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Analyses of phenomena exhibiting finite-time decay of quantum entanglement have recently attracted
considerable attention. Such decay is often referred to as sudden vanishing (or sudden death) of entanglement,
which can be followed by its sudden reappearance (or sudden rebirth). We analyze various finite-time decays
(for dissipative systems) and analogous periodic vanishings (for unitary systems) of nonclassical correlations as
described by violations of classical inequalities and the corresponding nonclassicality witnesses (or quantumness
witnesses), which are not necessarily entanglement witnesses. We show that these sudden vanishings are universal
phenomena and can be observed: (i) not only for two- or multimode but also for single-mode nonclassical fields,
(ii) not solely for dissipative systems, and (iii) at evolution times which are usually different from those of sudden

vanishings and reappearances of quantum entanglement.
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I. INTRODUCTION

Decoherence is a crucial obstacle in practical implemen-
tations of quantum-information processing and quantum-state
engineering. Quantum entanglement is especially fragile to
decoherence. Yu and Eberly [1] (see also earlier studies in
Ref. [2]) observed that entanglement decay can occur within
a finite time. This effect has been referred to as entanglement
“sudden death” or entanglement sudden vanishing (SV) and
it can be followed by its sudden reappearance (sudden
rebirth—SR) [2-4]. Reference [1] has triggered extensive
theoretical research on entanglement loss in various systems
(for reviews see Ref. [5]). Entanglement sudden vanishing was
also experimentally observed [6—8].

Entanglement SV is often considered to be a new form of
decay of quantum entanglement, which presumably was not
previously encountered in the dissipation of other physical
correlations. Here we would like to point out the gen-
eral occurrence of sudden finite-time decays and periodic
vanishings of nonclassical correlations. Namely, the SV
and SR effects can also be observed during the evolution
of entanglement witnesses [9-11] (for a review see Ref.
[12]) and nonclassicality witnesses (also called quantumness
witnesses) [13—19] corresponding to violations of classical
inequalities.

A standard approach to study the SV and SR of quantum
entanglement is based on the analysis of the time evolution of
entanglement measures, e.g., the concurrence or, equivalently,
the negativity or the relative entropy of entanglement [12].
For a two-qubit system, described by a density matrix g, the
concurrence C(p) is defined by [20]

1

C(p) = max (O,Zmaxki - Zki), (D)
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where the };’s are the square roots of the eigenvalues of p(6, ®
62)p% (62 ® 62) and &, is the Pauli spin matrix. On the other
hand, the negativity can be defined as [9,21]

N(p) = max (0, ~2min u,-), )

where 1 ;’s are the eigenvalues of the partial transpose 4" and
factor 2 is chosen for proper scaling, i.e., to get N(p) = 1 for
Bell’s states.

It is worth noting that not all the SRs and SVs of
entanglement and its witnesses can be considered standard:
A SR should appear only after some finite-evolution time after
the occurrence of the preceding SV. Specifically, let us now
analyze an example: Both | cos#| and max(0, cos t) vanish at
7 /2, but only the vanishing of the latter function is associated
with the proper SV and SR effects.

Both Egs. (1) and (2) are given as the maximum of zero
and some functions, which clearly explains the occurrence of
SVs if p changes in time. By contrast, SVs do not appear
for the modified parameters C'(p) = 2 max; A; — Zi A;, and
N'(p) = —2min; pu, if A; and p ; have continuous derivatives
in time.

We deduce that analogous SV and SR effects can be
observed for an arbitrary time-dependent parameter F(¢), in
comparison to some threshold value Fy. From a quantum-
mechanical point of view, the most interesting parameters
F are the ones which correspond to classical inequalities

F ; Fy that can be violated for some nonclassical fields, i.e.,
F " F, as indicated by the symbol " . On the other hand,

1
the symbol ; emphasizes that the corresponding inequality
must be fulfilled for all classical states. Thus, let us truncate
such parameter F' as follows:

F — F =max(0,F, — F). 3)
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FIG. 1. (Color online) A simple explanation of how to observe
the SV and SR of nonclassicality witnesses using, as an example,
the unitary evolution of single-mode squeezing in the anharmonic
oscillator model given by the Hamiltonian (58): (a) normally-ordered
variances S, (dashed curve) and Soy (solid curve), given by Egs. (60)
and (61), (b) truncated normally-ordered variances S, , (dashed curve)
and S(,pt (solid curve), given by Egs. (15) and (19), respectively.
Quadrature squeezing occurs if S,, <0 or, equivalently, if the
truncated witness S‘X¢ > 0. Principal squeezing occurs if So, < 0
or if the truncated witness S‘Om > 0. Here, |ao|> = 1/2,¢9 = ¢ =0,
and Sy = 0. By including damping, one would observe finite-time
decays, analogously to the standard sudden decays of entanglement.

