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Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation
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In this paper, we propose a theoretical scheme of many-ghost imaging in terms of N th-order correlated thermal
light. We obtain the Gaussian thin lens equations in the many-ghost imaging protocol. We show that it is possible
to produce N − 1 ghost images of an object at different places in a nonlocal fashion by means of a higher
order correlated imaging process with an N th-order correlated thermal source and correlation measurements.
We investigate the visibility of the ghost images in the scheme and obtain the upper bounds of the visibility for
the N th-order correlated thermal-light ghost imaging. It is found that the visibility of the ghost images can be
dramatically enhanced when the order of correlation becomes larger. It is pointed out that the many-ghost imaging
phenomenon is an observable physical effect induced by higher order coherence or higher order correlations of
optical fields.
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I. INTRODUCTION

Ghost imaging [1] is a technique to image nonlocally an
object by the use of correlated light beams. Two types of ghost
imaging have been experimentally demonstrated. Type-one
ghost imaging [2,3] uses entangled photon pairs as the light
source while type-two ghost imaging uses chaotic thermal
light. In ghost imaging, the object and image are separately
illuminated by a pair of correlated light beams, and the image
emerges through coincidence detection of the two beams.
As is well known, in classical imaging techniques based on
geometrical optics, the image of an object can be produced
by a lens in the plane defined by the Gaussian thin lens
equation. The lens has the ability to generate a one-to-one
relationship between points of the object and image planes.
A perfect point-to-point image-forming relationship between
the object and image planes produces a perfect image. All
different momenta passing through a point of the object are
collected by the lens into a point of the image plane. Differently
from the classical imaging techniques, in ghost imaging, the
light source consists of pairs of correlated photons emitted
with all possible momenta and in all possible directions. If one
photon is measured to have a certain transverse momentum, the
transverse momentum of the other one is immediately known.
A point-to-point relationship between the object and image
planes arises by counting coincidences between the two distant
detectors and leads to a ghost image of the object whenever a
proper Gaussian thin lens equation is satisfied.

Ghost imaging with thermal light [4–24] has been studied
extensively in recent years. Bennink and coworkers [4]
first pointed out that ghost imaging can also be realized
using a classical source with appropriate correlations. A
thermal or quasithermal source can exhibit such classical
correlations. A very close formal analogy was demonstrated
between ghost imaging with thermal and quantum-entangled
optical beams in Refs. [6–9], which showed that classically
correlated optical beams were able to emulate the relevant
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features of quantum ghost imaging. A number of experiments
on thermal-light ghost imaging have been performed in
Refs. [12–15,24]. A unified treatment of classical and quantum
ghost imaging was established in terms of Gaussian-state
analysis in Ref. [16].

Recently, some attention has been paid to the physics of
thermal-light ghost imaging [1,15,25–31] and higher-order-
coherence or higher-order-correlation effects of thermal light
[32–40]. The higher order coherence or higher order correla-
tions have shown attractive properties in practical applications.
Multiphoton imaging with thermal light is one of these exciting
areas. In a previous work, our group theoretically initiated a
study of thermal-light ghost imaging in terms of higher order
correlated thermal light [32]. We proposed a thermal-light
ghost imaging scheme with third-order correlated thermal
light. In this scheme, a third-order correlated thermal-light
source, a test optical arm, and two reference optical arms
are used to produce two ghost images. Two ghost images
are created at two different places in a nonlocal fashion as
a consequence of the third-order correlation of the involved
optical fields. It was shown that the third-order correlated
imaging includes richer correlated imaging effects than the
second-order correlated one. In Refs. [36,37], arbitrary N th-
order (N � 2) lensless ghost imaging with thermal light has
been performed by only recording the intensities in two
optical paths, and it is shown that the image visibility can
be dramatically enhanced as the order N increases. In this
paper, we want to propose a thermal-light many-ghost imaging
scheme with N th-order intensity correlations and N optical
paths. Differently from the scheme in Refs. [36–38], our
scheme can produce N − 1 ghost images by the use of one test
optical arm and N − 1 reference optical arms. We investigate
the visibility of the ghost images. We show that the usual
second- and third-order ghost imagings with thermal light are
only two particular examples of our present scheme.

