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Electromagnetically induced transparency (EIT) has mainly been modeled for three-level systems. In particular,
considerable interest has been dedicated to the � configuration, with two ground states and one excited state.
However, in the alkali-metal atoms, which are commonly used, the hyperfine interaction in the excited state
introduces several levels which simultaneously participate in the scattering process. When the Doppler broadening
is comparable with the hyperfine splitting in the upper state, the three-level � model does not reproduce
the experimental results. Here we theoretically investigate the EIT in a hot vapor of alkali-metal atoms and
demonstrate that it can be strongly reduced by the presence of multiple excited levels. Given this model, we also
show that well-designed optical pumping enables us to significantly recover the transparency.
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I. INTRODUCTION

Electromagnetically induced transparency (EIT), i.e., the
fact that a strong field resonant with an atomic transition
can make the atomic medium transparent for another field
resonant with a transition sharing the same excited state,
has been intensively studied for the last two decades [1,2].
It has given rise to important applications such as Doppler-
free spectroscopy, high-precision magnetometery, and lasing
without inversion [3]. EIT also led to the demonstration of
slow light [4]. This opened the way to the development of
a reversible memory for light based on dynamic EIT, which
was first demonstrated for classical pulses in optically dense
atomic media [5,6]. In the framework of quantum information
processing and networking, which relies critically on such
memories [7–9], these works have been extended to the
storage of single-photon pulses [10,11]. Further developments
have resulted in the demonstration of reversible mapping
of single-photon entanglement into and out of a quantum
memory [12]. In the regime of continuous variables, notable
advances have been the storage of squeezed light [13,14] and
the storage in an alkali-metal vapor of a faint coherent pulse
retrieved without added excess noise [15,16].

The performances of the EIT-based memories are limited
by several sources of losses. Theoretical models usually rely
on a three-level system in a � configuration: two atomic
ground states connected to the same excited state via a control
field on one transition and a signal field on the other one. In
general, these models take into account the losses occurring
when the optical depth is not sufficient for a full pulse
compression in the medium, which leads to some nonzero
transmittance during pulse storage and also to losses due to
atomic ground-state decoherence [17,18]. However, it must
be noted that the experimental demonstrations of such optical
and quantum memories were mostly performed in ensembles
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of alkali-metal atoms. In this case, the level structure is more
complex than the simple three-level � approximation due to
the hyperfine interaction, and the two ground states are often
coupled to two, three, or even more excited states by the laser
fields. In many cases, the excited levels are quite close to
each other and the inhomogeneous broadening is comparable
with the hyperfine splitting, such as for example in the D2

line of cesium atoms. This complex structure may strongly
modify the EIT dynamics. Indeed, it has been experimentally
demonstrated that the EIT can completely disappear when
the inhomogeneous broadening is larger than the hyperfine
splitting in the excited state [19]. More generally, in many
experimental studies, the transparency is smaller than the
value predicted by a three-level theoretical model. The aim
of this paper is thus to go beyond the usual three-level �

approximation and investigate in particular the effect of the
inhomogenous broadening in this case.

Several theoretical studies of EIT have taken into account
a double-� system with two excited levels in the context of
a four-wave mixing process [20–22], which leads to lasing
without inversion and squeezed light generation [17]. In these
models four levels are considered to be coupled with the
fields but each pair of fields is coupled with only one of
the � channels. Some investigations have also addressed a
different regime where the two fields are allowed to transfer
the atom into a superposition of two excited states. They have
demonstrated inhibition or enhancement of the off-resonant
Raman transition [23–28]. Numerical analysis of the field
transmission through an inhomogeneously broadened medium
of alkali-metal atoms in Ref. [29] has also shown that several
absorption peaks can be observed due to the velocity-selective
optical pumping via several excited states. A shift of the
EIT window from the two-photon resonance and a partial
reduction of the transparency due to the presence of the
second excited state were observed and theoretically justified
in Refs. [4,30,31]. These studies show that several effects may
deeply modify the properties of the EIT as compared to the
predictions of a simple � system.
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In this paper, we present a general analysis of EIT address-
ing both the case of an inhomogeneously broadened medium
and that of several � transitions due to multiple excited
levels. We derive a full analytical expression for the atomic
susceptibility that shows evidence for the interference between
multiple � transitions and unusual velocity-dependent light
shifts of the resonances. In a situation for which the Doppler
broadening of the medium is larger than the separation
between different excited states, these effects are responsible
for turning the transparency into absorption for some velocity
groups of atoms, which significantly reduces the EIT peak in
such a system. This reduction is commonly observed in EIT
experiments on the D2 line of alkaline atoms for vapors at room
temperature [15,19,32,33]. We show that such an effect could
cause complete disappearance of the EIT peak, if the atoms
with reduced transparency were not optically pumped to levels
not participating in the EIT process. Once the crucial role of
optical pumping in the system is clarified, we devise an optical
pumping scheme to significantly enhance the EIT peak in
room-temperature atomic vapors. Even though our discussion
is focused on the excitation of alkaline atoms, our model can be
applied as well to various atomlike physical systems presenting
large inhomogeneous broadening and multiple excited levels.

The paper is organized as follows. In Sec. II, the theoretical
model is presented. Section III gives the absorption profile of
a single atom with multiple excited states. We demonstrate
that this profile is strongly dependent on the velocity of the
atom. In Sec. IV, we then consider an ensemble of atoms with
different velocities and demonstrate that the inhomogeneous
broadening leads to a drastic decrease of the transparency.
Finally, in Sec. V, we present a possible method to enhance
the transparency in such configurations by an effective cooling
mechanism based on optical pumping. Section VI gives some
concluding remarks. The details of the theoretical derivations
are presented in Appendices A and B.

II. �-TYPE INTERACTION WITH MULTIPLE
EXCITED LEVELS

In this section, we study the influence of the atomic excited
state structure on a �-type interaction between an atom and
two light fields. In order to investigate the transmission of a
weak probe light through an atomic medium driven by a strong
control field, we first derive here an analytical expression for
the atomic susceptibility.

A. A model case: the cesium D2 line

A multilevel structure appears in particular in the case of
atomic levels possessing a hyperfine structure. Here we will
consider alkali-metal atoms, which have a nonzero nuclear
spin. Optical D line transitions n2S1/2 → n2P1/2 (D1 line)
and n2S1/2 → n2P3/2 (D2 line) are split due to the interaction
between electron and nuclear spins. In the ground state
n2S1/2 this interaction leads to a hyperfine splitting of several
gigahertz. The splitting in the excited state is smaller and
the excited hyperfine levels are separated by few hundred
megahertz. We will consider a �-type interaction (Fig. 1)
where the two ground states are sublevels of the same hyperfine
state. In view of the large hyperfine splitting in the ground
state, we can neglect the interaction of the fields with the other
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FIG. 1. (Color online) Level scheme of 133Cs D2 line. In the
six-level model, we include the excited levels |e2〉, |e3〉, |e4〉, and
|e〉 and the ground levels |s〉 and |g〉. The three-level approximation
involves the ground levels |s〉 and |g〉 and only |e2〉 as an excited level.

hyperfine state. This is not true in the excited state, where we
will have to take into account an interaction of the fields with
several levels of the hyperfine manifold.

As a specific example, we will consider a cesium atom
133Cs, which has been widely used for the experimental
investigations of light-matter interfacing [8,18], for high-
sensitivity magnetometery [34], as well as for precision
frequency measurements in atomic clocks [35]. For the D2

line, the separation between the closest transitions, which is
150 MHz, is approximately the same as the Doppler linewidth
in an ensemble of cesium atoms around room temperature
(about 300 K). In practice, due to this Doppler broadening, the
transitions are not resolved, and, as we will show, the combined
action of this broadening and of the hyperfine structure will
strongly influence the EIT interaction.