A simple illustration of this concept is shown in Fig. 1. For
brevity, such F and F will be referred to as the untruncated
and truncated nonclassicality witnesses, respectively. The
redefinition of the witnesses is a key concept in observing
the SV and SR effects.

In the next sections we give general arguments and present
some specific examples of phenomena and nonclassicality
witnesses to support our conclusions.

In Sec. I we recall a definition of nonclassicality and
present a general method of constructing truncated nonclassi-
cality witnesses that can exhibit both the SV and SR effects.
In Sec. III, we discuss methods of constructing truncated
entanglement witnesses. We also give a few simple examples
of truncated nonclassicality and entanglement witnesses. Their
evolution in some prototype physical models is studied in
Secs. IV- V1. We conclude in Sec. VII.
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II. NONCLASSICALITY WITNESSES

In order to test (and characterize) the nonclassical behavior
of a given state p unambiguously, we use the multimode Cabhill-
Glauber s-parametrized quasiprobability distribution (QPD)
functions defined for —1 < s < 1 by [22]

M
Tr (,5 1_[ Tm(ak)) , €]

k=1

W () =

N —

where
N 1 ~
TO(y) = - / exp (aks* — o6 + §|s|2> DE)d*, (5)

D(#) is the displacement operator, e is a complex multivariable
(oep,a2, ...,00h), and M is the number of modes. In special
cases (for s = 1,0, — 1), the QPD reduces to the standard
Glauber-Sudarshan P function, Wigner W function, and
Husimi Q function, respectively.

A well-known criterion of nonclassicality (or quantumness)
is based on the P function (see, e.g., Refs. [23]):

Definition 1. A state p is considered nonclassical if its
Glauber-Sudarshan P function is not a classical probability
density (i.e., it is nonpositive). Otherwise the state g is called
classical.

We use this definition of nonclassicality although we are
aware of its drawbacks (see, e.g., Ref. [24]). It is also worth
noting that this definition is often extended by a requirement of
nonsingularity. That is, a classical P function cannot be more
singular than Dirac’s § function. But, in fact, the singularity
of the P function is implied by its nonpositivity (see, e.g.,
Ref. [19]).

Definition 1 can be equivalently formulated via a complete
set of nonclassicality witnesses corresponding to violations of
classical inequalities. Here we apply the method of construct-
ing nonclassicality witnesses proposed in Refs. [13,14] and
developed in Refs. [19,25]. Alternatively, one can apply an
approach used by Alicki et al. [15-17].

Let us analyze an arbitrary M-mode operator f = f(a,a")
as a function of the annihilation, a4 = (4;,d,, ...,dy), and
creation, ar, operators. The P function enables a direct
calculation of the normally-ordered (denoted by ::) expectation
values of the Hermitian operator f1 f as follows:

Cfify= / d*a | f(a,a)* P(a,a®). (6)

Then one can apply another criterion of nonclassicality [13,
14]:

Criterion 1. A state p is clgssjcal if (: fo :) >A0 for all
functions f. Conversely, if (: £ f :) < 0 for some f then the
state p is nonclassical.

- . aopcl
These conditions can be compactly written as (: f' f:) ; 0

and (: 172 "Yo. By analogy with definitions of entan-
glement witness (see the following section), the normally-
ordered Hermitian operator : f1f: can be referred to as
(nonlinear) nonclassicality (or quantumness) witness [14]. For
convenience, we call the nonclassicality witness (and also
entanglement witness) not only an observable but also its ex-
pectation value. Note that the understanding of nonclassicality
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witnesses is not strictly limited to operators (see, e.g., Refs.
[17,18]).

By writing f = Z,N ci fi, where ¢; are arbitrary complex
numbers, one obtains

CAF =Y et B @)
i,j

The normally-ordered moments (: fiT f] :) can be grouped into
the following matrix:

meay
Mf (») =

®)

We call (nonlinear) nonclassicality witnesses not only : fif:
and (: f'f:) but also the matrices of normally-ordered

moments M;f') (p) and their functions (e.g., determinants). The

importance of this approach is motivated by the following
nonclassicality criterion [13,19]:

Criterion 2. A state § is nonclassical if there exists f, such
that det[M;?)(,é)] is negative.