The paper is organized as follows. In Sec. II, by the use
of a thermal-light source with N th-order correlation, we will
propose the thermal-light many-ghost imaging scheme with
N th-order intensity correlation. In Sec. III, the visibility of
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FIG. 1. (Color online) Schematic of the setup for implementing
ghost imaging with N th-order correlated thermal light. It consists of
one test arm and N − 1 reference arms. The test arm includes the
imaged object with the transmission function T (x), the collection
lens Fc, and the bucket detector D1. The object and the detector
are placed in its two focal planes of the collection lens, respectively.
Each reference arm includes one imaging lens and a scanning detector
denoted by Fi and Di with i = 2,3, . . . ,N , respectively.

the ghost images in the proposed scheme will be investigated.
Finally, we shall conclude our paper with discussions and
remarks in the last section.

II. MANY-GHOST IMAGING SCHEME

The basic setup for many-ghost imaging with N -order
correlated thermal light is indicated in Fig. 1 which includes
one test optical arm and N − 1 reference optical arms. The

first arm is the test arm. An unknown object with transmission
function T (x) and a collective lens with focal length fc are
placed on the test arm while there is one imaging lens with
focal lengths fi on each reference arm. The object is placed
at the focal plane of the collective lens at distance z1 from the
thermal-light source. The distance between the ith imaging
lens and the thermal-light source is zi0 with i = 2,3, . . . ,N .
The first detector D1 is a bucket detector placed at the focal
plane of the collective lens on the right-hand side. The other
detectors are scanning detectors Di with i = 2,3, . . . ,N which
are placed at distances zi1 from ith imaging lens. The signals
from the N photon counting detectors are sent to an electronic
coincidence circuit to measure the rate of coincidence counts.

The thermal-light source with N th-order intensity corre-
lation, usually obtained by illuminating a laser beam into
a slowly rotating ground glass, is divided into N beams,
which can be implemented by an appropriate combination
of N − 1 beam splitters. Consider a monochromatic plane
wave described by the field E0 exp[i(k0z − w0t)] illumi-
nating a material containing disordered scattering centers.
After scattering, the field can be written as E(x,z,t) =∫

E(q) exp[i(q · x + kzz − w0t)]dq where q is the transverse
wave vector introduced by the random scattering and satisfies
the relation |q|2 + k2

z = k2
0. Hence, E(q) is a stochastic

variable obeying Gaussian statistics. However, the scattered
waves with different transverse wave vectors are statistically
independent. If |q| � k0, the scattered field can be approx-
imately written as E(x,z,t) = A(x) exp[i(k0z − w0t)] where
A(x) = ∫

E(q) exp[i(q · x)]dq is the slowly varying envelope.
As a result, we have defined a monochromatic thermal light
random in both strength and propagation direction. According
to the Wiener-Khintchine theorem, the first-order spectral
correlation satisfies the following expression:

〈E∗(q)E(q′)〉 = S(q)δ(q − q′), (1)

where S(q) is the power spectrum of the spatial frequency. For
any field with thermal statistics, all high-order correlations can
be expressed in terms of the first-order ones due to 〈E(q)〉 = 0
[41]. Then, N th-order spectral correlation of thermal light can
be written a

〈 N∏
i=1

E∗(qi)E(q′
i)

〉
=

N∑
r1,r2, . . . ,rN = 1,r1 �= r2 �= · · · �= rN

s1,s2, . . . ,sN = 1,s1 �= s2 �= · · · �= sN

(
N∏

i=1

δ(qri
− q′

si
)

