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We describe the effect of thermal motion and buffer-gas collisions on a four-level closed N system interacting
with strong pump(s) and a weak probe. This is the simplest system that experiences electromagnetically induced
absorption (EIA) due to transfer of coherence via spontaneous emission from the excited state to the ground state.
We investigate the influence of Doppler broadening, velocity-changing collisions (VCC), and phase-changing
collisions (PCC) with a buffer gas on the EIA spectrum of optically active atoms. In addition to exact expressions,
we present an approximate solution for the probe absorption spectrum, which provides physical insight into the
behavior of the EIA peak due to VCC, PCC, and the wave-vector difference between the pump and probe
beams. VCC are shown to produce a wide pedestal at the base of the EIA peak, which is scarcely affected by
the pump-probe angular deviation, whereas the sharp central EIA peak becomes weaker and broader due to
the residual Doppler-Dicke effect. Using diffusionlike equations for the atomic coherences and populations, we
construct a spatial-frequency filter for a spatially structured probe beam and show that Ramsey narrowing of the
EIA peak is obtained for beams of finite width.
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I. INTRODUCTION

The absorption spectrum of a weak probe, interacting with
a pumped nearly degenerate two-level transition, can exhibit
either a sharp subnatural dip or a peak at line center [1],
depending on the degeneracy of the levels, the polarizations
of the fields, and the absence or presence of a weak magnetic
field. The phenomenon is termed electromagnetically induced
transparency (EIT) [2,3] when there is a dip in the probe
spectrum and electromagnetically induced absorption (EIA)
[4] when there is a peak.

In the case of orthogonal polarizations of the pump and
probe, both EIT and EIA are related to the ground-level
Zeeman coherence, which is induced by the simultaneous
action of both fields. The simplest model system that exhibits
EIT is the three-level � system, where the two lower states
g1,2 are Zeeman sublevels of the ground hyperfine level Fg .
In a � system, quantum coherence can lead to the destructive
interference between the two possible paths of excitation. As
a result, if the pump field is tuned to resonance, the narrow dip
in the probe absorption spectrum at the two-photon resonance
can be interpreted as EIT caused by a coherent population
trapping [5] in the lower levels. The simplest system that
exhibits EIA is the four-level N system [6,7] (Fig. 1, top),
consisting of states g1,2 and e1,2, which are Zeeman sublevels
of the ground (Fg) and excited (Fe) hyperfine levels, where
the gi ↔ ei , i = 1,2, transitions interact with nonsaturating
pump(s) and the g2 ↔ e1 transition interacts with a weak
probe. The N system gives results similar to those obtained for
a closed alkali-metal Fg → Fe = Fg + 1 transition interacting
with a σ±-polarized pump and a weak π -polarized probe [7,8].
It has been shown [6,7,9], that the EIA peak is due to transfer
of coherence (TOC) from the excited state to the ground state,
via spontaneous emission. The excited-state coherence only
exists in systems where the coherent population trapping is
incomplete so that there is some population in the excited

state [9,10]. The transfer of this coherence to the ground
state leads to a peak in the contribution of the ground-state
two-photon coherence to the probe absorption at line center,
instead of the dip that occurs in its absence (for example, in a
� system or a nondegenerate N system) [11].

In this paper, we investigate the effect of the thermal motion
of the alkali-metal gas on the EIA spectrum, in the presence of
a buffer gas. In a previous paper [12], we discussed the effect
of phase-changing collisions (PCC) with the buffer gas on an
N system and showed that they lead to considerable narrowing
of the EIA peak in both the presence and the absence of
Doppler broadening. These collisions increase the transverse
decay rate of the optical transitions, resulting in the so-called
pressure broadening of the optical spectral line, and are thus
easily incorporated in the Bloch equations. However, in order
to describe the overall effect of buffer-gas collisions, it is
necessary to include both velocity-changing collisions (VCC)
as well as phase-changing collisions (PCC) [13,14], which is a
much greater challenge. Due to the complexity of the problem,
we limit our discussion to a four-level N system and to
buffer-gas pressures that are sufficiently low so that collisional
decoherence of the excited state [15] can be neglected.

The Doppler effect occurs in the limit of ballistic atomic
motion, when the mean free-path between VCC is much
larger than the radiation wavelength. Due to their narrow
spectral response, Raman processes such as EIT and EIA are
much more sensitive to the “residual” Doppler effect, arising
when there is a difference between the wave vectors of the
Raman fields. In many cases however, the Raman wavelength
can become much larger than the typical free path between
collisions. For example, an angular deviation of a milliradian
between the two optical beams yields a superposition pattern
with a wavelength in the order of a millimeter. In this limit,
the atoms effectively perform a diffusion motion through
the spatial oscillations of the superposition field, leading to the
Dicke narrowing of the residual Doppler width. While
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FIG. 1. (Color online) Top: The N -configuration atom. The light-
induced transitions are marked by solid (pump field) and dashed
(probe field) lines, and the wavy arrows are spontaneous decay paths.
The thick arrow illustrates the spontaneous transfer of coherence
(TOC). Bottom: Probe and pump beam(s), of possibly a finite size,
propagating through the vapor cell. The optical axis is parallel to ẑ,
while x̂ and ŷ form the optical transverse plane.

the residual Doppler broadening is linearly proportional to the
Raman wave vector, the Dicke narrowing shows a quadratic
dependence. This behavior was demonstrated in EIT with a
noncollimated pump and probe [16,17].