Thus, if these nonclassicality witnesses are truncated
according to Eq. (3), one can predict infinitely many different
kinds of SV and SR effects. Note that a given nonclassicality
witness reveals only some specific and limited properties of
nonclassical states.

It is worth stressing that nonclassicality witnesses are
(usually) not measures of nonclassicality. A question arises
whether SV and SR effects can also be observed for some
nonclassicality measures. Below we give an example of
quantum dynamics leading to the SV and SR of nonclassicality
witnesses but not of nonclassicality measures.

A. Examples of truncated nonclassicality witnesses

To find nontrivial examples of SV and SR of some non-
classicality witnesses, which are not necessarily entanglement
witnesses (studied in the following section), we analyze the
squeezing (or sub-Poisson statistics) of the photon-number
difference (7i; — 7i) in two systems. This squeezing occurs if
the normally-ordered variance

S = (: [AGA — i)]*2) ©)

is negative, where AO =0 — (0), with O = iy — A, Tt is
a purely nonclassical effect as S ;I 0 holds for any classical

fields. Note that § + Sp ; 0 also holds for any classical fields,
where Sy > 0 is a threshold value which can be chosen to be

arbitrary. Thus, one can analyze a kind of “strong” squeezing
ncl

if S + So < 0.Inorder to observe the SV and SR of this strong
squeezing we truncate the squeezing parameter S as follows:

§ = max[0,—(: [A(A; — A)]* ) — Sol M0, (10)
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By replacing A(ii; — i13) by (7i; — i) in I:Zq. (9), one can
consider another normally-ordered witness D’ resulting from
the classical inequality

1
D' =( (A +am+e)? ) +lalPS0 1)

assuming real parameters ¢; (k = 1,2,3,4). In the following,
we apply

D = max(0,—(: (i, — fia + Do)* 3)) 20, (12)

which is a special case of D’ for (c1,¢a,¢3,¢4) = (1,—1, Dy, 0).

So far we have only analyzed two-mode witnesses. Clearly,
it is also possible to observe the SV and SR during the time
evolution of multimode but also single-mode witnesses of
nonclassicality. We give only two examples of photon-number
and quadrature squeezings:

(i) Single-mode photon-number squeezing (also called
sub-Poisson photon-number statistics) occurs if Mandel’s
Q parameter is negative, i.e., (: (AA)*:)/(: 7 ) “<°1 0. This
nonclassical effect can also be described by the truncated
witness

S (AR)?
(:7:)
(i1) The standard (Sp = 0) and strong (Spy > 0) M-mode
quadrature squeezing can be defined by
Sy = (- (M%) 2) "2 (=S0), (14)

or, equivalently, via the truncated squeezing witness

0 = max (0,—

Si, = max[0. — (: (A%g)* 1) = Sl 0. (15)

where ¢ = (¢1,¢2, ..
ator is given by [23]

. ,¢n). The multimode quadrature oper-

M
£p = Cn En(dm) (16)
m=1

is a sum of single-mode phase-rotated quadratures

Zn(Bm) = dm expli) + &), eXp(—ipy). (17)

The truncated nonclassicality witness S, ,» given by Eq. (15),
can also be used in a single-mode case. The ¢-optimized
quadrature squeezing is referred to as principal squeezing and
is defined by the witness [19,26]

Sope = min Sy, "< 0, (18)

or the truncated witness

Sopt = max(0, — Sopr — So) = max S, <o. (19

Note that all entanglement witnesses are also nonclassicality
witnesses, but not vice versa. An example of the single-mode
evolution exhibiting the SV and SR of the nonclassicality
witnesses, corresponding to the quadrature and principal
squeezing, is shown in Fig. 1 for the anharmonic model
described in Sec. VL.

Explicit examples of many other two- and multimode non-
classicality witnesses, corresponding to violations of classical
inequalities, can be found in, e.g., Refs. [14,19,23,27-30].
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III. ENTANGLEMENT WITNESSES

An effective method of constructing entanglement wit-
nesses can be based on the Shchukin-Vogel entanglement
criterion [31] (or its generalizations [32]) for distinguishing
states with positive partial transposition from those with
nonpositive partial transposition (NPT).