B. Basic assumptions and energy levels

The scheme of the light-atom interaction in the D2 line
of 133Cs atoms is sketched in Fig. 1. For a rigorous study
of the multilevel structure influence on the EIT effect we
consider a six-level model, since at least six levels are actually
involved in the interaction. State |g〉 ≡ |F = 3,m = 3〉 is
coupled with the excited states |e2〉 ≡ |F ′ = 2,m = 2〉, |e3〉 ≡
|F ′ = 3,m = 2〉, and |e4〉 ≡ |F ′ = 4,m = 2〉 by a weak σ−
polarized probe field. A second set of atomic transitions is
excited by the strong σ+ polarized control field coupling the
ground state |s〉 ≡ |F = 3,m = 1〉 with the same excited states
|e2〉, |e3〉, and |e4〉 as the probe field. The detunings of the
probe with frequency ωp and control field with frequency ωc

from the atomic transitions |g〉 → |e2〉 and |s〉 → |e2〉 will be
denoted, respectively, �p = ωp − ωe2 g and �c = ωc − ωe2 s .
We will assume the control field to be close to resonance
with the |s〉 → |e2〉 transition. Let us point out that the dipole
moment of the transition |g〉 → |e2〉 is the largest of the three
transitions |g〉 → |ei〉 accessible to the probe field.

In addition to the �-type interactions, the control field
can couple the states |g〉 and |e〉 ≡ |F ′ = 4,m = 4〉. As
the control field is close to resonance with the |s〉 → |e2〉
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transition, this term will be small, but we will see that it can
have a non-negligible effect. From this section up to Sec. V,
we do not consider the decay of the excited levels to the F = 4
cesium ground state, since our aim here is to highlight the
role of the interference between different excitation pathways.
In Sec. V, the optical pumping to the F = 4 ground state
will be taken into account in order to discuss more realistic
experimental situations.

Finally, we will compare the six-level model to the simple
three-level approximation consisting of the ground states |g〉
and |s〉 and only one excited state |e2〉.

C. Equations for the six-level model

For the six-level model, the interaction process can be
described by the following Hamiltonian:

H = H0 + V = Hfield + Hatom + V, (2.1)

with

V = Vp + Vc,

Vp = −
4∑

F ′=2

deF ′ g |eF ′ 〉〈g|E(+)
p + H.c., (2.2)

Vc = −
4∑

F ′=2

deF ′ s |eF ′ 〉〈s|E(+)
c − deg |e〉〈g| E(+)

c + H.c.

The Hamiltonian H0 is given by the sum of the free
Hamiltonian operators of the electromagnetic field, Hfield,
and of the atom, Hatom. The interaction Hamiltonian V is
written in the rotating-wave approximation and consists of
the dipole interactions between the atom and the control and
probe fields. In the interaction representation, the positive
frequency components of the electromagnetic field for the
control and probe modes are E(+)

c = εc e−iωct and E(+)
p =

εp e−iωpt , respectively; di j are the matrix elements of the
electric dipole moment of the atom between levels i and j .

The response of the atom to the weak probe field is
described by the polarizability α(�c,�p) defined as

α(�c,�p) εp =
4∑

F ′=2

dg eF ′ σeF ′g. (2.3)

The right-hand side is written as a function of the steady-
state solutions for the slowly varying amplitudes of the optical
coherence between the ground and the excited states addressed
by the probe field, which are given by

σeF ′ g = ρeF ′ g eiωpt , (2.4)

where ρeF ′ g (with F ′ = 2, 3, 4) are the corresponding atomic
density matrix elements. In the case of a dilute atomic system,
when the number of atoms in a volume of a cubic wavelength is
small, the complex susceptibility is proportional to the single-
atom polarizability

χ (�c,�p) = n0 α(�c,�p), (2.5)

with n0 the atomic density.
The matrix elements of the atomic density matrix ρig will be

found in the semiclassical approach as a steady-state solution
of the evolution equation up to the first order with respect to

the probe field, ρeF ′ g = ρ(0)
eF ′ g + ρ(1)

eF ′ g . In the operator form one
needs subsequently to solve the following master equations:

dρ(0)

dt
= i

h̄
[ρ(0),Hatom + Vc] + 	(ρ(0)),

(2.6)
dρ(1)

dt
= i

h̄
[ρ(0),Vp] + i

h̄
[ρ(1),Hatom + Vc] + 	(ρ(1)).

Here 	 is a relaxation operator describing the radiative decay
of the excited states as well as decoherence processes in the
ground states, as detailed in Appendix A.

Here, we assume that the decoherence in the ground states
is much slower than the decay of the excited states. For
instance, in a cesium vapor cell measuring a few centimeters
in diameter at room temperature, the free flight time τd of
the atom through the beam is on the order of hundreds
of microseconds, which is orders of magnitude larger than
the excited state decay time (tens of nanoseconds). In the
following, we will assume τd = 300 µs. In this case the strong
control field optically pumps the atoms in the state with
mF = 3 for the hyperfine sublevel F = 3, i.e., in state |g〉, and
state |F = 3,mF = 1〉, i.e., state |s〉 is empty. The zeroth-order
density matrix, presented in detail in Appendix A, has thus only
three non-negligible elements, ρ(0)

g g , ρ(0)
g e , and ρ(0)

e e . However,
since we have assumed that the control field is far detuned
from the |g〉 → |e〉 atomic transition, we can take ρ(0)

g g ≈ 1
and ρ(0)

g e ≈ ρ(0)
e e ≈ 0. This approximation is justified for cesium

vapors at room temperature since the Doppler broadening half
width at half maximum is on the order of 150 MHz and
the transition |g〉 → |e〉 is separated by 350 MHz from the
resonant transition |s〉 → |e2〉, as shown in Fig. 1. On the
other hand, in this part of the calculation, as mentioned above,
we will not take into account that some atoms decay from the
excited states to level |F = 4〉 in the ground state, and we will
assume that the number of atoms involved in our scheme is
kept constant. Optical pumping toward the |F = 4〉 level and
repumping toward |F = 3〉 will be treated explicitly in Sec. V.

Finally, let us note that in our model the atomic coherence
lifetime is only set by the diffusion of the atoms out of the
light beam, which corresponds for instance to the case of a
cell without paraffine coating or buffer gas. Several studies of
the EIT in the presence of atomic diffusion including multiple
collisions have been given in [36–38], but in a three-level
configuration. In order to focus on the multilevel effect, we do
not take such diffusion into account here.

D. Solution for the three-level approximation

Before solving the six-level model, let us first recall the
solution for a three-level system including the ground states
|g〉 and |s〉 and only one excited state |e2〉. It is obtained from
the previous equations by setting to zero the dipole elements
with F ′

1,F
′
2 �= 2, ds eF ′

1
and dg eF ′

2
. The coherence then takes the

following form [17,39]:

σ (1)
e2 g = − ρ(0)

g g

2�e2 g

(
1 +

∣∣�c
e2 s

∣∣2

4�s g�e2 g

)
�p

e2 g. (2.7)
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The atomic coherence depends on the one- and two-photon
detunings through

�e2 g = iγe2 g + �p, �s g = iγs g + �p − �c −
∣∣�c

s e2

∣∣2

4�e2 g

.

(2.8)

Here �c
eF ′ s = 2 deF ′ sεc/h̄ and �

p
eF ′ g = 2 deF ′ gεp/h̄ (with

eF ′ = e2) are the Rabi frequencies of the control and the probe
fields, respectively. The optical coherence relaxation rate is
γeF ′ g ≈ γ /2, where γ = 2π × 5.2 MHz is the decay rate of
the atomic excited state in the D2 line of the 133Cs atom and
γs g is the decay rate of the ground-state coherence σs g . This
expression gives the well-known dressed atom levels, with a
splitting (Autler-Townes splitting [43]) of the excited state in
two levels separated by �c

eF ′ s as well as the EIT at �p = 0
when �c = 0. We now turn to the multiple level case.

E. Solution for the six-level model

In the model studied here, which includes four excited
states, the solution for the atomic coherences takes the
following form:

σ (1)
eF ′ g = − ρ(0)

g g

2�eF ′ g

(
1 +

∣∣�c
eF ′ s

∣∣2

4�s g�eF ′ g

)
�p

eF ′ g − ρ(0)
g g�

c
eF ′ s

2�s g�eF ′ g

×
∑

F ′
1 �=F ′

�c
s eF ′

1

4�eF ′
1

g

�p
eF ′

1
g − ρ(0)

g gNeF ′ g
εp

h̄
, (2.9)

where F ′ and F ′
1 run through the excited states F ′,F ′

1 = 2, 3, 4.
The first term coincides with the solution for the three-level

system given in Eq. (2.8). The second term comes from the
presence of several levels in the excited state of the atom,
which introduces additional contributions that can interfere
constructively or destructively with the direct contribution
given in the first term. In the third term, the quantity NeF ′ g
represents the contribution of the excited state |e〉, which is
small since the control field is far from resonance with the |g〉
to |e〉 transition, as stated above. An explicit expression for
NeF ′g is given in Appendix A.