Recently, a model describing thermal motion and collisions
for EIT was presented [17–19], utilizing the density matrix
distribution in space and velocity with a Boltzmann relax-
ation formalism. The model describes a range of motional
phenomena, including Dicke narrowing, and diffusion in the
presence of electromagnetic fields and during storage of
light. This diffusion model was used to describe a spatial
frequency filter for a spatially structured probe [19] and
also Ramsey narrowing [20,21]. Here, we utilize a similar
formalism to estimate the influence of the atomic thermal
motion in a buffer-gas environment, including VCC and
PCC, on the spectral shape of EIA in a four-level N system,
with collimated or noncollimated light beams. In Sec. II, the
Doppler broadening and Dicke narrowing effects are studied
for plane-wave fields. As the full mathematical treatment is
lengthy, it appears in Appendix A. However, an approximate
equation which describes the main features of the spectra is
presented in Sec. II. Diffusionlike equations for the ground-
and excited-state coherences and populations are derived in
Appendix B. Two main phenomena are described using this
model: (i) a spatial-frequency filter for structured probe fields
which is presented in Sec. III, and (ii) atomic diffusion through
a finite-sized beam resulting in Ramsey narrowing of the EIA
peak, which is discussed in Sec. IV. Finally, conclusions are
drawn in Sec. V.

II. THE DOPPLER-DICKE LINE SHAPES OF EIA

Consider the near-resonant interaction of a four-state atom
in an N configuration, depicted in Fig. 1. The two lower states
g1 and g2 are degenerate and belong to the ground level with
zero energy, and the excited states e1 and e2 are degenerate
with energy h̄ω0. The light field consists of three beams, each

with a carrier frequency ωj and a wave vector qj , where j =
1,2 denotes the two strong pump beams and j = p denotes
the weak probe:

Ĕ(r,t) =
∑

j=1,2,p

Ej (r,t)e−iωj t+iqj ·r + c.c. (1)

Here, Ej (r,t) are the slowly varying envelopes in space and
time. The pumps drive the g1 ↔ e1 and g2 ↔ e2 transitions,
and the probe is coupled to the g2 ↔ e1 transition.

Our model incorporates four relaxation rates: �, the
spontaneous emission rate from each of the excited states to all
the ground states; �pcc, the pressure broadening of the optical
transitions resulting from PCC; γvcc, the velocity autocorre-
lation relaxation rate (1/γvcc is the time it takes the velocity
vector to vary substantially) [22], which is proportional to the
rate of VCC; and γ , the homogenous decoherence rate within
the ground and excited state manifolds due, for example, to
spin-exchange and spin-destruction collisions.1 In the model,
the transition g1 ↔ e2 is forbidden (due to some selection rule
such as angular momentum).

To focus the discussion, we assume that all three beams
are continuous waves, namely, Ej (r,t) = Ej (r). We then
obtain stationary Rabi frequencies, given by Vj = Vj (r) =
µj Ej (r)/h̄, where µj is the transition dipole moment. The
complete set of Bloch equations for the four-level N system
consists of 16 equations [7]. In order to simplify the application
of the theory to EIA, we assume that Vp � V1,2 < � and that
the pump transitions are well below saturation, so that in the
absence of the probe, the population concentrates in the g2

state, the g2 ↔ e2 dipole is excited, and the e2 state is empty
up to second order in the pump field [7]. The equations can
then be written up to the first order in the probe field Vp [6],
which reduces the number of Bloch equations to 5.

The complete analytical development is presented in
Appendix A, and an example of the calculated probe absorp-
tion spectrum for collinear and degenerate beams (q1 = q2 =
q) is given in Fig. 2(a) (blue line). For the numerical calcula-
tions, we have considered the D2 line of 85Rb (wavelength
780 nm) at room temperature, with a total spontaneous
emission rate � = 2π × 6 MHz [23]. Other parameters are
indicated in the figure caption and described in what follows.

Four complex frequencies control the EIA dynamics, each
relating to a different coherence in the process:

ξ1 = (�p − �1) − (qp − q1) · v+i(γ + γvcc), (2a)

ξ2 = �p − qp · v+i(�̃ + γvcc), (2b)

ξ3 = (�p − �2) − (qp − q2) · v+i(� + γ + γvcc), (2c)

ξ4 = (�p − �1 − �2) − (qp − q1 − q2) · v+i(�̃ + γvcc),

(2d)

1The fact that the “inner” decoherence rate γ is shared by both
the ground and the excited manifolds does not imply that their
total decoherence rate is the same; the coherence between the two
excited states decays via the e → g relaxation channels and therefore
decays much faster than the ground-state coherence. Incorporating
different values of γ for the ground and excited states does not lead
to substantial changes in the collision-induced phenomena explored
here.
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FIG. 2. (Color online) (a) The probe absorption, calculated from
the exact solution for the density matrix (blue line) and from the
approximate solution Eq. (7) (red line), for collinear plane-wave
beams (q1 = q2 = qp), �pcc = 5�, γvcc = 0.025� , A = 0.816, V2 =
0.1�, V1 = AV2, Vp = γ = 0.001�, and �1 = �2 = 0. The inset
depicts a zoom on the EIA peak with its wide pedestal. (b) The EIA
spectrum (red line) is the sum of three contributions in Eq. (7): the
one-photon absorption (black dashed line), a pedestal at the base of
the peak (brown dotted line), and the sharp peak (green dash-dotted
line). For the clarity of presentation, the one-photon absorption is
added to the pedestal and to the sharp peak curves.

with the one-photon detunings �j = ωj − ωej gj
(j = 1,2) and

�p = ωp − ωe1g2 and �̃ = �/2 + �pcc + γ . The frequency ξ2

is related to the probe transition and includes the one-photon
Doppler shift qp · v. ξ1 and ξ3 relate to the slowly varying
ground- and excited-state coherences and include the residual
Doppler shift (qp − qi) · v and the Raman (two-photon)
detuning. ξ4 relates to the three-photon transition (whose direct
optical-dipole is forbidden), required for the EIA process.
Note that the fast optical decay rates (� or �̃) are absent only
from ξ1.

In EIA, in contrast to EIT, a strong optical-dipole transition
(g2 ↔ e2) is excited even in the absence of the probe. Its
excitation depends on its resonance with the pump field and is
thus affected by Doppler broadening. This leads to velocity-
dependent equations even in zero-order in the probe field and
introduces the additional complex frequency

ξ5 = −�2 + q2 · v+i(�̃ + γvcc), (3)

with the one-photon Doppler shift q2 · v. The overall dynamics
is thus governed by the five equations (A9a)–(A9e).