In analogy to the matrices of normally-ordered moments
M ;‘)(,6), given by Eq. (8), one can define the following matrix

of partially-transposed moments:

<11 (AT <f§ﬁv>F

AT AN\T AT AT ;T A \T

M) = (.2:1) (fz.:f2> <f2:fN> Qo)
SLfT (F )T ()T

where f = Z,N ci fi for arbitrary complex numbers c¢;,
( fj il =u( fj f;p") and T denotes partial transposition.
The Shchukin-Vogel entanglement criterion [31,32] can be
written as follows:

Criterion 3. A bipartite state p is NPT if and only if there
exists f , such that det[ M f(,ér)] is negative.

This criterion resembles Criterion 2 of the nonclassicality.
Thus, analogously to the nonclassicality witnesses, we refer
to such matrices M f(ﬁr) of partially transposed moments
and their functions (like determinants) as (state-dependent
nonlinear) entanglement witnesses. It is worth noting that
according to the original definition, entanglement witnesses
correspond to observables rather than expectation values
[9]: An entanglement witness is a Hermitian operator 7%
such that tr(W,ésep) > 0 for all separable states pgp, While
tr(W,@em) < 0 for some entangled states fey. This concept was
later generalized to nonlinear entanglement witnesses [10,11].
Although our usage of the term entanglement witness differs
slightly from the original usage, we believe that it can improve
readability of our paper, while keeping unchanged the main
idea of entanglement witnesses.

Here we give only two examples of such entanglement
witnesses based on Criterion 3. Let us apply the following
Hillery-Zubairy classical inequalities [33]:

A A 1. A n n |
(o) S [@ad)?, () S laa)?,  @21)

where 71; = Ezj a; is the photon number operator, and 4; (&;r ) is
the annihilation (creation) operator for mode i = 1,2. Thus,
we can define the following truncated witnesses:

A = max(0,|(@a})]* — (i1i) 20, (22)
H' = max(0,|(@1d) > — (A1) (A2)) £°0, (23)

which can be positive only for some entangled states, as

marked by the symbol <" . These inequalities can be derived in

various ways, e.g., from the Cauchy-Schwarz inequality [33]
or from entanglement criteria based on partial transposition
[31,32]. Thus, H and H’ are entanglement witnesses, so the
SV of the concurrence implies also the SV of H(t) and H'(1)
(if they were nonzero for some evolution times). It is worth
noting that the inequalities in Eq. (21) are satisfied not only by

separable states but also by all classical states (marked by ;1 )
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since they can be derived from nonclassicality criteria based
on the P function [19].

Another simple choice of an entanglement witness can be
related, e.g., to the violation of Bell’s inequality. For two-qubit
states, a degree of violation of Bell’s inequality, in its version
due to Clauser, Horne, Shimony, and Holt (CHSH) [34], can
be defined as [35,36]

B*(p) = max]0, max (u; +uj) = 11 (24)

where u; (j = 1,2,3) are the eigenvalues of Uy = TﬁT T, Ty
is areal matrix with elements t;; = Tr [0 (6; ® 6;)], and 6, are
Pauli’s spin matrices. For brevity, although not precisely, B is
often referred to as a nonlocality (measure). Analogously to the
concurrence C, the nonlocality B is defined as the maximum
of zero and another quantity, which implies that it is possible
to observe the SV and SR of B(¢) in a dynamical scenario.

If a two-qubit state p violates Bell’s inequality then itis also
entangled, but not vice versa, i.e., there are mixed states p (e.g.,
Werner’s states discussed below), for which C(p) > 0 and
B(p) = 0. Thus, B(p) can be considered as an entanglement
witness. The SV of an entanglement measure implies the SV
of an nonlocality measure (if the latter was nonzero at some
evolution time). Note that for two-qubit pure states B(p) =
C(p), soin this case the nonlocality is not only an entanglement
witness but also an entanglement measure.

IV. SUDDEN DECAYS OF NONCLASSICALITY
WITNESSES FOR NONINTERACTING MODES

Let us first give a simple example of the environment-
induced sudden vanishing of the entanglement that is closely
related to the original idea of finite-time sudden decays. As
a generalization, we also study sudden vanishings of several
other nonclassicality witnesses, which occur at times different
than those for the entanglement vanishing.