)′

S(q1)S(q2) · · · S(qN ), (2)

where the prime in the summation means that all of the
repeating terms are subtracted from the summation over ri and
si with both ri and si taking 1,2, . . . ,N for i = 1,2, . . . ,N . In
Eq. (2) qri

and q′
si

are the transverse wave vector in ri th optical
arm. After passing through a combination of N − 1 beam
splitters, the thermal light with N th-order spectral correlation
is divided into N correlated thermal-light beams which are
input light beams of the test and reference arms, respectively.
For simplicity, we consider the one-dimensional case and let
x0 and xn with n = 1,2, . . . ,N be the transverse coordinates
of the source plane and detection planes, respectively. Here we
have assumed that the starting planes of the N thermal-light

beams are overlapped. Let H1(x1,x0) be the impulse response
function of the test arm and Hn(xn,x0) with n = 2,3, . . . ,N

be the impulse response function of the nth reference arm,
respectively. Assume that the light field on the nth detection
plane is denoted as E(xn), which is connected with the
optical field of the thermal-light source through the following
relation:

E (xn) =
∫

hn (xn, − qn) E (qn) dqn, (3)

where hn(xn,qn) = (1/
√

2π )
∫

Hn(xn,x0) exp(−iqnx0)dx0 is
the Fourier transformation of the impulse response function
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Hn(xn,x0). Then, the N th-order spatial correlation function of
the joint intensity at the N detection planes can be expressed
in terms of the N th-order spectral correlation function and the
impulse response functions as

G(N)(x1,x2, . . . ,xN )

= 〈E∗(x1)E(x ′
1)E∗(x2)E(x ′

2) · · · E∗(xN )E(x ′
N )〉

=
∫

h∗
1(x1, − q1)h1(x1, − q ′

1)h∗
2(x2, − q2)h2(x2,

− q ′
2) · · · h∗

N (xN, − qN )hN (xN, − q ′
N )〈E∗(q1)E(q ′

1)

×E∗(q2)E(q ′
2) · · · E∗(qN )F (q ′

N )〉
× dq1dq ′

1dq2dq ′
2 · · · dqNdq ′

N . (4)

The rate of coincidence counts is governed by the N th-order
spatial correlation function given by Eq. (4) which can be
calculated in terms of the impulse response functions of the
relevant optical systems. The impulse response functions [42]
in the reference arms can be written as

hr (xr,q) =
√

fr

2π (fr − zr1)
eiϕr (xr ,q), (5)

ϕr (xr,q) = k(zr0 + zr1) − q2

2k

(
zr0 + zr1fr

fr − zr1

)

− (2qfr + kxr )xr

2(fr − zr1)
, (6)

where zr1 �= fr with r = 2,3, . . . ,N , and the impulse response
function in the test arm is given by

h1(x1,q) = 1

2π

√
k

ifc

exp

[
ik(z1 + 2fc) +

(
−i

z1q
2

2k

)]

×
∫

T (x) exp

[
−i

(
kx1

fc

+ q

)
x

]
dx, (7)

where T (x) is the transmission function of the imaged object.
Substituting the N th-order spectral correlation function

given by Eq. (2) and the impulse response functions given
by Eqs. (5) and (7) into Eq. (4), we can obtain the N th-order
spatial correlation function which can be expressed by the
following two kinds of integrations:

In =
∫

S(q)|hn(xn, − q)|2dq, (8)

Cnn′ =
∫

S(q)h∗
n(xn, − q)hn′ (xn′ , − q)dq, (9)

where both n and n′ may take 1,2, . . . ,N , but r �= n′. In
the broadband limit, S(q) can be regarded as a constant
S(0). Hence we have the total intensity of the thermal light
S0 = ∫

S(q)dq ≈ S(0)q0, where the spectral bandwidth of the
source [43] is given by the parameter q0, which depends on
the wavelength of the thermal-light source, the diameter of the
light beam, and the distance between the imaged object and the
light source. Obviously, the case of q0 = 0 is meaningless since
the ghost image cannot be generated in this case. Substituting

the impulse response functions of the test and reference arms
given by Eqs. (5) and (7) into Eqs. (8) and (9), we obtain

I1 = S(0)k

4π2fc

∫
|T (x)|2dx,

(10)

Ir = frS(0)q0

2π (fr − zr1)
,

Cr1 = S(0)

2π

√
kfr

i2πfc(fr − zr1)

∫
T (x)eiφr1(x,q)dx dq, (11)