An important change relative to the three-level model
is also the modification of the detuning term �s g in the
denominator of Eq. (2.9), which will generate additional shifts
in the position of the dressed atom levels. The denominators
appearing in Eq. (2.9) can now be written as

�eF ′ g = iγeF ′ g + �p − ωeF ′ e2 ,

�s g = iγs g + �p − �c −
∑
F ′

∣∣�c
s eF ′

∣∣2

4�eF ′ g

−
∣∣�c

e g

∣∣2

4�s e

− �N,

�eF ′ e = iγeF ′ e + �p − �c − ωeF ′ e + ωs g −
∣∣�c

g e

∣∣2

4�eF ′ g

,

�s e = iγs e + �p − 2 �c + ωe e2 + ωs g −
∑
F ′

∣∣�c
s eF ′

∣∣2

4�eF ′ e

.

(2.10)

Here ωij = (Ei − Ej )/h̄ is the atomic transition frequency
between levels i and j , and Ei is the energy of the unperturbed

atomic state |i〉; the optical coherence relaxation rates are
γe g = γe s ≈ γ /2 and the excited hyperfine coherence relax-
ation rate is γeF ′ e = γ . The expression for �N is given in
Appendix A and similarly to the terms proportional to NeF ′g
in Eq. (2.9) it will not play a significant role in our analysis.

Substituting expression (2.9) into Eq. (2.3) and using
Eq. (2.5) we obtain an analytical expression for the atomic
susceptibility:

χ (�c,�p) = −ρ(0)
g gn0

h̄

∑
F ′

∣∣deF ′ g

∣∣2

�eF ′ g

− ρ(0)
g gn0

h̄ �s g

×
(∑

F ′

dg eF ′ �
c
eF ′ s

2�eF ′ g

)2

− ρ(0)
g gn0

h̄

∑
F ′

dg eF ′ NeF ′ g.

(2.11)

The first term corresponds to the sum of the susceptibilities
of independent two-level systems without a control field. The
second term represent the effect of multiple � systems. The
squared sum in parentheses shows that the contribution of
the various � transitions can interfere positively or destruc-
tively. It depends on the signs of the products of terms such
as dg eF ′ deF ′ s/�eF ′ g and dg eF ′′ deF ′′ s/�peF ′′ g , i.e., the dipole
moment between states |g〉 and |eF ′ 〉 coupled by the probe
field and multiplied by the dipole moment between states |s〉
and |eF ′ 〉 coupled by the control field, divided by iγeF ′g plus
the detuning of the probe field.

To give an example we consider the case of two coupled �

transitions corresponding to two hyperfine upper states, when
both control and probe fields are tuned between the hyperfine
levels. In the situation discussed in this paper the control and
the probe fields have opposite polarizations. In this case the
dipole moments of the neighboring transitions addressed by
the probe field have opposite signs. At the same time, the dipole
moments of the transitions addressed by the control field have
the same signs and the detunings have opposite signs. This
leads to constructive interference and to an enhancement of
the induced Raman scattering as shown in Ref. [26].

Let us underline that expression (2.11) can be easily
generalized to various physical multilevel systems. Similar
configurations to the hyperfine interaction might appear in
rare-earth-doped crystals [40], in quantum dots [41], or for
nitrogen-vacancy centers in diamonds [42].

III. SUSCEPTIBILITY FOR ATOMS
WITH NONZERO VELOCITY

The model has been solved in the previous section for an
atom with zero velocity. However, many EIT experiments are
performed in Doppler-broadened media. In order to investigate
such configurations, we first look here at the absorption
properties of atoms with different velocities.

A. Doppler shift

We consider an atom with velocity v interacting with the
copropagating control and probe fields. The Doppler shifts
are approximately the same for the control and probe fields,
i.e., �D = −kc · v ≈ −kp · v, where kc and kp are, respec-
tively, the wave vectors of the control and probe fields. The
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two-photon detuning between the control and probe field,
which is a critical parameter, can be thus considered here as
independent of the atomic velocity.

In the following analysis we set the control field detuning
from level e2 equal to zero: �c = 0. In this case, the two-
photon resonance will appear when the detuning of the probe
field �p is also close to zero independently of the atomic
velocity, corresponding to the two-photon resonance. The
atomic absorption profile for different velocity classes is given
by the imaginary part of the susceptibility calculated for the
corresponding Doppler shifts of the two fields, Im[χ (�p +
�D,�c + �D)], obtained from Eq. (2.11).

B. Case of the � approximation

Let us first focus on the result for the three-level scheme
presented in the first column of Fig. 2. The positions of the two
absorption peaks (Autler-Townes doublet [43]) are given by
the poles of the atomic susceptibility, which can be obtained
by Re[�s g] = 0. We will be interested in one of the two poles
which appears for small probe field detunings |�p| � |�D|
and is thus located in the EIT window of atoms with zero
Doppler shift. To estimate the position of this pole, we assume
|�D| 	 γ, |�e2 s | and we rewrite the expression �s g from
Eq. (2.10) as

�s g = iγs g + (�p + �D) − (�c + �D)

−
∣∣�c

s e2

∣∣2

4
[
iγe2 g + (�p + �D)

] (3.1)

≈ iγs g + �p −
∣∣�c

s e2

∣∣2

4
(
iγe2 g + �D

)
≈ i

(
γs g + γ

2

∣∣�c
s e2

∣∣2

4�2
D

)
+ �p −

∣∣�c
s e2

∣∣2

4�D

.

We find that the Autler-Townes absorption resonance (ATR)
appears when the probe field detuning is �p ≈ �3 level

ATR with

�p ≈ �3 level
ATR =

∣∣�c
s e2

∣∣2

4�D

. (3.2)

This position of the induced absorbtion resonance for the
probe field is thus determined by the dynamic Stark shift
of the atomic levels due to the off-resonant interaction with
the strong control field. The result of the exact calculation
for the absorption spectrum of three-level atoms is shown in
Fig. 2 (first column). The vertical lines indicate the positions
of the resonances approximated by the analytical equations
(3.2). The shift is positive (blue shift) for atoms traveling in a
direction opposite to the lasers (�D > 0), while it is negative
(red shift) for atoms traveling in the same direction as the lasers
(�D < 0). �3 level

ATR can be very small but it must be stressed that
it never reaches zero; i.e., the absorption resonance never takes
place at zero detuning. Whatever their velocity, the atoms are
transparent for the probe field at �p = 0.

C. Case of the full model

As shown in the second column of Fig. 2, the situation is
significantly different for the six-level model. The positions

of the induced Raman absorption resonances for the probe
field are strongly modified. They can be estimated similarly
to the three-level case as a real part of the pole of the atomic
susceptibility closest to the control laser frequency. By setting
to zero the real part of the detuning �s g from Eq. (2.10), we
find that the absorption resonance appears when the probe field
detuning is �p ≈ �6 level

ATR with

�6 level
ATR = �3 level

ATR +
∣∣�c

e3 s

∣∣2

4
(
�D − ωe3 e2

) +
∣∣�c

e4 s

∣∣2

4
(
�D − ωe4 e2

)
−

∣∣�c
eg

∣∣2

4
(
�D − ωe e2 − ωsg

) . (3.3)

To derive this expression we assumed that none of the
transitions are saturated by the off-resonant control field:

�D 	 γ, �c
e2 s ,

�D − ωe3 e2 	 γ, �c
e3 s , (3.4)

�D − ωe4 e2 	 γ, �c
e4 s .

As explicitly written, the first term in the expression (3.3)
coincides with the three-level approximation (3.2). The second
and the third terms show the dynamic Stark shifts due to the
presence of the extra excited states |e3〉 and |e4〉. The last term
represents the shift of the state |g〉 due to the off-resonant
action of the control field on the |g〉 ↔ |e〉 transition. In
the second column of Fig. 2 we compare this estimation,
represented by the gray vertical lines, with the exact absorption
spectrum calculated numerically for Doppler shifts equal to
20, 50, and 100 MHz. As can be seen, they coincide very
well, which confirms the validity of the approximation made
in Eq. (3.3).

