enough to reduce the phase variance of an amplified coherent
state to significantly below its initial value. This would help,
for example, in distinguishing two low-amplitude coherent
states, as is required in some quantum communication schemes
[10,25]. Successive photon subtractions cause the state to
spread asymmetrically in phase space, but not enough to offset
the increase in amplitude caused by the boson enhancement.

There are at least two other advantages to this system over
the earlier schemes. Not only does it remove the state space
limitation for the amplifier, but more significantly, it shows
that better than deterministic amplification can be performed
without the use of quantum resources such as single photons.

As has already been noted, the output of standard deter-
ministic optical amplifiers has two components — perfectly
amplified input and added noise [2]. For a coherent input state
|α〉, the output of the optimal optical amplifier with intensity
gain G consists of photons corresponding to a perfectly
amplified state |√Gα〉 and a thermal distribution (1) with
a minimum mean number of photons n̄ = G − 1. The mean
number of added photons is larger if the amplification medium
is not perfectly inverted. However, there has been significant
progress in quantum optical amplification, and the noise limit
has been closely approached [26,27].

The two components of the amplifier output have different
sources, and so (apart from both being a function of G) they are
independent of one another. Thus it is already clear that ampli-
fiers add noise in exactly the same way as in the original NPA
scheme [20,24], a fact that was already pointed out in [24]. This
second scheme is here called amplifier-powered amplification
(APA). The combination of amplification (together with the
accompanying addition of phase-insensitive noise) and photon
subtraction (Fig. 1) provides a significant reduction in phase
variance for the output of the amplifier. This will provide a
commensurate improvement in identifying different coherent
states with the same magnitude.

II. AMPLIFIER OUTPUT AND GAIN

The density operator for the output of a perfectly inverted
amplifier can be written as [2,28]

ρout
n,m =

√
(G − 1)n+m

Gn+m+2

n∑
p=0

√(
n

p

) (
m

m − n + p

)

× ρ in
p,m−n+p

(G − 1)p+(m−n)/2
, (2)
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FIG. 1. Amplification scheme. Deterministic amplification is
followed by photon subtraction. In Refs. [20,24] the amplifier was
replaced by the addition of noise.

where ρ in
p,q are the density matrix elements of the input state,

which for the coherent state considered are

ρ in
p,q = e−|α|2 αpα∗q

√
p!q!

. (3)

Successive photon subtractions transform the density matrix
elements according to

ρM
n,m = 1

N
√

(n + 1)(m + 1)ρM−1
n+1,m+1, (4)

where M is the number of subtracted photons and N is chosen
so as to normalize the state.

In order to characterize the states produced by the APA, the
gains of the two devices are first examined. The coherent state
with maximum overlap with the device output state forms the
nominal output state for the device |gα〉. For the APA g is a
function of the amplifier gain G, whereas for the NPA it is a
function only of the number of added photons. In Fig. 2 g is
plotted for both devices for an input coherent amplitude α =
0.5, corresponding to a mean coherent input photon number of
0.25, similar to that used in Ref. [24]. For comparison purposes
it is assumed here that the mean number of added photons in the
noise-based system is the same as the mean number of noise
photons added by the amplifier, G − 1. For both devices larger
gains are accessed for more subtracted photons. However, the
gain of the APA for a given number of subtracted photons is
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FIG. 2. Device amplitude gain g as a function of amplifier
intensity gain G for the APA (solid lines) and as a function of the
number of added photons G − 1 for the NPA (dashed lines). For each
set of curves the number of subtracted photons ranges from 1 (bottom
line) to 4 (top line).
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FIG. 3. Device fidelity as a function of output nominal coherent
amplitude for the APA (solid lines) and the NPA (dashed lines). For
each set of curves the number of subtracted photons ranges from 1
(bottom line) to 4 (top line).

larger than the corresponding gain for the NPA. As a simple
example, for G = 2 and thus n̄ = 1 the amplitude gains of the
two devices are g = 2.73 and 2.39, corresponding to intensity
gains of about 7.5 and 5.7. Thus there is a straightforward
advantage in using an amplifier rather than simply adding
noise. Note that the gains of both devices depend upon the input
photon number. Both gains will be larger for lower amplitude
input coherent states. The photon subtraction effect in Eq. (4)
does not bias distributions of higher photon numbers as much
as it does those of lower photon numbers, and so the gains of
both devices will decrease with input coherent amplitude.