By contrast to the following sections, we analyze the
entanglement of two modes (qubits), which are not directly
interacting with each other but only with independent reser-
voirs. Specifically, we describe the SV of the nonclassicality of
initially entangled states, due to interaction with the reservoirs
under Markov’s approximation, by applying the standard
master equation for the reduced density operator p:

0 Vi _ i 1 T Vi
Zp= 2 e al pay — aralp — pdral) + L + 1
ar? k:XI:2|:2 ay prax — axay p — pdiay) 2( r+ 1

x Qapal — afaep — pa;a,a} - sl (25)

where y; are the damping rates, 71, are the mean thermal photon
numbers, 7i; = {exp[hiw/(kgT)] — 1}, T is the reservoirs
temperature at thermal equilibrium, and kp is Boltzmann’s
constant. We assume the reservoirs to be at zero temperature,
so we set i1; = 71, = 0. The Hamiltonian 7:{5 is just the sum of
free Hamiltonians for the two noninteracting system modes.
We solve the master equation by applying the Monte Carlo
wave function simulation with the collapse operators ¢j; =
VYO Fiiné and éy = /yiga [37).

It is worth noting that from the standard physical point of
view, the quantum entanglement between two systems, and the
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related violation of Bell’s inequalities, can be considered if the
systems are spatially separated and are physically uncoupled
[38]. It is seen that this model (contrary to the models studied
in the following section) satisfies the second condition.

Our example of the environment-induced sudden vanishing
of quantumness and nonlocality is provided for a system
coupled to two independent reservoirs. It is worth mentioning
that common reservoirs in some cases can also enhance
entanglement both for two qubits and two modes. This is
possible due to a mixing mechanism rather than an induced
interaction among them [39].

Let us analyze the decoherence of the initial Werner-like
state defined as [36]

R 1-p-

Pm(0) = pIWp ) (W | + — b (26)
for 0< p<1,m=1,and |¥,) = (|00) + |11))/+/2. Here,
I is the identity operator. Under this initial condition, the
solution of the master equation can be given in the standard
computational basis as [36]

A 0 0 2p/gig
1 0 0 0
b1(t) = — 1 . (27
p1(1) 2 0 0 h(2+) 0 (27)
2p/g1g2 0O 0 A+ pgig

where A =2 —g)Q2—g) +psiga. ' =giul2 -
(1 4+ p)gil, and g = exp(—yit) for k = 1,2. The concurrence
and nonlocality decay as follows [36]:

C(t) = max {0,3./2182
x2p—+I2— 0+ pgll2— 1+ pgD}. (28)

B(r) = max(0,2p*g1g2 — 1), (29)

respectively. For comparison, we also calculate the decays of
the two witnesses of the photon-number-difference correla-
tions:

S(t) = max [0,5 (g7 + &3 +2pg182) — Sol. (30)

D(1) = max [0,3g182(1 + p) — D§ — Do(g1 — g2)]- (31

For simplicity, let us assume now the same reservoir damping
rate y, so g; = g2 = g. Then, the SV times for the above
entanglement and nonclassicality witnesses can be different
from each other as they are given by

1 I+p
©)
t9 = —In ———), 32
sV y“(za—p)) G2
1
1D = . In(~2p), (33)
= L (e (34)
VT 250
5 1 I1+p
(D)
1D = —1 . 35
W Ty “<2D§> o
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nonclassicality witnesses

FIG. 2. (Color online) An example of the environment-induced
sudden vanishing of the nonclassicality witnesses for two noninteract-
ing modes. The damping model is described in Sec. IV for the initial
Werner-like state p; with p = 0.8. Key: the concurrence C (solid
curve), nonlocality B (dotted curve), and two witnesses describing
the photon-number-difference correlations: S (dashed curve) for
So = 0.03 and D (dot-dashed curve) for Dy = 0.1.

The results are shown in Fig. 2 assuming some specific values
of the damping constant y and the initial Werner state p;(0)
with parameter p.

In conclusion, we have given a simple example of the
decaying entanglement between two qubits, which are not
directly interacting with each other, but they are only coupled
to the environment. We have observed the SVs of the two
nonclassicality witnesses, which are different from the SVs of
the entanglement and nonlocality measures.

V. PERIODIC SUDDEN VANISHING OF
NONCLASSICALITY WITNESSES OF
INTERACTING MODES

A. Frequency conversion model

Here we give an illustrative example of periodic sudden
vanishing of nonclassicality witnesses during a unitary evolu-
tion of two interacting modes. This is in contrast to the standard
analysis of sudden decays applied solely to dissipative systems.
Note that one can easily include the dissipation (as studied,
e.g., in the former section) to observe the proper finite-time
sudden decays and SRs analogous to the standard ones.