It can be clearly seen in Fig. 2 (second column) that the
positions of the induced absorption resonances in the six-level
system do not converge to the same point for positive and
negative Doppler shifts as they do in the three-level model. For
atoms traveling in the same direction as the lasers (�D < 0,
full lines), the shift of the Autler-Townes absorption resonance
always keeps the same negative sign, since ωe3 e2 and ωe4 e2

are positive. On the contrary, for atoms traveling opposite
to the light beams (�D > 0, dashed lines), the position of
the atomic dressed state moves continuously from positive
to negative detunings when the Doppler shift increases. For
�D = 150 MHz (right column, bottom curve), the lasers
are resonant with level e3 giving rise to a splitting in two
symmetrical dressed levels. Because of this dependence of the
absorption resonance positions with respect to velocity, the
response of an atomic vapor containing atoms with all these
velocity classes is strongly modified.

In Fig. 3, we have plotted the heights of the induced
absorption resonances as a function of their positions. The
corresponding Doppler shifts are indicated on the curves. Let
us first examine the three-level model [Fig. 3(a)]. Scanning
the Doppler shift from −23 to −1000 MHz, we can see that
the position of the absorption resonance approaches zero for
large Doppler shift. Simultaneously the maximum absorption
decreases due to the dephasing in the ground state. This
dephasing comes from the ground-state decoherence rate γs g

due to the finite size of the light beam. We set the decoherence
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FIG. 2. (Color online) Probe absorption coefficient for atoms with different velocities as a function of the probe detuning. Calculations for
the three-level and the six-level model are presented, respectively, in the first and second columns. Dashed curves correspond to the velocity
classes with positive Doppler shifts (�D > 0) and solid curves correspond to the negative Doppler shifts (�D < 0) with the values indicated
in each graph. Vertical lines indicate the positions of the resonances approximated by the analytical equations (3.2) and (3.3), which are in
good agreement with the precise numerical calculations. In the three-level system absorption peaks never cross the zero detuning and thus the
atomic medium is transparent at �p = 0. In contrast, the full calculation for the six-level system shows that the induced absorption of atoms
from some velocity classes occurs right at the position where other atoms are transparent. In the present calculations the control field detuning
is �c = 0, the Rabi frequency is �c

e2s = 2.3γ = 2π × 12 MHz, and the ground-state decoherence rate is γs g = 0.0001γ .
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FIG. 3. (Color online) Maximum absorption coefficient vs po-
sition �ATR for different velocity classes with Doppler shift �D .
(a) For the three-level model, the Doppler shift is varied from −192γ

(−1000 MHz) to −4.5γ (−23 MHz) (blue, solid line) and from 4.5γ

to 192γ (red, dashed line). �3 level
ATR is an exact solution of Re[�s g] = 0

for the three-level system. (b) For the six-level model, the Doppler
shift is varied from −192γ to −10γ (−52 MHz) (blue, solid line) and
from 2.5γ (13 MHz) to 11.5γ (60 MHz) (red, dashed line). �6 level

ATR is
given by Eq. (3.3). The control field is on resonance with level |e2〉,
�c = 0, and the Rabi frequency is �c

e1 s = 2π × 12 MHz. Vertical
lines show the positions of the transparency window for the atoms
with zero Doppler shift, which is at �p = 0 for the three-level system
and which is at �p = −1.15 MHz for the six-level system according
to Eq. (4.3).

to be equal to the inverse atomic time of flight through the light
beam, γs g = 0.0001γ . For positive Doppler shift the result is
completely symmetric relative to the zero point. There is no
velocity class producing an induced absorption for �p = 0
and thus the transparency window remains open even if atoms
with all possible Doppler shifts interact with the fields at the
same time.

The six-level model is presented in Fig. 3(b). For negative
Doppler shifts (blue, solid line), due to the interaction of
several � channels, the cross section of the induced Raman
scattering is reduced in the wing of the D2 line. This can be seen
from Fig. 2 where the induced absorption resonance almost
disappears for �D � −100 MHz. This effect was described in
Refs. [24,26] for the D1 transition in alkali-metal atoms. On

TABLE I. Doppler broadening and hyperfine splittings for cesium
and rubidium atoms at T = 300 K. The Doppler width is given by
	D = √

kBT /mλ2, where kB is Boltzmann’s constant, m is is an
atomic mass, and λ is the light wavelength.

Atom 133Cs 87Rb 85Rb

Doppler width (MHz) 160 198 200
Hyperfine splitting (MHz)
D1 line 1168 817 362
D2 line 151 72 29

201 157 63
251 267 120

the other hand, when the Doppler shift is positive (red, dashed
line), the situation changes completely. As could already be
seen in Fig. 2, absorption from atoms with nonzero Doppler
shifts appears for the same probe field detuning as EIT for
atoms with zero Doppler shift. The position of the EIT for
zero velocity (calculated in the following section) is indicated
in Fig. 3(b) by the vertical gray line. We see that the EIT can be
strongly reduced by the combined effect of different velocity
classes.

To summarize our results, this section shows that it is a
unique property of the three-level system that independently
of the atomic velocity the EIT appears at the same probe field
detuning. This allows for the observation of the EIT even in the
presence of a large Doppler broadening [2]. As demonstrated
here, this property is not preserved in a system with more than
one excited state. There is no longer a probe field detuning
for which atoms with different velocities are transparent. This
will strongly affect the EIT observation in the six-level system
in the presence of a Doppler broadening which is comparable
to the separation between the excited states. This situation is
described in the following section.

IV. EFFECT OF DOPPLER BROADENING ON EIT FOR A
SYSTEM WITH MULTIPLE EXCITED LEVELS

At room temperature the Doppler broadening for alkali-
metal atoms is comparable with the hyperfine separation be-
tween the excited states of the D transition, as shown in Table I
[44]. This section studies the influence of a finite temperature
on the probe transmission in a multiple level configuration.

A. Susceptibility of the medium

To find the susceptibility of the sample at a given
temperature we average the susceptibility of the atoms,
χ (�c + �D,�p + �D), over the velocity distribution f (�D)
for atoms in the ground state |g〉:

χ̄ (�c,�p) =
∫

χ (�c + �D,�p + �D)f (�D)d�D. (4.1)

The probe transmittance t = |εp(L)|2/|εp(0)|2 through the
medium of length L is given by Beer’s law:

t = exp{−4 π kp L Im[χ̄ (�c,�p)]}. (4.2)

The velocity distribution is assumed to be Gaussian with
f (�D) = (2π	2

D)−1/2 exp(−�2
D/2	2

D), where the Doppler
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FIG. 4. (Color online) Probe field transmittance t for a Doppler-
broadened D2 line for 133Cs vapor with equal number of atoms and
different temperatures: (a) T = 1 K, 	D = 10 MHz, (b) T = 4 K,
	D = 20 MHz, and (c) T = 100 K, 	D = 100 MHz. The control
field detuning is �c = 0 and the Rabi frequency �c

e1s = 2.3γ = 2π ×
12 MHz. Calculations are done with the three-level model (dashed,
red curves) and the six-level model (solid, blue curves). The atomic
density is the same for all temperatures is equal to n0 = 1.1 × 1010

cm−3 with all atoms in state |g〉.

width 	D depends on the temperature T of the sample. In
Fig. 4 we present the probe transmittance t as a function of
the probe field detuning �p for cesium vapor with different
temperatures. For comparison, the figure gives the results for
the three-level and the six-level models.

B. Case of small Doppler broadening

Let us consider first the case of a sample with small Doppler
broadening. When the temperature of the medium is T = 1 K
and the Doppler broadening is 	D = 10 MHz, which is much
smaller than the splitting between the closest hyperfine excited
states, a clear EIT resonance is predicted by both models.
It is indeed well known that the transparency is present in
cold cesium atoms despite the complicated multilevel structure
[12]. However, there are some noticeable differences in the
predictions of the two models (see Fig. 4).