We start by calculating the probe absorption spectrum for
uniform pump and probe fields (plane waves) by solving the
equations analytically. The spectrum depends on 18 different

integrals over velocity, of the form

Gi =
∫

d3v
ξα · · · ξβ

ξ5ξd

F (v), (4)

where F (v) = (2πv2
th)−3/2e−v2/2v2

th is the Boltzmann velocity
distribution and v2

th = kbT /m is the mean thermal velocity.
The determinant ξd ,

ξd = ξ1ξ2ξ3ξ4 − ξ3
(
ξ2V

2
2 + ξ4V

2
1

) + iV1V2bA�(ξ2 + ξ4),

(5)

introduces the power-broadening effect (first and second
terms), i.e., the dependence of the Raman spectral width
on the pump powers, and the spontaneous TOC from the
excited state to the ground state (last term). The last term
is associated with the TOC due to its dependence on the
parameter b, which sets the amount of TOC in the original
dynamic equations (A1), and can take either the value 0 (no
TOC) or 1 [6]. The spontaneous decay branching ratio is given
by A2 = µ2

e1g1
/(µ2

e1g1
+ µ2

e1g2
) [7]. The TOC term in Eq. (5)

depends on the complex frequency

ξ2 + ξ4 = (2�p − �1 − �2) − (2qp − q1 − q2) · v

+ 2i(�/2 + �pcc + γ + γvcc). (6)

It is important to note that, although each of the individual
frequencies ξ2 and ξ4 is affected by a Doppler shift (either
one- or three-photon), the sum ξ2 + ξ4 exhibits only a residual
Doppler shift (assuming nearly collinear pumps, q1 ≈ q2).
Nevertheless the relaxation rate (�/2 + �pcc + γ + γvcc) is the
same as that characterizing the decay of the optical transitions.
As a consequence, even when �pcc is much smaller than the
optical Doppler width, it plays a significant role in determining
the intensity of the EIA spectrum. This is in contrast to one- and
two-photon processes (such as EIT), in which �pcc is irrelevant
when it is much smaller than the Doppler width. It can also be
seen that when q1 ≈ q2, the various residual Doppler shifts are
negligible compared to the relaxation rates in the determinant
ξd, so that ξd is only weakly dependent on these shifts.

Examining the absorption spectrum in Fig. 2(a), we observe
the narrow absorption peak on top of the broad one-photon
curve. Moreover, as can be seen in the inset, the EIA resonance
consists of two independent features: a “pedestal” at the
base and a sharp absorption peak at the center. In order to
obtain physical insight into these features, we have derived
an approximate solution for the probe absorption which
incorporates the main contributions to the EIA, namely, the
underlying EIT mechanism plus the spontaneous TOC. The
approximate Fourier transform of the nondiagonal density-
matrix element for the probe is

Re1g2 = n0

[
−G4 + V 2

2 G5 + iV1V2bA�
iG2G3γvcc

1 − iG1γvcc

]
Vp,

(7)

where G1 = ∫
d3v

ξ2ξ3ξ4F (v)
ξd

, G2 = ∫
d3v

ξ3ξ4F (v)
ξd

, G3 =∫
d3v

ξ2ξ4F (v)
ξ5ξd

, G4 = ∫
d3v

ξ1ξ3ξ4F (v)
ξd

, G5 = ∫
d3v

ξ3F (v)
ξd

, and n0

is the number density of the active atoms. It can be shown
that Eq. (7) is valid provided γvcc � �pcc + �/2. For an atom
at rest and in the absence of collisions, so that γvcc = 0,
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vth → 0, and �pcc = 0, Eq. (7) is identical to the expression
obtained by Taichenachev et al. [6] (with b = 1),

Rrest
e1g2

= in0Vp

�/2 − i�p

[
1 + 2A|V1|2/�

2(1 − A2)|V2|2/� − i�p

]
. (8)

The first term in the square brackets in Eqs. (7) and (8)
describes the one-photon (background) absorption, and the
other terms are the EIA peak.

For a moving atom, the spectrum resulting from Eq. (7) is
shown in Fig. 2(a) (red dashed line) and is compared with the
exact solution; evidently, there is a good agreement between
the spectra. Despite the small discrepancy in the intensity
of the sharp peak, the approximate solution preserves the
main features in the resonance. When plotted separately in
Fig. 2(b), the three terms in Eq. (7) can be identified with the
different spectral features: −G4 (black dashed line) describes
the background absorption; V 2

2 G5 (brown dotted line), which
constitutes the total peak in the absence of VCC, describes the
wide pedestal; and iG2G3γvcc/(1 − G1γvcc) (green dashed-
dotted line) describes the sharp EIA peak, induced by VCC.

Figure 3 shows the effect of varying the VCC rate, for
a fixed PCC rate (�pcc = 5�) and zero pump-probe angular
deviation. The width of the pedestal feature depends on the
VCC rate and is given by γvcc + γ, while the width of the
narrow peak shows only a very weak dependence on γvcc.
Increasing the VCC rate leads to a decrease in the overall EIA
intensity, but to an increase in the ratio between the amplitude
of the narrow peak and the pedestal baseline.

We now turn to explore the residual (two-photon and
four-photon) Doppler and Dicke effects due to wave-vector
mismatch between the pump fields and the probe, introduced
in principle either by a frequency detuning between the fields,
|qp| �= |q1,2|, or due to an angular deviation between them,
qp � ‖ q1,2. We mainly focus on the latter, which may be found
in a nearly degenerate level scheme, and we further take the
two pump fields to be the same, namely, q1 = q2. Figure 4
presents the probe absorption spectrum for different values of
the wave-vector difference, δq = qp − q1,2, when γvcc = 0.1�

and �pcc = �. As can be seen, increasing δq broadens the
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FIG. 3. (Color online) The EIA peak for different γvcc rates and
�pcc = 5� at zero pump-probe angular deviation; other parameters
are as in Fig. 2.
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FIG. 4. (Color online) Calculated probe absorption spectra with
γvcc = 0.1� and �pcc = �, for different pump-probe angular devia-
tions. Other parameters are as in Fig. 2.