As a simple model to study SV and SR, let us study the
parametric frequency conversion described by the interaction
Hamiltonian

H = hilal ay exp(—i Awt) + a1} exp(i Awt)],  (36)

which is a prototype Hamiltonian describing two linearly
coupled harmonic oscillators. It can be applied to a variety
of physical phenomena including the process of exchanging
photons between two optical fields of different frequencies:
a signal mode with frequency w; and an idler mode with
frequency w,. Then a; and 4, are the annihilation operators
for the signal and idler modes, respectively, and « is the real
coupling constant. For simplicity, we assume a resonant case
Aw=w+ w, — w.
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The well-known solutions of the Heisenberg equations of
motion for the signal, b;(¢), and idler, b,(¢), modes are given
by [40]

bi(t) = a, cos(kt) —i @, sin(k1),
. (37)
by(t) = ap cos(kt) —ia; sin(kt).

The corresponding solution of the Schrédinger equation is

(6l (=)™ [Bl(—0))™
V! Vna!

assuming that the system is initially in a superposition of
Fock states, |y(0)) = anm Cny.myIn1,m2). The total num-
ber of photons is a constant of motion, 7;(¢) + 7ix(t) =
const.

An important property of the (undamped) parametric
frequency model is that the nonclassicality of an arbitrary state
is unchanged during its evolution. By applying the results of
Refs. [41-43], one can find that the time evolution of the QPD
for the frequency-converter model, described by Eq. (36), with
arbitrary initial fields is simply given by

W)=Y cum, 00)  (38)

ny,na

WS (ay @a,1) = WO B (1,00, 1), Ba(ar,02,—1),0],
(39)

where B 2(o1,a0,t) are the solutions of the corresponding
classical equations of motion for the frequency-conversion
model:

Bi(oy,00,t) = ap cos(kt) — iap sin(k't), “0)
Bo(ay,0p,t) = oy cos(kt) — oy sin(kt).

Equation (39) means that the two-mode QPD for the model
discussed is constant along classical trajectories. Thus, if the
initial fields are nonclassical, their degree of nonclassicality
(as defined, e.g., in Refs. [44—46]) remains unchanged at any
evolution times of the system. But yet we can observe SV and
SR of entanglement and nonclassicality witnesses as will be
shown in the following subsections.

B. Evolution of a pure state

Let us first analyze the parametric frequency conversion for
the initial state |y(0)) = |01). The system evolves, according
to Eq. (38), into

[y (1)) = cos(kt)|01) — i sin(x1)[10). (41)

It is a nonclassical state described by the following singular
(so negative) P function:

P(ay,a0,t) = 8[B1(ar,a2,1)] (1 +

d
X *
aﬂz(a11a2st)
which is given in terms of Dirac’s § function, its derivative,
and the solutions of the classical equations of motion, given

by Eq. (40). Elementary calculations lead to the following
expressions for the concurrence and nonlocality:

0
0B (ay,02,1)

) 8[Ba(ar,cz,1)], (42)

C(t) = B(t) = | sin(2«1)], (43)
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the entanglement witness describing the violation of the first
Hillery-Zubairy inequality

H(1) = §sin* (1), (44)

and the nonclassicality witnesses for the photon-number-
difference correlations

S(r) = max|0, COSZ(2KI) — Sol, 45)
D(r) = max{0, Do[2 cos(2kt) — Dy]}. (46)

Analogously, one also finds the photon-number sub-Poisson
statistics of the fields as described by the modified Man-
del parameters Q; = sin’(xt) and O, = cos’(«t). All these
nonclassical witnesses exhibit periodic SV and SR effects
as shown in Fig. 3(a). For example, the SV and SR of
the concurrence corresponds to the maximum value of §.
Analogously, we could observe the out-of-phase SVs and SRs
of Mandel’s Q parameters, which can be clearly understood
by recalling the classical-like interpretation of two linearly
coupled oscillators when one of them is initially excited
(Q2 > 0) and the other is unexcited (Q; = 0). During the
evolution, the excitation is transferred periodically between
the oscillators.

One can raise an objection concerning the above example
that a SV of the concurrence is instantly followed by a SR,
so they are not the proper SV and SR effects. The same
behavior is found for the other witnesses including D for
Dy =0, and S for Sy = 0. From the more standard, or more
orthodox, point of view, a SV (of some witness) should not
be instantly followed by a SR. By contrast, the SV times
differ from the SR times for D with Dy > 0 and for S with
So > 0 [as shown in Fig. 3(a)] that is required in the orthodox
approach.

Other, even more convincing, examples of the SV and SR
effects can be found by analyzing the evolution of initially
mixed states as will be shown below.