First, the EIT resonance is shifted from the bare two-photon
resonance �p = 0. This light shift is caused by he presence
of the excited states |e3〉, |e4〉, and |e〉, as previously explained
in Refs. [4,26] in the case of the D1 transition in alkali-metal
atoms. In the presence of additional excited states, there are
additional dynamic Stark shifts of the dressed states due to

the off-resonant interaction with the control field. The EIT
resonance is located at the minimum of Im[σ (1)

e2 g] given by
Eq. (2.9). If the separations between the hyperfine transitions
are larger than the Rabi frequencies of the control field,
ωe3 e2 	 �c

e3 s and ωe4 e2 	 �c
e4 s , the EIT position can be

approximated by the following expression:

�6 level
EIT = −

∣∣�c
e3 s

∣∣2

4ωe3 e2

−
∣∣�c

e4 s

∣∣2

4ωe4 e2

+
∣∣�c

eg

∣∣2

4
(
ωe e2 + ωsg

) . (4.3)

The first two terms in expression (4.3) represent the shifts of
the EIT point due to off-resonance excitations of the states
|e3〉 and |e4〉. The last term corresponds to the shift of the state
|g〉 due to the action of the off-resonant control field on the
|g〉 ↔ |e〉 transition.

Second, the peak transmittance is reduced in a multilevel
configuration. This effect can be explained by the dephasing
of the ground-state coherence σs g introduced by the off-
resonance excitation of the levels F ′ = 3 and F ′ = 4 by the
control field. Both effects were observed in Ref. [4] and studied
in detail in Refs. [26,30].

C. Case of broadening of the order of the hyperfine splitting

If we increase the medium temperature such that the
Doppler broadening becomes comparable with the hyperfine
splitting in the excited state, the peak transmittance drops and
finally disappears as shown in Figs. 4(b) and 4(c). At the
same time the three-level model predicts only a narrowing of
the transparency window in agreement with Ref. [45]. This
modification can be attributed to the six-level atoms which
have Doppler shifts in the interval �D ∈ [20, 100] MHz. Some
of them are not transparent for the probe field as we concluded
from the previous section. From Fig. 3, it can be seen that
the atoms moving in a direction opposite to the laser beam
(�D > 0) are at the origin of this effect.

Let us note that our study has focused on a regime where
the control Rabi frequency is on the order of the excited state
linewidth, |�c

e2s
| ∼ γ . However, it can be shown that the strong

reduction of the transparency will occur for smaller or larger
frequencies. Figure 5 gives the transmittance of the medium
for |�c

e2s
| = 0.1γ and |�c

e2s
| = 10γ . In both cases, large

inhomogeneous broadening leads to the total disappearance
of the transparency peak.

Experimentally, an EIT peak is still observed even at room
temperature, but it is strongly reduced. As we demonstrate in
the next section, the nonzero value of the EIT signal, even if
considerably degraded, is caused by some optical pumping to
F = 4 of the atoms that are not transparent to the probe field.
This process was not taken into account in our theoretical
model up to this point, but it will be treated in the next section.

This section demonstrated then that the EIT is strongly
reduced in an inhomogeneously broadened ensemble of six-
level atoms as compared to three-level atoms. The main reason
has been clearly identified: it is the presence of the atoms with
a particular Doppler shift that absorb the probe light while
the others are nearly transparent. Based on this result, the
following section investigates a scheme possibly enabling the
improvement of the EIT in such systems.
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FIG. 5. (Color online) Probe
field transmittance t for a Doppler-
broadened D2 line for 133Cs va-
por for different control Rabi
frequencies. The parameters and
notations are similar to those
in Fig. 4. The Rabi frequencies
here are (left column) �c

e1s =
0.1γ = 2π × 0.52 MHz and (right
column) �c

e1s = 10γ = 2π × 52
MHz. In both cases, large inhomo-
geneous broadening leads to the
total disappearance of the trans-
parency peak. Note that the re-
duced transmittance in the three-
level model for small Rabi fre-
quency is due to a reduced ratio
between this frequency and the
decoherence rate, taken equal to
γsg = 0.0001γ in all the simula-
tions.

V. EIT ENHANCEMENT BY VELOCITY-SELECTIVE
OPTICAL PUMPING

The velocity classes of atoms leading to a strong reduction
of the EIT have been clearly identified in the previous sections.
In order to recover the transparency, these atoms should
not participate in the process. In this section we discuss
successively two optical pumping schemes that modify the
velocity distribution in order to enhance the transparency.

A. Optical pumping by the strong control field

Up to now we have considered a six-level system as a close
approximation to the D2 line of the cesium atom (Fig. 1). We
have taken into account only one ground hyperfine sublevel
F = 3 which was coupled with the excited 6 2P3/2 manifold
by both control and probe fields. In this case the strong σ+
polarized control field optically pumps the atoms into state
|g〉. However, during the optical pumping process the atom
can spontaneously decay from the excited sates to both ground
hyperfine sublevels F = 3 and F = 4. Taking the second
hyperfine sublevel in the ground state into account leads to the
fact that all atoms are eventually pumped to the F = 4 state.
Even atoms first pumped into state |g〉 can be repumped via
state |e〉 to the upper ground state with F = 4. To bring back
atoms in state |g〉 a σ+ repumping polarized field resonant with
the F = 4 → F ′ = 4 transition is applied. The repumping
field (together with the control field) can bring a nonzero
steady-state population back into state |g〉.

Furthermore, the optical pumping process depends on
the atomic velocity and can strongly modify the velocity
distribution. To quantitatively estimate this effect we have
simulated the entire optical pumping process and obtained a
numerical steady-state solution of the equations for the atomic
density matrix using the following interaction Hamiltonian:

VOP = −
4∑

F=3

F+1∑
F ′=F−1

F∑
n=−F

h̄�F ′n+1 F n|F ′,n + 1〉〈F,n| + H.c.

(5.1)

Here the Rabi frequency �F ′ n+1 F n for the transition |F,n〉 →
|F ′,n + 1〉 contains the control field amplitude if F = 3 and
the repump field amplitude if F = 4. Due to the complexity
of the atomic level structure the full set of equations for the
atomic density matrix is presented in Appendix B. Here we
comment on the main features of our optical pumping model
and the results.

The efficiency of the optical pumping is limited by the
relaxation processes. During the collisions with the cell walls
the atomic spin as well as the velocity is changing. To model
this process we introduce in our theory the decay of the ground-
state density matrix elements. The decay rate 1/τd is assumed
to be much smaller than the excited-state decay rate γ , so
we can neglect the influence of the wall collisions on the
atom in the excited state. In our model, we assume that the
randomization times for the atomic velocity and for the atomic
spin are equal, which can describe at least three experimental
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Velocity distribution FIG. 6. (Color online) Velocity
distribution of the atoms in state |g〉.
The distributions are normalized
such that

∫
f (�D)d�D = 1. The

dashed line represents the Gaussian
distribution, assuming that all the
atoms are prepared in state |g〉
as shown in the right inset. The
solid line shows the actual velocity
distribution which can be achieved
with the transfer of atoms due to
optical pumping by the control field
and the repumping field as shown
in the left inset. The parameters
are the following: �c

e1s = 2.3γ =
2π × 12 MHz, �c = 0, repumping
power equal to 4.4 mW for a beam
diameter of 1 cm, and τD = 300 µs.

situations: 1. when the cell walls do not have special coating
preventing the spin relaxation and after one wall collision both
atomic spin and velocity are randomly changed; 2. when the
cell has a polarization-preserving coating but the volume of
the light beam is much smaller than the volume of the cell,
in which case an atom will collide many times with the wall
and thus randomly change its spin before coming back to the
light beam; and 3. when the optical pumping process reaches
its steady state during the time it takes for an atom to cross the
beam. In these cases, in order to find the steady state, we set τd

equal to the time of flight of the atom through the light beam.
In our calculations, τd is chosen equal to 300 µs, which

corresponds to an average time of flight of several centimeters
for the cesium atoms at room temperature. The density of
atoms was set to n0 = 3.5 × 1011 cm−3. This number is an
order of magnitude larger than the one we used in the previous
section, because here we consider the two ground states F = 3
and F = 4.

We will keep the Rabi frequency of the control field the
same as in the previous sections, �c

e2 s = 2π × 12 MHz. This
corresponds, for example, to a control field power of 200 mW
and a beam diameter equal to 1 cm. The repumping field is
contrapropagating with respect to the control and probe fields,
and its power is equal to 4.4 mW for a beam diameter of 1 cm.