III. OUTPUT FIDELITY AND PHASE NOISE

Gain is not the most important feature for quantum
amplifiers; noise is crucial. This becomes apparent when
one considers the fidelity of the output state produced when
compared with the nominal output state |gα〉,

F = Tr(ρ̂|gα〉〈gα|). (5)

Fidelity does not give full information about the phase-space
distribution of the state, which will not have circular Wigner
function contours [20]. However, it does give a reasonable
indication of the quality of amplification. Therefore the fidelity
is plotted as a function of nominal output coherent amplitude in
Fig. 3. Higher fidelities are achievable for a particular desired
nominal state if the number of subtractions is increased and
a consequent lower value of G (APA) or n̄ (NPA) is used.
However, for the NPA, higher values of gα are only achievable
at a significantly lower fidelity than the APA for the same
number of subtracted photons. The obvious reason for this is
that a larger part of the state is already coherent due to the
APA amplifier action. Photon subtraction has no effect on this
component but it is not required to do so.

The higher fidelity states produced by the APA ought to
be apparent in the phase variance of the output [29]. This is
most straightforwardly calculated for an input state of zero
mean phase (e.g., for real positive α) and in a phase window
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FIG. 4. Phase variance as a function of output coherent amplitude
for the APA (solid line) and the NPA (dashed line) for one subtracted
photon. The dotted line corresponds to the phase variance of a pure
coherent state and the dot-dashed line to the phase variance of the
initial state.

of (−π,π ]. Then the phase variance of a density operator with
the number of state elements ρn,m can be written as

(�φ)2 =
∞∑

n,m=0

[
π2

3
δnm + (1 − δnm)

(−1)m−n

(m − n)2

]
ρn,m. (6)

A deterministic amplifier cannot decrease this quantity, and
even an optimal deterministic amplifier increases the phase
variance slightly. The variance is plotted in Figs. 4 and 5
as a function of the nominal output coherent amplitude
for both the APA and the NPA systems, for one and two
subtracted photons, in order to stay close to what is at present
experimentally achievable. Also shown is the phase variance
of the nominal coherent state |gα〉. Here the full advantage
of using an amplifier shows itself. The APA outperforms the
NPA across the whole domain of nominal coherent amplitudes.
Although neither system approaches the phase variance of the
nominal coherent state, the minimum variance achievable is
significantly lower for the APA. For one subtracted photon the
APA minimum variance is 75%, and for two it is 70% of the
minimum NPA values. Furthermore, the variance minimum is
a flat function, so a large range of amplifier gains will still
produce a significantly lower variance.

The improvement is apparent even for relatively low gains,
which at first might seem slightly mystifying, as the extra
coherent component provided by the output of the amplifier is
small. The reason for such a large difference is a combination
of two factors. First the G-gain enhancement for the APA
seen in Fig. 2 means that a greater number of photons must
be added by the NPA to compensate. As the optimal mean
number of added photons required to minimize the phase
variance of the NPA is quite low (in [20] for α = 0.48 the
minimum phase variance occurs for n̄ � 0.25), the upturn in
the phase variance occurs at low values of g. Second, the
fidelity difference between the two systems displayed in Fig. 3
shows that there is a much larger coherent component of
the APA output state, so its variance will follow that of the
nominal output state more closely at higher gains. Note that
the phase variance of a pure coherent state drops dramatically
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FIG. 5. As Fig. 4 but for two subtracted photons.

with coherent amplitude. Thus even a relatively small increase
in the coherent component of the output state can produce a
large difference in phase variance. This increase in the coherent
component is exactly what the amplifier provides. For higher
output nominal coherent amplitudes, the APA advantage due
to amplification of the input coherent state is greater but
the photon subtraction effect is smaller. A combination of
these two effects is responsible for the flatness of the APA
phase variance as a function of gain. This flatness is clearly
not possible for the NPA.