C. Evolution of a mixed state

Let us choose the initial state to be a Werner-like state §y(0),
given by Eq. (26) for m = 0 and |W) = (|01) — i]10))/~/2.
This state evolves as follows:

1—p.
po(t) = p[Wo(1))(Wo(r)| + TPI, (47)

where

1
—=[/~(®I01) —if(1)]10)] (48)
—Lf fi
with fi(¢) = cos(xt) £ sin(xt). We find the following evo-
lutions of the entanglement witnesses and the corresponding
times of the first SV:

|Wo(1)) =

1 —
C(r) = max[0, ple| — (1 — p)/2] = 1 = f (#)

(49)
B2(t) = max[0,p*(1 + ¢*) — 1]

)
= D)= f(—M), (50)

p
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- 1
H@) = § max[0,(pc)* — (1 — p)]

N 1=
= W = f(—p") (51)

where f(x) = arccos x/(2k) and ¢ = cos(2«t). The first SR
occurs at the time

Kt = 1/2 — k) (52)
1 ‘ ‘ ‘ (@)
D C=B
»
?
@ 0.8f
0]
S
2 06f ~
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(_8 “‘ :" ~‘\ "’
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FIG. 3. (Color online) Simple examples of the sudden vanishing
and reappearance of the concurrence and other truncated nonclassi-
cality witnesses for two interacting modes. The unitary evolution of
the frequency model is shown assuming: (a) the initial pure state |01)
discussed in Sec. V B and (b) the initial mixed state, given by Eq. (47)
with p = 0.8, analyzed in Sec. VC. Key: C (thick solid curve) is
the concurrence, B (thin solid curve) is the nonlocality; H (dotted
curve) is the entanglement witness, given by Eq. (22), describing
the violation of the first Hillery-Zubairy inequality; S (dashed curve)
for Sy = 1/2 and D (dot-dashed curve) for Dy = 1 are nonclassical-
ity witnesses describing the photon-number-difference correlations,
which are given by Egs. (10) and (12), respectively. From the standard
point of view, a SR should appear only after some finite evolution time
after the occurrence of the preceding SV. It is seen that this condition
is satisfied for all the witnesses of the mixed-state evolution (b), but
only for some witnesses of the pure-state evolution (a).
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fori = C,B,H.Itis seen in Fig. 3(b) for p = 0.8 that the first
SVs and SRs occur in the following order:

B H c B A (e
R R = e P (53)
On the other hand, the nonclassicality witnesses D and S,
given by Eqs. (10) and (12), respectively, evolve as

S(r) = max[0,(1 — p)/2 + p?sin®(2kt) — Sol,  (54)
D(t) = max [0,(1 — p)/2 + 2Dy p sin(2kt) — D§]. (55)

For So = 0and p < 1, we do not observe a complete vanishing
of S(¢). For Sy = 0 and p = 1 (which corresponds to the initial
Bell state), S(¢) periodically vanishes to zero and instantly
increases, so it is not a good example of the SV and SR effects.
However, for0 < p < 1 we can observe the proper SV and SR
effects as shown in Fig. 3(b). The first SVs occur at the times

(S‘) T »,/2S0+p—1>

gy =—+f <— , (56)

SV 4w ﬁp

2

(D) T 2D0 -+ p— 1

toy = — _— ], 57

V=gt ( 4Dyp ©7
and the first SRs occur at tg{ =n/k — téf,) and

tég) =31/(2k) — tée). Note that the first appearances of lthese
witnesses occur at earlier times, i.e., t = 7/(2x) — té’\), for
i = §,D.1tis seen that we can always choose threshold values
So and Dy for any 0 < p < 11in such a way to observe the SVs
and SRs of these witnesses for the photon-number-difference
correlations at arbitrary evolution times also when the system
is disentangled.

VI. PERIODIC SUDDEN VANISHING OF
NONCLASSICALITY WITNESSES FOR
A SINGLE MODE

Finally, let us analyze a single-mode anharmonic oscillator
described by the interaction Hamiltonian

H = Ihr(ahy?a>. (58)

This is a prototype model of various fundamental phenomena
including the optical Kerr effect. For simplicity, here we refer
to this effect only. Under this interaction, the initial coherent
state |ag) evolves periodically into a nonclassical state

PN % i
[y (1) =e 2 mexp[znm 1)r} In), (59)

where 7 is a rescaled time «¢. It is worth noting that the
Kerr state, given by Eq. (60), becomes at some evolution
times a superposition of macroscopically distinguishable two
[47] or more [48] coherent states, which are often referred
to as the Schrodinger cat and kitten states, respectively.
Among many nonclassical intriguing properties of the model
(see, e.g., Ref. [49] and references therein), the Kerr state
exhibits high-degree quadrature squeezing [26,50]. We find
that the single-mode normally-ordered variance S,, of the
quadrature operator £4 = £1(¢) = aexp(—i¢) + af exp(i¢)
can be compactly written as