Figure 6 gives the result of the optical pumping simulation.
The velocity distribution of the atoms in state |g〉 in the
presence of the control and repumping beams is shown by
the solid line. For comparison we also give the Gaussian
distribution with a width 	D = 160 MHz corresponding to
room temperature T = 300 K. We can see that the atoms
propagating toward the control beam (�D > 0) have been
pumped out of state |g〉. This is due to the positive Doppler
shift that brings the control light frequency closer to the atomic
transition |F = 3〉 → |F ′ = 4〉 and thus makes depopulation
of the state |g〉 more likely. As a consequence, the velocity
distribution of atoms in state |g〉 becomes narrower, indicating
an effective cooling mechanism.

According to the conclusion of Sec. III, atoms with positive
Doppler shifts are the ones which previously contributed to the
disappearance of the EIT. Due to the optical pumping process,
these atoms, which move in the opposite direction to the probe
and control beams, are partially removed from the interaction
process. Using the new velocity distribution in the calculations
we can see how it helps to recover the transparency. In Fig. 7,
we show the transmittance of a cesium vapor calculated includ-
ing the optical pumping effect. In contrast to the case of a Gaus-
sian velocity distribution, in which the EIT resonance vanishes,
a transparency peak is obtained with the modified velocity
distribution. In [15], EIT was indeed experimentally observed
on the D2 line of Cs, while the combined effect of broadening
and multilevel structure should lead to fully vanishing EIT.

We have thus demonstrated that the effective cooling due
to the optical pumping process by the control field allows us to
observe the EIT effect in the configuration presented in Fig. 1.

B. Hole burning in the velocity distribution

Based on the previous result, we now present a procedure
that allows us to further enhance the EIT contrast without
changing the medium optical depth. The main idea is to burn a
hole in the velocity distribution of atoms in state |g〉. Thus
we exclude atoms with a specific Doppler shift from the
interaction process.

In addition to the control, probe, and repumping fields
discussed in the previous section, one more σ+ polarized pump
field is used. It is detuned by �pump from the transition between
F = 3 and F ′ = 4 sublevels. It will then pump the atoms with
a Doppler shift �D = −�pump out of the F = 3 level, thus
creating a hole in the velocity distribution. We simulate this
additional optical pumping process by introducing an effective
depopulation rate γpump for the atoms in state |F = 3,mF = 3〉:

γpump(�D) = γ �2
pump

4(�D + �pump)2 + γ 2 + �2
pump

, (5.2)
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optical pumping FIG. 7. (Color online) Transmittance for the

probe field with and without optical pumping. The
dashed curve corresponds to six-level atoms in
state |g〉 having a Gaussian velocity distribution.
The EIT peak vanishes in these conditions as
shown in the previous section. The solid line
shows the transmittance when the velocity dis-
tribution is modified by the optical pumping
due to the control and the repumping fields.
The EIT peak is partly recovered since part of
the absorbing atoms are pumped out to sublevel
F = 4 and thus no longer interact with the probe
field. The parameters are the same as for Fig. 6

where �pump is the Rabi frequency of the pump field with
respect to the transition |g〉 ↔ |e〉. The structure of this
expression shows a Lorentzian dependence with the Doppler
shift. The width of this Lorentzian curve, which gives the
width of the dip on the velocity distribution, depends in the
Rabi frequency of the field but it is never smaller than the
natural linewidth of the atomic excited state γ .

Figure 8 shows the velocity distribution of atoms in state
|g〉 and the resulting transmittance for the probe. We examine
the cases of different values of the pump field detuning �pump,
keeping the pump Rabi frequency equal to �pump = 0.15γ .

Comparing the cases of negative and positive detunings, we
see that the EIT enhancement is larger when the pump detuning
is negative. This is because atoms with positive Doppler shifts,
pumped out of the interaction process in this case, contribute
more to the absorption than atoms with negative Doppler shifts,
as shown in Fig. 3(b). We see that the EIT enhancement is the
largest when �pump = −40 MHz. We should also note that
that the EIT contrast grows when the pump Rabi frequency is
increased because more absorbing atoms are depumped and
thus removed from the interaction process. This result confirms
our interpretation of the EIT formation in a Doppler-broadened
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FIG. 8. (Color online) Influence of the additional pump on the velocity distribution of atoms in state |g〉 (first column) and on the probe field
transparency (second column). The optical pumping leads to a hole-burning effect in the velocity distribution, which results in an enhancement
of the EIT. Different probe field detunings are presented with �pump < 0 in the upper panel and �pump > 0 in the lower panel. The Rabi
frequency of the pump field with respect to the transition between |g〉 and |e〉 sublevels remains constant at �pump = 0.15γ . Calculations are
done with the same conditions for the control and repumping fields as in Fig. 6: �c

e1s = 2.3γ = 2π × 12 MHz, �c = 0, repumping power
equal to 4.4 mW for a beam diameter of 1 cm, and τD = 300 µs.
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D line of the alkali-metal atoms. One can define the EIT
contrast as C ≡ (tmax − tmin)/(1 − tmin), where tmax is the
probe transmittance in the maximum of the EIT peak and tmin

is the probe transmittance on the plateau, which defines the
optical depth of the medium on the side of the EIT resonance. It
can be seen in Fig. 8 that our scheme provides an enhancement
of this contrast by a factor of ∼ 8.

VI. CONCLUSION

Our analysis demonstrates the influence of multiple excited
levels on EIT in alkali-metal atoms. We have shown that
the presence of more that one excited states in the �-type
interaction can lead to a significant change as compared with
the three-level approximation. This change is small when
the inhomogeneous broadening is much smaller than the
separation between the excited states. However, even for cold
atoms, it leads to a noticeable decrease in transparency.

The effect becomes large when the broadening is compara-
ble with the separation between the excited states, which may
lead to the total disappearance of the transparency. This effect
of the multilevel structure has two causes. The first one is the
ac-Stark shift of the atomic dressed states, which varies with
the Doppler shift. In a multilevel atom this variation leads to
having no probe-field frequency for which atoms from all the
velocity classes are transparent. The second is the interference
between several � transitions appearing when both fields
are tuned between the hyperfine transitions, increasing the
off-resonant Raman scattering cross section.

After explaining the origin of the EIT suppression in a
Doppler-broadened medium, in particular by clearly identi-
fying the atoms which strongly absorb the probe, we have
proposed a method to enhance the transparency. It is based
on an effective cooling mechanism using optical pumping. In
particular, by creating a dip in the velocity distribution of atoms
participating in the interaction process we achieve a significant
enhancement of the EIT contrast. This technique is expected
to allow improvements in current experimental realizations
of EIT-based quantum memories in room-temperature alkali-
metal vapors. Our analysis might also be relevant for other
coherent effects in such vapors, such as in the recent entangled
light generation by four-wave mixing [46,47].
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APPENDIX A: CALCULATION OF THE SUSCEPTIBILITY
FOR A SIX-LEVEL SYSTEM

In this Appendix we present the details of the susceptibility
calculations for the six-level system presented in Fig. 1. In
Sec. II only a part of the results related to the multi-� system is

discussed. Here we will follow the derivation and then discuss
the full solution in more detail.

First we introduce a set of slowly varying operators for the
off-diagonal elements of the atomic density matrix:

σeF ′ g = ρeF ′ ge
iωpt , σsg = ρsge

i(ωp−ωc)t , σge = ρgee
i(−ωc)t ,

σse = ρsee
i(ωp−2ωc)t , σeF ′ e = ρeF ′ ee

i(ωp−ωc)t , (A1)

where F ′ = 2, 3, 4 refer to the excited states with different
angular momenta. In addition to the earlier introduced optical
coherences σeF ′g on the probe field transition (2.4), (A1)
includes as well the coherence between the ground states
σsg , the optical coherence σge on the |g〉 to |e〉 transition,
the coherence σse caused by the three-photon transition |s〉 →
|eF ′ 〉 → |g〉 → |e〉, and the coherences σeF ′ e between exited
states |e〉 and |eF ′ 〉.