Crr ′ = S(0)

2π

√
frfr ′

(fr − zr1)(fr ′ − zr ′1)

∫
eiφrr′ (q)dq, (12)

where both r and r ′ may take 2,3, . . . ,N but r �= r ′, and we
have introduced two phase functions

φr1(x,q) = q2

2k

(
zr0 − z1 + zr1fr

fr − zr1

)
−

(
q + kx1

fc

)
x

+ qXr − k(zr0 + zr1 − z1 − 2fc), (13)

φrr ′(q) = kx2
r

2(fr − zr1)
− kx2

r ′

2(fr ′ − zr ′1)

− q2

2k

(
zr ′0 − zr0 + zr ′1f

′
r

f ′
r − zr ′1

− zr1fr

fr − zr1

)
− q(Xr ′ − Xr ) + k(zr ′0 + zr ′1 − zr0 − zr1), (14)

where the scaled transverse positions are defined by

Xr = frxr

fr − zr1
(r = 2,3, . . . ,N). (15)

From Eqs. (11)–(13), it is straightforward to see that when
the positions of the object, ghost images, and the lenses obey
the following Gaussian thin lens equations for the N th-order
correlated imaging,

1

zr0 − z1
+ 1

zr1
= 1

fr

(r = 2,3, . . . ,N), (16)

the cross-correlation functions of intensity fluctuation can be
simplified as

Cr1 = S(0)

2π

√
kfr

i2πfc(fr − zr1)
exp

(
− ikx1Xr

fc

)
T (Xr )

× exp[−ik(zr0 − zr1 − z1 − 2fc)], (17)

Crr ′ = S(0)

2π

√
frfr ′

(fr − zr1)(fr ′ − zr ′1)
eiφrr′ (0)δ(Xr ′ − Xr ). (18)

In the derivation of Eqs. (17) and (18) we have used the
following properties of the δ function:

1

2π

∫ ∞

−∞
eiqxdq = δ(x),

(19)∫ b

a

f (x)δ(x − x0)dx = f (x0), (a < x0 < b).

Equation (18) indicates that when Xr ′ = Xr we have Crr ′ =
∞ which means G(N)(x1,x2, . . . ,xN ) = ∞. In this case, no
ghost image can be observed since the visibility of the ghost
imaging vanishes. This is different from the higher order
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lensless ghost imaging scheme with thermal light [36,37], in
which working with equal values of Xr gives higher visibility.

When Gaussian thin lens equations are satisfied and X2 �=
X3 �= · · · �= XN , the N th-order spatial correlation function of
the joint intensity at the N detection planes given by Eq. (4)
can be reduced to the following form:

G(N)(x1,x2, . . . ,xN ) =
N∑

r1,r2, . . . ,rN−2 = 2
r1 �= r2 �= · · · �= rN−2

(Ir1Ir2 · · · IrN−2 |CrN−11|2)′

+ I1I2 · · · IN , (20)

where the prime on the right-hand side means that repeating
terms in the summation over ri and rj (i,j = 1,2, . . . ,N − 2)
should be subtracted. The last term on the right-hand equation
(20) is the background term which is the multiplication of the
intensity distribution at the N detectors. It does not contribute
to the correlated imaging, but it may affect the visibility of
produced ghost images. Each term in the summation over ri

and rj is the multiplication of the intensity distribution at
detector Di and the intensity fluctuation correlation between
D1 and Di with i = 2,3, . . . ,N , which gives the information
of the object imaged at the detector Di .