EIA spectrum (see inset). This is analogous to the broadening
of an EIT transmission peak in a similar configuration [17].
However, the wide collisionally broadened pedestal remains
unaffected by the changes in δq, indicating that it mostly
originates from homogenous decay processes. Figure 5(a)
summarizes the full-width at half-maximum (FWHM) of the
EIA peak for �pcc = � and for various values of γvcc, as a
function of δq. Because of the difficulty of separating the
sharp peak from the background in the calculated spectra,2

the widths of the sharp EIA peak were obtained only from
the third term in Eq. (7). In contrast to an EIT peak, which
does not depend on γvcc when δq = 0 (collinear degenerate
beams) [19], the FWHM of the EIA peak at δq = 0 depends
weakly on the VCC rate (although barely noticeable in the
figure). This difference derives from the effect of collisions on
the pump absorption in the case of EIA, as described earlier.

For δq �= 0 the FWHM of the peak in the Dicke limit
(high γvcc) depends on γvcc and is proportional to the residual
Doppler-Dicke width, 2vthδq2/γvcc. In this limit, the results
are well approximated by the analytic expression [19] [dotted
lines in Fig. 5(a)]

FWHM = 2 × 2

a2
γvccH

(
a
vthδq

γvcc

)
, (9)

where H (x) = e−x − 1 + x and a2 = 2/ ln 2. Increasing the
pump-probe angular deviation reduces the efficiency of the
EIA process and thus results in a decrease in the probe
absorption [Fig. 5(b)]. This is of course the opposite trend
to that of EIT (blue stars), where the depth of the dip decreases
(the absorption increases) with increasing δq [19].

III. SPATIAL-FREQUENCY FILTER

We now to turn to discuss the results of our model from
the viewpoint of a spatial-frequency filter for a structured

2When γvcc → 0, the third term in Eq. (7) gradually vanishes,
and the second term (V 2

2 G5) is responsible for the EIA peak, as
indicated by the brown-dotted line in Fig. 2(b). Its width is limited by
homogenous broadening mechanisms and determined by γ and �pcc.
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FIG. 5. (Color online) Calculated EIA FWHM (a) and absorption
(b) for �pcc = � and various values of γvcc, as a function of the
pump-probe wave-vector difference δq. The blue starts are the EIT
absorption on the Raman resonance conditions, with �pcc = � and
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probe beam. When nonuniform beams are considered, the
different spatial frequencies that compose the beams result in
different Doppler and Dicke widths. Consequently, the various
spatial-frequency components experience different absorption
and refraction in the medium. Specifically, the dependence of
the absorption on the transverse wave-vectors of the probe
beam manifests a filter for the probe in Fourier space.

We assume an optical configuration of two collinear
uniform pumps (plane waves with V1 and V2 constant) and
a spatially varying propagating probe, Vp = Vp(r,t). Since
the medium exhibits a nonlocal response due to the atomic
motion, the evolution of the probe is more naturally described
in the Fourier space Vp(k,ω), where k and ω are the spatial and
temporal frequencies of the envelope of the probe. Under these
assumptions, the model results in diffusionlike equations for
the populations and coherences of the atomic medium, derived
in Appendix B. To simplify the general dynamics of Eqs. (B8a)
and (B9), we take the stationary case [ω = 0, Vp = Vp(k)] and
assume that the carrier wave-vector of the probe is the same
as that of the pumps, qp = q1 = q2, so that δq1 = δq2 = 0.
Taking the Fourier transform [see Eq. (A11)], we obtain a set
of steady-state equations for the spatially dependent atomic
coherences, Rg1g2 (k), Re1e2 (k), and Re1g2 (k),

[i(�p − �1) − γ − K1p|V1|2 − K3p|V2|2 − Dk2]Rg1g2

= (Dk2 − bA�)Re1e2 + K1pV
∗

1 Vpn0, (10a)

[i(�p − �2) − � − γ − Dk2]Re1e2

= −V1V
∗

2 (K1p + K3p)Rg1g2 − V ∗
2 (K1p + Kpump)Vpn0,

(10b)

Re1g2 = iK1p(V1Rg1g2 + Vpn0), (10c)

where K1p = iG1p/(1 − iG1pγvcc) is the one-photon absorp-
tion spectrum with G1p = ∫

F (v) /ξ2d
3v; K3p = iG3p/(1 −
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FIG. 6. (Color online) The EIA spatial-frequency filter, given in
Eq. (11b), as a function of k, with γvcc = 0.025� and �pcc = 10�. The
red curve is plotted for �p on resonance; the blue-dashed and black-
dotted curves demonstrate the behavior at nonzero Raman detuning.

iG3pγvcc) is the three-photon absorption spectrum with
G3p = ∫

F (v)/ξ4d
3v; and Kpump = iGpump/(1 − iGpumpγvcc)

is the one-photon (pump) absorption spectrum with Gpump =∫
F (v)/ξ5d

3v, as described in Appendix B. Solving Eq. (10)
for Re1g2 (k,ω), substituting the result into the expression for
the linear susceptibility [Eq. (A14)], assuming that V1 = ηV2

(0 < η � 1), and neglecting all the terms proportional to 1/�,
we obtain

χe1g2 (k) = g

c
iKn0 (1 + L) , (11a)

L = η(2bA − η)�p

−i�p + γ + (η2 + 1 − 2bAη)�p + Dk2
, (11b)

where D = vth/γvcc is the diffusion coefficient, �p = K|V2|2
is the power broadening, and K1p ≈ K3p ≈ Kpump = K =∫

F (v)/[qp · v+i(�/2 + �pcc + γ + γvcc)]d3v for �p �
�hom = γ + �p. In the case where η = A, Eqs. (11) are similar
to Eq. (8) obtained by Taichenachev et al. [6], except for the
diffusion term Dk2, which vanishes for an atom at rest.