Now we present the subsequent solution of the density
matrix equations (2.6). First we consider the zero-order
equations, taking into account only the control field:

ρ̇(0)
s s = −τ−1

d ρ(0)
s s + τ−1

d

/
2 + γ /2

∑
F ′

ρ(0)
eF ′ eF ′

− i
∑
F ′

(
σ (0)

s eF ′ �
c
eF ′ s − σ (0)

eF ′ s�
c
s eF ′

)/
2,

ρ̇(0)
g g = −τ−1

d ρ(0)
g g + τ−1

d

/
2 + γ /2

∑
F ′

ρ(0)
eF ′ eF ′ + γρ(0)

e e

− i
(
σ (0)

g e �c
e g − σ (0)

e g �c
g e

)/
2,

ρ̇(0)
eF ′

1
eF ′

2

= −(
iωeF ′

1
eF ′

2
+ γ

)
ρ(0)

eF ′
1
eF ′

2

− i
(
ρ(0)

eF ′
1
s�

c
s eF ′

2

− ρ(0)
s eF ′

2

�c
eF ′

1
s

)/
2, (A2)

σ̇ (0)
e g =

(
i�c − iωe e2 − γ

2

)
σ (0)

e g + i
(
ρ(0)

g g − ρ(0)
e e

)�c
e g

2
,

σ̇ (0)
eF ′ s =

(
i�c − iωeF ′e2 − γ

2

)
σ (0)

eF ′s

+ iρ(0)
ss

�c
eF ′s

2
− i

∑
F ′

1

ρ(0)
eF ′eF ′

1

�c
eF ′

1
s

2
. (A3)

Here notation is the same as in Sec. II: the Rabi frequencies are
�c

eF ′ s = 2 deF ′ sεc/h̄, �c
e g = 2 de gεc/h̄, �

p
eF ′ g = 2 deF ′ gεp/h̄,

and the transition energies are ωij = (Ei − Ej )/h̄, where Ei

is the energy of the unperturbed atomic state |i〉. Indexes F ′
and F ′

1 run through the values 2, 3, and 4.
Decay mechanisms included in our equations model an

excited-state radiative decay with rate γ and a ground-state
decay due to the finite time of flight τd of the atoms through
the light beam. We assume that the loss rate of atoms is
much smaller that the radiative decay rate, τ−1

d � γ . For
our calculations we consider a vapor of cesium atoms. The
radiative decay is then γ −1 = 30 ns, and we assume τd =
300 µs, corresponding to the time of flight at room temperature
through a light beam of a few centimeters in diameter. We
assume that at the same rate as atoms are leaving the beam,
new unpolarized atoms will be entering the interaction region.
This is included by the source term +τ−1

d /2 in Eqs. (A2).
Throughout the paper we use the conditions that all Rabi

frequencies are much smaller than the hyperfine splittings,
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�c
eF ′ s � ωeF ′ e2 . In this case we neglect the coherences ρ(0)

eF ′
1
eF ′

2

between different excited states F ′
1 �= F ′

2, which brings us to
the following stationary solutions:

ρ(0)
ss = 1

2

(
1 + τd

∑
F ′

∣∣�c
eF ′ s

∣∣2
γ /2

4
(
�c − ωe e2

)2 + γ 2 + ∣∣�c
eF ′ s

∣∣2

)−1

,

ρ(0)
gg = 1

2
+ τd ρ(0)

ss

∑
F ′

∣∣�c
eF ′ s

∣∣2
γ /2

4
(
�c − ωe e2

)2 + γ 2 + ∣∣�c
eF ′ s

∣∣2 ,

σ (0)
g e = 2(�c − ωe e2 − i γ /2) �c

g e

4
(
�c − ωe e2

)2 + γ 2 + ∣∣�c
e g

∣∣2 ρ(0)
gg . (A4)

Using the solution (A4) it can be verified that atoms from all the
velocity classes are pumped from the state |s〉 to the state |g〉
with a high efficiency, which justifies the approximation ρ(0)

gg ∼
1 made in Sec. II. Experimentally, the presence of the other
hyperfine ground state with F = 4 will affect considerably
the atomic population in state |g〉. Atoms from this state |g〉
may be pumped to the state with F = 4, which will render
them transparent for the control and probe fields. This process
represents an important limitation for the maximum optical
depth that can be achieved in the configuration of Fig. 1. In
Sec. V and Appendix B this optical pumping mechanism will
be taken fully into account. Here we do not consider it for
simplicity and to clarify the influence of the excited hyperfine
structure on the EIT signal.

Now we proceed further along Eqs. (2.6) toward the first-
order equation with respect to the weak probe field:

dσ (1)
eF ′ g

dt
= (

i�p − iωeF ′ e2 − γeF ′g
)
σ (1)

eF ′ g

+ i
(
ρ(0)

g g�
p
eF ′ g + σ (1)

s g �c
eF ′ s − σ (1)

eF ′ e�
c
e g

)/
2,

dσ (1)
s g

dt
= (i�p − i�c − γs g)σ (1)

s g − i σ (1)
s e �c

e g

/
2

+ i

4∑
F ′=2

σ (1)
eF ′g�

c
s eF ′

/
2,

dσ (1)
s e

dt
= (

i�p − 2i�c + iωs g + iωe e2 − γs e

)
σ (1)

s e

− i σ (1)
s g �c

g e

/
2 + i

4∑
F ′=2

σ (1)
eF ′ e�

c
seF ′

/
2,

dσ (1)
eF ′ e

dt
= (

i�p − i�c + iωe eF ′ + iωs g − γeF ′ e

)
σ (1)

eF ′ e

+ i
(
σ (0)

g e �p
eF ′ g − σ (1)

eF ′g�
c
g e + σ (1)

s e �c
eF ′ s

)/
2. (A5)

From Eqs. (A5) we find the steady-state solution for the
optical and ground-state coherences,

σ (1)
s g = ρ(0)

g g

∑
F ′

�c
s eF ′

2�s g

[
�

p
eF ′ g

2�eF ′ g

+ εp

∣∣�c
e g

∣∣2
T ′

F ′

4h̄ �eF ′ e�eF ′ g

]

+ σ (0)
g e

∑
F ′

εp�c
e g�

c
s eF ′

4h̄�eF ′ e�s g

(
H ′

F ′ + deF ′ g

�s e

)
, (A6)

σ (1)
eF ′ g = − ρ(0)

g g

[
�

p
eF ′ g

2�eF ′ g

+
∣∣�c

e g

∣∣2

4�eF ′ e�eF ′ g

εp

h̄
D′

F ′

]

− σ (1)
s g

[
�c

eF ′ s

2�eF ′ g

+
∣∣�c

e g

∣∣2

4�eF ′ e�eF ′ g

G′
F ′

]

− σ (0)
g e

�c
e g

2�eF ′ e

εp

h̄
H ′

F ′ . (A7)

The denominators �eF ′ g , �eF ′ e, �se, and �sg are presented
in expression (2.10).

In order to clarify the structure of Eqs. (A6) and (A7), we
have grouped its terms to highlight the different interaction
schemes. The terms proportional to ρ(0)

gg with all components
written explicitly are related �-type interactions via the
various excited levels F ′. This part will be dominant under
the conditions we discuss in this paper, i.e., the control field
far detuned from the |g〉 to |e〉 transition. The other terms of
Eqs. (A6) and (A7) are given as a function of the coefficients
D′

F ′ , G′
F ′ , T ′

F ′ , and H ′
F ′ , which have the following form:

G′
F ′ = �c

eF ′ s

2�eF ′ g

+ �c
eF ′ s

2�s e

⎛
⎝1 +

∑
F ′

1

∣∣�c
s eF ′

1

∣∣2

4�eF ′
1
e�eF ′

1
g

⎞
⎠ ,

H ′
F ′ = deF ′ g

�eF ′g
+ �c

eF ′ s

�eF ′ g�s e

∑
F ′

1

�c
s eF ′

1

deF ′
1

g

4�eF ′
1
e

,

(A8)

T ′
F ′ = deF ′ g

�eF ′ g

+ deF ′ g

�s e

+ �c
eF ′ s

4�s e

∑
F ′

1

�c
s eF ′

1

deF ′
1

g

�eF ′
1

e�eF ′
1
g

,

D′
F ′ = deF ′ g

�eF ′ g

+ �c
eF ′ s

4�s e

∑
F ′

1

�c
s eF ′

1

deF ′
1

g

�eF ′
1
e�eF ′

1
g

.