In particular, when the N − 1 reference arms are identical,
i.e., f2 = f3 = · · · = fN , z20 = z30 = · · · = zN0, and z21 =
z31 = · · · = zN1, we have I2 = I3 = · · · = IN ≡ I , and the
N th-order correlation function becomes the following simple
form:

G(N) = IN−1I1 + χIN−2
N∑

i=2

|T (Xi)|2, (21)

where we have introduced the parameter χ =
S2(0)kfr/[8π3fc(fr − zr1)]. Equation (21) indicates that
for the object placed at the test arm, N − 1 ghost images can
be produced in the N − 1 reference arms through coincidence
count measurements upon N detectors. The N th-order
correlation function (21) gives one ghost image for each
reference arm only when N coincidences are counted between
the bucket detector, N − 2 fixed pointlike detectors, and one
scanning detector. Each ghost image is a magnified image
of the object with the magnification factor fr/(fr − zr1)
with r = 2,3, . . . ,N since Xr = frxr/(fr − zr1). However, it
should be pointed out that if the ghost image in any one of the
N − 1 reference arms is virtual, no N th-order ghost image
can be obtained since no N coincidences can be counted
between the bucket detector, N − 2 fixed pointlike detectors,
and 1 scanning detector.

From the Gaussian thin lens equations of N th-order
correlated imaging given by Eq. (16) we can see that the higher
order correlated imaging exhibits richer imaging effects. In
fact, the imaging equation (16) indicates that zr0 − z1 is the
object distance while zr1 is the image distance for the rth
joint path with r = 2,3, . . . ,N . Just as in the ordinary imaging
law, when the object distance of the rth joint path zr0 − z1

is greater (less) than the focal length fr , the correlated image
is real (virtual). As a specific example, we consider the case
of N = 4. In this case, from the imaging equation (16) we
can obtain the following eight ghost-image configurations:
(1) when zr0 − z1 > fr with r = 2,3, and 4, the three ghost

images are real; (2) when zr0 − z1 < fr with r = 2,3, and
4, the three ghost images are virtual; (3) when z20 − z1 > f2,
z30 − z1 < f3, and z40 − z1 < f4, one ghost image is real at the
position x2 and the other two ghost images are virtual at the
positions x3 and x4; (4) when z30 − z1 > f3, z20 − z1 < f2,
and z40 − z1 < f4, the ghost image at the position x3 and
two ghost images at the positions x2 and x4 are virtual; (5)
when z40 − z1 > f4, z20 − z1 < f2, and z30 − z1 < f3, the
ghost image at the position x4 is real and two ghost images
at the positions x2 and x3 are virtual; (6) when z20 − z1 > f2,
z30 − z1 < f3, and z40 − z1 < f4, two ghost images at the
positions x2 and x3 are real and the ghost image at the
position x4 is virtual; (7) when z20 − z1 > f2, z40 − z1 < f4,
and z30 − z1 < f3, two ghost images at the positions x2 and
x4 are real and the ghost image at the position x3 is virtual; (8)
when z30 − z1 > f3, z40 − z1 < f4, and z20 − z1 < f2, two
ghost images at the positions x3 and x4 are real and the ghost
image at the position x2 is virtual.

It is obvious that when N = 2,3, the usual results of the
second- and third-order thermal-light ghost imaging [32] are
recovered, respectively.

It should be pointed out that the physical mechanism of
generating N th-order correlation in our scheme is different
that in Refs. [34,35]. In our scheme, N th-order correlation
is obtained by using coincidence measurements of N inde-
pendent detectors which are located at the N optical arms
with N − 1 reference arms and one test arm. In the scheme
in Refs. [34,35], N th-order correlation is obtained by using
only two CCD detectors which are located at two optical
arms, one test arm and one reference arm. N th-order intensity
correlation is produced by the use of the intensity parting
method in which the N th-order correlation is composed of an
n-fold intensity product at position x1 and an (N − n)-fold
intensity product at position x2. N th-order correlation can be
measured by two CCD detectors located at positions x1 and x2.
Then, in the N th-order lensless ghost imaging there are at least
N − 1 experimental configurations since n may be different.
In Refs. [34,35], the intensity values at different positions
registered by the two CCDs are processed in a computer system
to evaluate the higher order correlation. The total intensity of
each frame recorded by the bucket detector CCD1 at position
x1 in the test arm is divided by N − 1 and convoluted with
the output of CCD2 which is captured at the same time at
position x2 in the reference arm. Hence, there are (N − 1)-fold
intensity products at position x1 in the test arm and 1-fold
intensity at position x2 in the reference arm due to n = N − 1.
Equivalently, this implies that there are N − 1 same test arms
and only one reference arm. Therefore, only one ghost image
can be produced in the reference arm.