The imaginary part of the susceptibility in Eq. (11) yields
the absorption of the probe for various values of k. The first
term in parentheses in Eq. (11a) is the linear one-photon
absorption, and the second term is the k-dependent EIA
contribution. Thus, the real part of L in Eq. (11b) describes
an “absorbing” spatial-frequency filter, the same way as was
done for EIT [24,25]. Figure 6 summarizes several examples of
the EIA spatial filter behavior as a function of k for �p = 0,

�p = ±�hom, and �p = ±2�hom. At �p = 0, the curve is
a Lorentzian and maximum absorption is achieved. When
�p �= 0 the filter becomes more transparent.

IV. RAMSEY NARROWING

We now consider the N system interacting with collinear
probe and pump beams that have finite widths. Due to thermal
motion, the alkali atoms spend a period of time in the
interaction region and then leave the light beams, evolve “in
the dark,” and diffuse back inside. Such a random periodic
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FIG. 7. (Color online) Calculated probe absorption spectra (blue
line) for one-dimensional stepwise beam with finite thickness:
(a) 2a = 100 µm and (b) 2a = 10 mm, and fitted Lorentzian (red
dashed line). All other parameters are the same as those in Fig. 2.

motion was described recently by Xiao et al. [20,21] for an
EIT system and was shown to result in a cusplike spectrum.
Near its center, the line is much narrower than that expected
from time-of-flight broadening and power broadening, and the
effect, resulting from the contribution of bright-dark-bright
atomic trajectories of random durations, was named Ramsey
narrowing.

Ramsey-narrowed spectra can be calculated analytically
from the diffusion equations of the atomic coherences when
the light fields of both the probe and pump beams have
finite widths [19]. The EIA spectrum resulting from a one-
dimensional uniform light-sheet of thickness 2a in the x-
direction is derived analytically in Appendix B [Eq. (B12)].
In Fig. 7, we show the spectrum for two different thicknesses
and the fitted Lorentzian curves. Near the resonance, the EIA
line for the 100-µm sheet is spectrally sharper than the fitted
Lorentzian—the characteristic signature of Ramsey narrow-
ing. In contrast, the EIA peak calculated for a 10-mm beam is
well fitted by the Lorentzian. In addition, the EIA contrast de-
teriorates as the beam becomes narrower, since the interaction
area decreases and fewer atoms interact with the fields.

V. CONCLUSIONS

In this paper, we extended the theory that describes the
effect of buffer-gas collisions on three-level � systems in an
EIT configuration [17–19] to the case of a four-level closed N

system which is the simplest system that experiences EIA due
to TOC. Using this formalism, we investigated the influence
of collisions of optically active atoms with a buffer gas on the
EIA peak. In addition to the exact expressions, we presented an
approximate solution for the probe absorption spectrum, which
provides a physical insight into the behavior of the EIA peak
due to VCC, PCC, and wave-vector difference between the
pump and probe beams. VCC were shown to produce a wide
pedestal at the base of the EIA peak; increasing the pump-
probe angular deviation scarcely affects the pedestal, whereas

the sharp central EIA peak becomes weaker and broader
due to the residual Doppler-Dicke effect. Using diffusionlike
equations for the atomic coherences and populations, the
spatial-frequency filter and the Ramsey-narrowed spectrum
were analytically obtained.

In extending the description from the � to the N schemes,
we have considered several elements that are likely to
be important in other four-level systems. These include
the diffusion of excited-state coherences and the influence
of the thermal motion on the optical dipole in the absence of
the probe. The latter introduces a Doppler contribution into the
pumping terms and consequently affects the power broadening
of the narrow resonances.

APPENDIX A: REDUCED DENSITY MATRIX

Consider the near-resonant interaction of a light field
consisting of one or two moderately strong pumps and a
weak probe, as given in Eq. (1), with the four-level degenerate
Nsystem of Fig. 1(a). We use the first-order approximation in
the probe amplitude, Vp, and assume that V2 < �, V1 � V2,
and Vp < V1,2. Since the pump transitions are assumed to be
nonsaturated, the atomic population in the absence of the probe
concentrates in the g2 state, and the population in other states
can be neglected. The g2 ↔ e2 dipole, excited in the absence
of the probe, is of importance and is thus considered. The
resulting Bloch equations are [6]

˙̆ρ
(1),i
g1g2

(ωp − ω1) = −[
i
(
ωe1g2 − ωe1g1

) + γ
]
ρ̆(1),i

g1g1
+ iV̆ ∗

1 ρ̆(1),i
e1g2

− iV̆2ρ̆
(1),i
g1e2

+ bA�ρ̆(1),i
e1e2

, (A1a)

˙̆ρ
(1),i
e1g2

(ωp) = −[
iωe1g2 + �/2 + �pcc

]
ρ̆(1),i

e1g2

+ iV̆pρ̆(0),i
g2g2

+ iV̆1ρ̆
(1),i
g1g2

, (A1b)

˙̆ρ
(1),i
e1e2

(ωp − ω2) = −[
i
(
ωe1g2 − ωe2g2

) + � + γ
]
ρ̆(1),i

e1e2

+ iV̆pρ̆(0),i
g2e2

+ iV̆1ρ̆
(1),i
g1e2

− iV̆ ∗
2 ρ̆(1),i

e1g2
, (A1c)

˙̆ρ
(1),i
g1e2

(ωp − ω1 − ω2) = −[
i
(
ωe1g2 − ωe1g1 − ωe2g2

)
+�/2 + �pcc

]
ρ̆(1),i

g1g1
− iV̆ ∗

2 ρ̆(1),i
g1g2

,

(A1d)

˙̆ρ
(0),i
g2e2

(−ω2) = −[
�/2 + �pcc − iωe2g2

]
ρ̆(0),i

g2e2
(−ω2)

+ iV̆ ∗
2

(
ρ̆(0),i

e2e2
− ρ̆(0),i

g2g2

)
. (A1e)