Si, = 2laol*[1 + fiacos(tiy + 1) — far(cos o + D] (60)
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in terms of the auxiliary functions defined by ty =
klao)? sin(It) 4+ 2(¢p — ¢o) and  fi; = exp{k|ao|*[cos(IT) —
11} with ap = || exp(i¢gp). Quadrature squeezing occurs if
Sk, 10 or, equivalently, if the truncated witness S, ’ o,
defined by Eq. (15) with Eq. (61) and ¢ = ¢. For simplicity,
we set a threshold value Sy to be zero in this section and
in Fig. 1. By applying the results of Refs. [26,50], we can
compactly write the ¢-optimized variance Sop; describing the
principal squeezing as follows:

Sopt(1) = 2lato|*(1 = fo1 — v/ for + far — 2 fi2fo1 cos T'),
(61)

where ©/ = 115 — 121 + 7. Analogously to the former squeez-

ing criteria, the principal squeezing occurs if Sy < 0 or if

the truncated witness S‘Opt “;l 0, as given by Egs. (19) and (61).
Our results are presented in Fig. 1 for some specific amplitude
of the initial coherent state.

Note that the periodic vanishing of the entanglement and
nonclassicality witnesses, analyzed here and in Sec. V, should
not be confused with the oscillations of the entanglement mea-
sures in systems interacting with non-Markovian reservoirs
(see, e.g., Ref. [51]). The SV and SR effects in such systems
have different character than studied here. Mazzola et al. [51]
observed the oscillations in short times, which disappear after
some finite time and are related to the non-Markovian character
of the reservoirs. In contrast, in the examples presented
here, the periodic behavior of the nonclassicality witnesses
persists as being related to the unitary evolution of the
states.

It is worth stressing again that the aperiodic SV and SR
effects, which are analogous to the typical sudden decays of the
entanglement, can be observed by inclusion of the dissipation.
Assuming Markov’s approximation, one can apply the master
equation, given by Eq. (25) in a special case for a single mode
(k =1). Then the SVs and SRs become aperiodic and the
final SV occurs after some evolution time, which depends on
the dissipation. However, the dissipation is not a necessary
condition for the SV occurrence in this model.

The SV and SR of the entanglement in two-mode dissipative
coupled Kerr models was studied in Ref. [52]. Here we showed
that the periodic SV and SR of squeezing can be observed even
in the single-mode nondissipative Kerr model. This example
confirms our conclusion of the general occurrence of the SV
and SR of nonclassicality witnesses even for single-mode
undamped systems.

VII. CONCLUSIONS

We have applied the concepts of the SV and SR of
quantum entanglement measures to study the SV and SR of
entanglement and nonclassicality witnesses.
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Our main observations can be summarized as follows:

(i) SVs can be encountered not only in the dissipation
of entanglement but also of other nonclassical correlation
parameters, related to violations of classical inequalities
[19,23].

(i1) SVs occur not only in the dissipation of bipartite or
multipartite (multimode) interacting or noninteracting systems
but also in a single-qubit or single-mode systems. Our
examples include single-mode squeezing of photon number,
squeezing of quadrature operators [23], and violations of other
classical inequalities [19].

(iii) Nondissipative systems, which are initially even in
pure states, can also exhibit periodic SVs of nonclassical
phenomena and the related nonclassicality witnesses. For
instance, the quadrature squeezing of light in a Kerr medium
exhibits periodic SVs for some finite periods of time. In order
to observe the proper finite-time sudden decays analogous
to the standard sudden decays of entanglement [1], one
should add dissipation by coupling such systems to the
environment. The damping causes irregularity and loss of
periodicity of the evolution of the nonclassicality witnesses.
We can conclude that the damping accelerates the occurrence
of the first SVs but it is not a necessary condition for their
occurrence.

With the help of the nonclassicality criteria [19,25] and
entanglement criteria [31,32], based on moments of the
annihilation and creation operators, as discussed in Secs. IT and
I, it is possible to construct infinitely many nonclassicality
and entanglement witnesses. These witnesses, after truncation
according to Eq. (3), can exhibit the SV and SR effects when
analyzing their time evolution.

We hope that these observations might motivate deeper
analysis of SV and SR of various nonclassicality witnesses in
specific models and also in experimental scenarios.
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