These coefficients represent the parts of Eqs. (A6) and (A7)
related to the processes involving the |g〉 to |e〉 transition. They
describe then V -type and N -type processes. In the present
paper we are mainly focused on the �-type interactions, which
play the dominant role under the chosen conditions. For this
reason, in the main text we do not present explicitly the terms of
Eqs. (2.9)–(2.11) related to such V -type and N -type processes.
Instead we introduce the coefficients NeF ′ g and �N :

NeF ′ g =
∣∣�c

e g

∣∣2

4�eF ′ g

⎛
⎝ D′

F ′

�eF ′ e

+ �c
eF ′ s

4�s g

∑
F ′

1

�c
s eF ′

1

T ′
F ′

1

�eF ′
1

e�eF ′
1

g

⎞
⎠

+
∣∣�c

e g

∣∣2
G′

F ′

�eF ′ e�eF ′ g

∑
F ′

1

�c
s eF ′

1

(
deF ′

1
g +

|�c
e g |2T ′

F ′
1

4�e
F ′

1
e

)
8�s g�eF ′

1
g

,

�N =
∑
F ′

∣∣�c
e g

∣∣2
�c

s eF ′

2�eF ′ e�eF ′ g

(
G′

F ′ +
�c

eF ′ s

2�s e

)
. (A9)

APPENDIX B: OPTICAL PUMPING EQUATIONS

In this Appendix we present the complete set of equations
describing the optical pumping process discussed in Sec. IV.

We begin with the case where a σ+ polarized repump-
ing field and a σ+ control field resonant to the atomic
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transitions |F = 4〉 to |F ′ = 4〉 and |F = 3〉 to |F ′ = 2〉,
respectively, as described in Sec. V A. Based on the inter-

action Hamiltonian (5.1) we derive the following system of
equations:

dρFan Fbn(�D)

dt
=

(
iωFbFa

− 1

τd

)
ρFan Fbn + δFaFb

τd

f 0(�D)

(2S + 1)(2I + 1)
+ δFaFb

γ
∑

Fa − 1 � F ′ � Fa + 1
n − 1 � k � n + 1

p|F ′, k〉→|Fa, n〉ρF ′k F ′k

+ i
∑
F ′

1, F
′
2

[
�F ′

1n+1 Fbn�F ′
2n+1 Fan

4�F ′
1Fa

ρF ′
2n+1 F ′

1n+1 + �F ′
1n+1 Fan�F ′

2n+1 Fbn

4�∗
F ′

1Fb

ρF ′
1n+1 F ′

2n+1

]

− i
∑
F ′

1, F1

[
�F ′

1n+1 Fbn�F ′
1n+1 F1n

4�F ′
1Fa

ρFan F1n + �F ′
1n+1 Fan�F ′

1n+1 F1n

4�∗
F ′

1Fb

ρF1n Fbn

]
, (B1)

dρF ′
an F ′

bn
(�D)

dt
= (

iωF ′
bF

′
a
− γ

)
ρF ′

an F ′
bn

− i
∑
F ′

1, F1

[
�F ′

bn F1n−1�F ′
1n F1n−1

4�∗
F ′

aF1

ρF ′
an F ′

1n
+ �F ′

an F1n−1�F ′
1n F1n−1

4�∗
F ′

bF1

ρF ′
1n F ′

bn

]

+ i
∑
F1, F2

[
�F ′

bn F1n−1�F ′
an F2n−1

4�∗
F ′

aF1

ρF2n−1 F1n−1 + �F ′
an F1n−1�F ′

bn F2n−1

4�F ′
bF1

ρF1n−1 F2n−1

]
.

To obtain this system we adiabatically eliminate the optical
coherences ρF ′

bn+1 Fan(�D) ≡ 〈F ′
b,n + 1|ρ(�D)|Fa,n〉 from

the full system of equations. The first equation represents
the evolution of the ground state described by the density
matrix elements ρFa n Fb n(�D) ≡ 〈Fa,n|ρ(�D)|Fb,n〉. The
total angular momentum of the alkali metal in the ground
state can have two different values, I ± 1/2; for 133Cs they
will be Fa,Fb = 3,4. The second term on the right side of the
first equation describes the source of atoms in the initial state
entering the interaction volume with a rate equal to the loss
rate 1/τd . The initial population is equally distributed among
the Zeeman sublevels of the ground states with the probability
f 0(�D)/(2S + 1)/(2I + 1) given by the initial Gaussian
velocity distribution f 0(�D) = (2π	2

D)−1/2 exp(−�2
D/2	2

D)
divided by the number of available ground states. By δi j we
define the Kronecker symbol. The last term in the first line
describes the radiative decay from different excited states
|F ′,k〉 with k = n − 1,n,n + 1 to the ground state |Fa,n〉
with the rate γp|F ′, k〉→|F, n〉 given by the value of the reduced
dipole moment of the transition |F ′, k〉 → |F, n〉 [48]:

p|F ′, k〉→|F, n〉

= (2J + 1)(2F + 1)
[
CF ′ k

F n 1 k−n

]2

{
1
2 I F

F ′ 1 J

}2

. (B2)

The Clebsh-Gordan coefficient CF ′ k
F n 1 k−n and the 6j

symbol { 1
2 I F

F ′ 1 J
} give the transition properties resulting in∑n+1

k=n−1 p|F ′, k〉→|F, n〉 = 1. The last two double sums in the
first equation show the Hamiltonian dynamic in the presence
of two fields with Rabi frequencies �F ′

bn Fan−1, which contain
the amplitude of the control field if Fa = 3 or the amplitude
of the repumping field if Fa = 4. The denominators in
these terms are equal to �F ′

bFa
≡ i

γ

2 − �F ′
bFa

− �D , where
�F ′

bFa
is ether a repumping field detuning from the transition

|F = 4〉 → |F ′
b〉 for Fa = 4 or a control field detuning from

the transition |F = 3〉 → |F ′
b〉 for Fa = 3. Summation over

the hyperfine levels in these terms goes from I − S − L to
I + S + L, where S = 1/2 and L = 0 in case of the ground
states and L = 1 in case of the excited states.

The second equation in the system (B1) describes the
evolution of the excited state given by the density matrix
elements ρF ′

a n F ′
b n(�D) ≡ 〈F ′

a,n|ρ(�D)|F ′
b,n〉. In the D2 line

of the alkali-metal atom, the total angular momentum of the
excited state can have four different values; for 133Cs they will
be F ′

a,F
′
b = 2,3,4,5. This equation has a structure which is

similar to the first one, except for three major differences: the
relaxation rate is given by the natural decay rate γ , which is
much larger than 1/τd ; the initial population of the excited
state is zero; and there are no source terms due to the decay
from the other states.

Solving numerically Eqs. (B1) we obtain the velocity
distribution of atoms in state |g〉 ≡ |F = 3,mF = 3〉 modified
by the optical pumping process f (�D) ∼ ρg g(�D). This is
presented in Fig. 6 (solid line) and used for the calculation of
the transmittance in Fig. 7 (solid line).

As proposed in Sec. V B an additional σ+ polarized “pump”
field detuned by �pump from the transition |F = 3〉 ↔ |F ′ =
4〉 can be used to enhance the EIT contrast. The atoms with
a Doppler shift �D = −�pump would be transferred from
the state |g〉 to the state |F = 3,mF = 3〉 ≡ |g3〉 or |F =
4,mF = 4〉 ≡ |g4〉 due to a resonant optical pumping process
via the excited state |e〉 ≡ |F ′ = 4,mF ′ = 4〉. To simulate this
process, we add the following terms to the right side of the
first equation of the system (B1):

−γpump(1 − p|e〉→|g〉)δFa 3δn 3 ρFan Fan

+ γpumpp|e〉→|g3〉δFa 4δn 3 ρFan Fan (B3)

+ γpumpp|e〉→|g4〉δFa 4δn 4 ρFan Fan.

Here γpump is an effective depopulation rate, given by ex-
pression (5.2), that depends on �pump, the Rabi frequency
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of the pump field with respect to the transition |g〉 ↔ |e〉.
Relative transition rates p|e〉→|g〉, p|e〉→|g3〉 and p|e〉→|g4〉 take
into account three allowed transitions for the atomic decay

from state |e〉 to the states |g〉, |g3〉, or |g4〉, respectively. They
can be found from expression (B2) and for the cesium atom
pe→g = 25/60, pe→g3 = 7/60, and pe→g4 = 28/60.
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