A simple use for the type of amplifier described here might
be to distinguish different weak coherent states, say |α〉 and
| − α〉. These two states are not orthogonal, with squared
overlap e−2|α|2 . Use of the composite amplifier and photon
subtractor (or use of the NPA) will reduce this overlap and
increase the orthogonality of the two states. This is quantified
here using the mixed state formula for fidelity [30],

F =
[

Tr
√√

ρ̂(α)ρ̂(−α)
√

ρ̂(α)

]2

, (7)

which gives the probability that the amplified state ρ̂(α)
would be incorrectly identified as ρ̂(−α) in a “yes or no”
measurement test. For α = 0.5 the lowest value that can
be obtained with the APA is F = 0.178 for one subtracted
photon and F = 0.075 for two. These figures represent about
50% and 20% of the preamplification value of 0.368. The
APA dramatically increases the orthogonality of the original
coherent states.

It is also worth noting the effect of varying the input
coherent amplitude on the results presented here. The bosonic
enhancement effect works best on low photon numbers, so
although the overall phase variance is reduced most for a higher
amplitude input coherent state, the decrease in variance will be
much more pronounced for low-amplitude states. The flatness
of the phase variance as a function of nominal output coherent
amplitude does not vary rapidly for different input coherent
amplitudes. This means that setting a particular intensity gain
G for the amplifier will provide an output state with near
minimum phase variance for a large range of input coherent
amplitudes. This is in contrast to the NPA, where the more
pronounced phase variance minima dictate a closer tailoring
of the added thermal noise to the input coherent state.
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IV. CONCLUSIONS

In conclusion, it has been shown that the use of an optimal
amplifier combined with photon subtraction produces an
output state, from an input coherent state, with a phase variance
which is greatly decreased from its initial value; the variance
is also significantly below the value possible for thermal noise
addition and photon subtraction. For such an optimal amplifier,
which adds the minimum number of noise photons, the gain G

has the maximum possible effect on the input state. Typically
population inversion amplifiers are not optimal, as they are
not 100% inverted, but there has been significant progress
in reaching optimality in feed-forward [26] and four-wave
mixing [27] systems, so it is not unrealistic to assume this.
Furthermore, Raman amplifiers can also approach optimality
over a large range of gains [31,32]. The effect of a nonoptimal
amplifier would be simply to produce results between those
of the optimal APA and the NPA. The device gain and fidelity
would be reduced and the phase variance increased from the
optimal APA values. There would always be some advantage
to using an amplifier, no matter how poor, over noise addition,
as even the noisiest amplifier will produce some amplified
coherent output.

The experimental feasibility of the APA system depends on
photon subtraction and amplifier quality. Photon subtraction

has been used in several experiments and is based on
postselection using a highly transmitting beam splitter and
a photodetector. For near-ideal subtraction the reflection coef-
ficient should be close to zero, but this reduces the likelihood
of subtraction success. This effect has been overlooked here
but it was considered in [20], where it was shown not to be a
significant problem for observation of the variance reduction.
This was borne out by experiment [24].

The utility of amplifiers in quantum optics has traditionally
been limited by the necessary addition of noise. Systems
which add noise and then use photon subtraction can at
least partially circumvent this limitation. If the noise addition
system is an amplifier itself, even one with very low gain,
then a small fraction of the added photons is coherent. This
leads to a much improved device which could be used with
present technology to distinguish between such nonorthogonal
states with little ambiguity. Furthermore, it suggests that low-
noise amplification systems will have future uses in quantum
communication schemes.
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