Here, ρ̆(j ),i
ss ′ is the density-matrix element of the ith atom (one of

many identical particles) to the j th order in the probe, and apart
from ρ̆(0),i

g2g2
≈ 1, ρ̆(0),i

ss = 0. We also consider the envelopes of
the pumps to be constant in time so that V1,2 is shorthand for
V1,2(r). The wave equation for the probe field is(

∇2 − 1

c2

∂2

∂t2

)
Ĕp(r,t) = 4π

c2

∂2

∂t2
P̆e1g2 (r,t), (A2)

where P̆e1g2 (r,t) = Pe1g2 (r,t)e−iωpt e−iqp ·t is the contribution
of the e1 ↔ g2 transition to the expectation value of the
polarization, Pe1g2 is the slowly varying polarization, and ∇2

is the three-dimensional Laplacian operator. With Eq. (1),
and assuming without loss of generality that q̂p = ẑqp, as
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shown in Fig. 1(b), Eq. (A2) can be written in the paraxial
approximation as(

∂

∂t
+ c

∂

∂z
− i

c

2qp

∇2
⊥

)
Vp(r,t) = i

g

µ∗
e1g2

Pe1g2 (r,t), (A3)

where ∇2
⊥ is the transverse Laplacian operator, and

g = 2πωp|µe1g2 |2/h̄ is a coupling constant.
Following [19], we introduce a density-matrix distribution

function in space and velocity,

ρ̆ss ′ = ρ̆ss ′ (r,v,t) =
∑

i

ρ̆i
ss ′ (t)δ[r − ri(t)]δ[v − vi(t)],

(A4)

where the time dependence of ρ̆i
ss ′ (t) is determined by

Eqs. (A1). Differentiating Eq. (A4) with respect to time, we
arrive at

∂

∂t
ρ̆ss ′ + v · ∂

∂r
ρ̆ss ′ +

[
∂

∂t
ρ̆ss ′

]
col

=
∑

i

∂

∂t
ρ̆i

ss ′ (t)δ[r − ri(t)]δ[v − vi(t)], (A5)

where the effect of velocity-changing collisions is taken in the
strong collision limit in the form of a Boltzmann relaxation
term [22],[

∂

∂t
ρ̆ss ′

]
col

= −γvcc[ρ̆ss ′ (r,v,t) − R̆ss ′ (r,t)F (v)], (A6)

with R̆ss ′ = R̆ss ′ (r,t) = ∫
d3vρ̆ss ′ (r,v,t) being the density-

number of atoms per unit volume, near r in space, and

F = F (v) = (2πvth)−3/2e−v2/2vth , vth = kbT

m
(A7)

is the Boltzmann distribution.
Before writing the coupled dynamics of the internal and

motional degrees of freedom, we introduce the slowly varying
envelopes of the density-matrix elements, ρss ′ = ρss ′ (r,v,t),
as

ρ̆g1g2 = ρg1g2e
−i(ωp−ω1)t ei(qp−q1)·r,

ρ̆e1g2 = ρe1g2e
−iωpt eiqp ·r, ρ̆e1e2 = ρe1e2e

i(qp−q2)·r,
(A8)

ρ̆g1e2 = ρg1e2e
−i(ωp−ω1−ω2)t ei(qp−q1−q2)·r,

ρ̆g2e2 = ρg2e2e
iω2t e−iq2·r,

and similarly the slowly varying densities Rss ′ = ∫
d3vρss ′ .

Equations (A1) then become[
∂

∂t
+ v · ∂

∂r
− iξ1

]
ρg1g2 − γvccRg1g2F

= i
(
V ∗

1 ρe1g2 − V2ρg1e2

) + bA�ρe1e2 , (A9a)[
∂

∂t
+ v · ∂

∂r
− iξ2

]
ρe1g2 − γvccRe1g2F

= i
[
Vpn0F + V1ρg1g2

]
, (A9b)[

∂

∂t
+ v · ∂

∂r
− iξ3

]
ρe1e2 − γvccRe1e2F

= i
(
V1ρg1e2 − V ∗

2 ρe1g2

) + iVpρg2e2 , (A9c)

[
∂

∂t
+ v · ∂

∂r
− iξ4

]
ρg1e2 − γvccRg1e2F = −iV ∗

2 ρg1g2 ,

(A9d)[
∂

∂t
+ v · ∂

∂r
− iξ5

]
ρg2e2 − γvccRg2e2F = −iV ∗

2 n0F,

(A9e)

where ξi (i = 1 − 5) are given in Eq. (2)). The expectation
value of the polarization density Pe1g2 (r,t) in terms of the
number density Re1g2 (r,t) is Pe1g2 (r,t) = µ∗

e1g2
Re1g2 (r,t), and

Eq. (A3) becomes(
∂

∂t
+ c

∂

∂z
− i

c

2qp

∇2
⊥

)
Vp(r,t) = igRe1g2 (r,t). (A10)

We now consider the case of stationary plane-wave pumps. For
this case, it is convenient to introduce the Fourier transform

f (r,t) =
∫ +∞

−∞

d3k

2π
eikr

∫ +∞

−∞

dω

2π
e−iωtf (k,ω) , (A11)

and write Eqs. (A9) as

[ω − k · v + ξ1]ρg1g2 − iγvccRg1g2 (k,ω)F

= (
V2ρg1e2 − V ∗

1 ρe1g2

) + ibA�ρe1e2 , (A12a)

[ω − k · v + ξ2]ρe1g2 − iγvccRe1g2 (k,ω)F

= −(
Vpn0F + V1ρg1g2

)
, (A12b)

[ω − k · v + ξ3] ρe1e2 − iγvccRe1e2 (k,ω) F

= (
V ∗

2 ρe1g2 − V1ρg1e2

) − Vpρg2e2 , (A12c)

[ω − k · v + ξ4] ρg1e2 − iγvccRg1e2 (k,ω) F = V ∗
2 ρg1g2 ,

(A12d)

[ω − k · v + ξ5] ρg2e2 − iγvccRg2e2 (k,ω) F = V ∗
2 n0F,

(A12e)

and Eq. (A10) as(
ikz − i

ω

c
+ i

k2

2qp

)
Vp (k,ω) = i

g

c
Re1g2 (k,ω) . (A13)

The linear susceptibility χe1g2 (k,ω) is defined by

Re1g2 (k,ω) = χe1g2 (k,ω)
c

g
Vp (k,ω) . (A14)

In order to find the probe absorption spectrum, we solve
Eqs. (12) analytically, obtain an expression for ρss ′ , and
formally integrate it over velocity. This leads to an expression
for Rss ′ in terms of integrals over velocity, in the form of
Eq. (4), such as G1 = ∫

d3v
ξ2ξ3ξ4F (v)

ξd
, which can be evaluated

numerically. In the general case, the resulting expression for
Rss ′ is very complicated and is not reproduced here. In order to
explore the underlying physics, we developed an approximate
expression for the Fourier transform of the density-matrix
element that refers to the probe transition, namely, Re1g2 [see
Eq. (7)].

One can verify that in the absence of the pumps (V1 = V2 =
0), the resulting one-photon complex spectrum simplifies to
the well-known result for the strong collision regime, K =
iG/ (1 − iγvccG), where G = ∫

d3vF/ (ω − k · v + ξ2) [22].
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APPENDIX B: DIFFUSION IN THE PRESENCE OF FIELDS

In order to obtain diffusionlike equations for the density-
matrix elements and the probe fields, we begin by integrating
Eqs. (A9a) and (A9c) over velocity and obtain[

∂

∂r
+ iδq1

]
· Jg1g2 +

[
∂

∂t
− i(�p − �1) + γ

]
Rg1g2

= i
(
V ∗

1 Re1g2 − V2Rg1e2

) + bA�Re1e2 , (B1a)[
∂

∂r
+ iδq2

]
· Je1e2 +

[
∂

∂t
− i(�p − �2) + � + γ

]
Re1e2

= i
(
V1Rg1e2 − V ∗

2 Re1g2 + VpRg2e2

)
, (B1b)

where Jss ′ = Jss ′ (r,t) = ∫
d3vvρss ′ is the envelope of the

current density. Expanding ρg1g2 and ρe1e2 in Eqs. (A9a) and
(A9c) as ρss ′ = Rss ′F + 1/γvccρ

(1)
ss ′ , multiplying Eqs. (A9a)

and (A9c) by v, integrating the resulting equations over
velocity using∫

d3vjvi

∂

∂xi

Rss ′F = δij vth
∂

∂xi

Rss ′ , (B2)

defining the current density of the density matrix by

γvccJss ′ =
∫

d3vjρ
(1)
ss ′ , (B3)

and retaining the leading terms in 1/γvcc, we obtain

Jg1g2 + D

[
∂

∂r
+ iδq1

]
Rg1g2

= i

γvcc

(
V ∗

1 Je1g2 − V2Jg1g2

) − bA�

γvcc
Je1e2 , (B4a)

Je1e2 + D

[
∂

∂r
+ iδq2

]
Re1e2

= i

γvcc

(
V1Jg1e2 − V ∗

2 Je1g2 + ṼpJg2e2

)
, (B4b)

where D = vth/γvcc. Substituting Jg1g2 and Je1e2 from Eq. (B4)
into Eq. (B1), we get[

∂

∂t
− i(�p − �1) + γ − D

(
∂

∂r
+ iδq1

)2 ]
Rg1g2

= i
(
V ∗

1 Re1g2 − V2Rg1e2

) + bA�Re1e2 − D

(
∂

∂r
+ iδq1

)

×
[

i

γvcc

(
V ∗

1 Je1g2 − V2Jg1e2

) − bA�

γvcc
Je1e2

]
, (B5a)

[
∂

∂t
− i(�p − �2) + � + γ − D

(
∂

∂r
+ iδq2

)2 ]
Re1e2

= i
(
V1Rg1e2 − V ∗

2 Re1g2 + VpRg2e2

) − D

(
∂

∂r
+ iδq2

)

×
[

i

γvcc

(
V1Jg1e2 − V ∗

2 Je1g2 + VpJg2e2

)]
. (B5b)

In order to calculate Re1g2 , Rg1e2 , and Rg2e2 , and Je1g2 , Jg1e2 ,
and Jg2e2 , we assume in Eqs. (A9b), (A9d), and (A9e) that the
envelopes change slowly enough such that |∂/∂t + v · ∂/∂r|�

|ξ2,4,5|, and we get

−iξ2ρe1g2 = γvccRe1g2F + i
(
Vpn0F + V1ρg1g2

)
, (B6a)

−iξ4ρg1e2 = γvccRg1e2F − iV ∗
2 ρg1g2 , (B6b)

−iξ5ρg2e2 = γvccRg2e2F − iV ∗
2 n0F. (B6c)

Solving Eq. (B6) formally for ρe1g2 , ρg1e2 , and ρg2e2 and
substituting only their leading parts, i.e., ρss ′ = Rss ′F , we
find

ρe1g2 = [
γvccRe1g2 − V1Rg1g2 ) − Vpn0

]
F/ξ2, (B7a)

ρg1e2 = [
γvccRg1e2 + V ∗

2 Rg1g2

]
Fξ4, (B7b)

ρg2e2 = [
γvccRg2e2 + V ∗

2 n0
]
F/ξ5. (B7c)

Integrating Eqs. (B7) over velocity we get

Re1g2 = iK1p
[
V1Rg1g2 + Vpn0

]
, (B8a)

Rg1e2 = −iK3pV
∗

2 Rg1g2 , (B8b)

Rg2e2 = −iKpumpV
∗

2 n0, (B8c)

where K1p = iG1p/(1 − G1pγvcc) is the one-photon ab-
sorption spectrum with G1p = ∫

F/ξ2d
3v, K3p = iG3p/(1 −

G3pγvcc) is the three-photon absorption spectrum with G3p =∫
F/ξ4d

3v, and Kpump = iGpump/(1 − Gpumpγvcc) is the one-
photon (pump) absorption spectrum with Gpump = ∫

F/ξ5d
3v.

In the case of collinear pump and probe beams δq = δq1,2 =
qp − q1,2 = δq̂z, Eqs. (B5) and (B8) form a closed set when(

∂

∂r
+ iδq1,2

)
· iV1,2(r)

γvcc
Je1g2 ,(

∂

∂r
+ iδq1,2

)
· iV1,2(r)

γvcc
Jg1e2 ,(

∂

∂r
+ iδq2

)
· iVp (r,t)

γvcc
Jg2e2

can be neglected in Eq. (B5). These terms vanish completely
in the special case of pump and probe which are plane waves
(∂/∂r = 0), and also collinear and degenerate (δq = 0). They
can also be neglected whenever

∣∣V1,2,p

∣∣ � γvcc, as is the case
in many realistic situations. However, the term (∂/∂r + iδq1) ·
bA�/γvccJe1e2 in Eq. (B5a) cannot be neglected in the case of
collinear pump and probe beams since bA�/γvcc does not go
to zero.

Substituting Eq. (B4b) into Eqs. (B5a), and (B8) into
Eq. (B5), we find{

∂

∂t
− i(�p − �1) + γ + K1p|V1|2 + K3p|V2|2

}
Rg1g2

= D

(
∂

∂r
+ iδq1

)2

Rg1g2 + D

(
∂

∂r
+ iδq2

)2

Re1e2

+ bA�Re1e2 − K1pV
∗

1 Vpn0, (B9a){
∂

∂t
− i(�p − �2) + � + γ

}
Re1e2

= D

(
∂

∂r
+ iδq2

)2

Re1e2 + V1V
∗

2 (K1p + K3p)Rg1g2

+V ∗
2 (K1p + Kpump)Vpn0. (B9b)

These are the final diffusionlike coupled equations for the
ground- and excited-state coherences.
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In order to investigate the Ramsey narrowing of the
EIA peak, we consider finite probe and pump beams and
restrict the discussion to collinear EIA. We assume that the
fields are stationary and overlap in their cross sections with
negligible variation along the z-direction, Vp (r,t) = Vpw(r⊥),
V1(r) = V1w(r⊥), and V2(r,t) = V2w(r⊥), where w(r⊥) is the
transverse profile of the fields. We further take δq = 0 and
�1 = �2 = 0 for brevity. In the diffusion regime, we rewrite
Eqs. (B8) and (B9) as

[i�p + γ + (K1p|V1|2 + K3p|V2|2)w(r⊥)2]Rg1g2

= bA�

(
1 + D

γvcc
∇2

⊥

)
Re1e2 − K1pV

∗
1 Vpn0w(r⊥)2,

(B10a)

Re1g2 = iK1p
(
V1Rg1g2 + Vpn0

)
w(r⊥), (B10b)

(i�p + � + γ − D∇2
⊥)Re1e2

= V1(K1p + K3p)Rg1g2V
∗

2 w(r⊥)2

+Vp(K1p + Kpump)n0V
∗

2 w(r⊥)2, (B10c)

Rg1e2 = −iK3pV
∗

2 Rg1g2w(r⊥), (B10d)

Rg1e2 = −iKpumpV
∗

2 n0w(r⊥). (B10e)

We further consider probe and pump beams with a uniform
intensity and phase within a sheet of thickness 2a in the x-
direction (one-dimensional stepwise beams):

w(x,y) =
{

1 for |x| � a

0 for |x| > a
.

The solution for Rg1g2 , symmetric in x and decaying as |x| →
∞, is given by

Rg1g2 (|x| � a) = C2 cosh (k1x) + C1 cosh (k2x)

+ bA�β2 + Dα2
2β1

(Dα1α2)2 + bA�β3
, (B11a)

Re1e2 (|x| � a) = C1
(
k2

2 − α2
2

)
Dγvcc

bA�
(
Dα2

2 + γvcc
) cosh(k2x)

+ C2
(
k2

1 − α2
1

)
Dγvcc

bA�
(
Dα2

2 + γvcc
) cosh(k1x)

+ β1β3 − β2α
2
1D

β3bA� − (Dα1α2)2
, (B11b)

Rg1g2 (|x| > a) = C3bA�
(
Dα2

2 + γvcc
)(

α2
3 − α2

2

)
Dγvcc

e−α2(|x|−a)

+C4e
−α3(|x|−a), (B11c)

Re1e2 (|x| > a) = C3e
−α2(|x|−a), (B11d)

where α2
1 = (−i�p + γ + K1p|V1|2 + K3p|V2|2)/D,α2

2 =
α2

3 + �/D, and α2
3 = (−i�p + γ )/D, and β1 = V ∗

1 VpK1pn0,
β2 = V1V

∗
2 (K1p + K3p), and β3 = V ∗

2 Vp(K1p + Kpump)n0.

The complex diffusion wave numbers are obtained
from

2Dγvcck
2
1,2 = Dγvccα

2
+ + β3bA� ∓ [(Dγvcc)2α4

−

+β3bA�(4 + 2Dγvccα
2
+ + β3bA�)]1/2,

with α2
± = α2

2 ± α2
1 . The coefficients Ci (i = 1 − 4) are ob-

tained from the continuity conditions of Rss ′ and (∂/∂x)Rss ′at
|x| = a. From Eq. (B10b) one finds

Re1g2 (|x| � a) = iK2

[
V1

(
C2 cosh(k1x) + C1 cosh(k2x)

+ bA�β2 + Dα2
2β1

(Dα1α2)2 + bA�β3

)
+ Vpn0

]
, (B12)

and the energy absorption at frequency ωp is
finally calculated from P (�) = (h̄ωp/a)Im

∫ a

−a
dxRe1g2 (x).

Two examples for the resulting spectrum are given in
Fig. 7.
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