It is interesting to note that our present scheme can become a
lensless many-ghost imaging scheme by removing the imaging
lenses Fi in Fig. 1. The lens Fc is a collecting lens; it can
also be removed. From Eq. (16) we can see that the imaging
equation becomes Zr0 + Zr1 = Z1 in the absence of these
imaging lenses; i.e., let fr → ∞ in Eq. (16). This indicates
that we can obtain N − 1 ghost images in the N − 1 reference
arms, and the distance between the rth ghost image and the
light source in the rth reference arm is equal to that between
the imaged object and the light source. In this case, making use
of Eq. (15) we have Xi = xi . Then from Eq. (21) we can see
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that the N − 1 ghost image is identical to the imaged object. So
the ghost images produced in the lensless many-ghost imaging
cannot be magnified. If we use only two optical arms, one test
arm and one reference arm, and adopt the intensity parting
method in the test arm to produce an (N − 1)-fold intensity
product in the test arm, then we recover the lensless scheme in
Refs. [34,35].

III. VISIBILITY OF GHOST IMAGES

The visibility is an important parameter for estimating the
quality of a ghost image. We first generalize the visibility of
the second-order correlated imaging [17,44] to the case of
N th-order correlated imaging as follows:

V (N) =
[
G(N) − ∏N

i=1〈Ii〉
]

max[
G(N)

]
max

. (22)

For our present scheme of the N th-order thermal-light
imaging, substituting Eq. (21) into Eq. (22), we obtain the
visibility

V (N) =
[∑N

i=2 |T (Xi)|2
]

max[
q0

∫ |T (x)|2dx + ∑N
i=2 |T (Xi)|2

]
max

, (23)

which indicates that the visibility depends on not only
the spectral bandwidth of the thermal-light source q0 and
the transmission function of the imaged object T (x) but
also the order number of the correlation of the thermal-light
source. The visibility can be enhanced with the decrease of
the spectral bandwidth. An increase of the transmission leads
to a decrease of the visibility since when the transmission
area increases, more points contribute to the background that
directly makes the visibility decrease. It should be mentioned
that the expression of the visibility (23) is obtained in the
broadband limit which means q0 � 0; therefore, the visibility
is always less than the unit.

In order to see the relationship between the visibility and
the order number of the correlation, making use of Eqs. (10)
and (11), we have

〈I1〉〈Ir〉
|〈E∗(x1)E(xr )〉|2 = q0

∫
|T (x)|2dx, (24)

where r = 2,3, . . . ,N . According to the Cauchy-Schwartz
inequality 〈I1〉〈Ir〉 � |〈E∗(x1)E(xr )〉|2, which means that
q0

∫ |T (x)|2dx � 1. Hence, we find that

V (N) �
[ ∑N

i=2 |T (Xi)|2
]

max[
1 + ∑N

i=2 |T (Xi)|2
]

max

� N − 1

N
, (25)

which implies that the visibility of the ghost images can be
dramatically enhanced when the order of correlation becomes
larger. For N th-order correlated thermal-light imaging, the
upper bound of the visibility is given by V

(N)
b = (N − 1)/N .

As expected, when N = 2 the upper bound of the visibility of
the second correlated imaging [17] is 1/2.

To be specific, as an example we take the imaged object as
a double slit with slit width of 0.1 mm and slit-slit spacing of
2.0 mm. The distance from the double slit to the thermal-light
source is Z1 = 50 cm, and the wavelength of the pseudother-
mal source is λ = 632.8 nm. In this case, the visibility of
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FIG. 2. (Color online) Curve of the visibility with respect to the
order N in the N th-order correlated thermal-light ghost imaging.
Here we take the object as a double slit with slit width of 0.1 mm
and spacing of 2.0 mm. The distance from the double slit to the
light source is Z1 = 50 cm, and the wavelength of the pseudothermal
source is λ = 632.8 nm.

the N th-order correlated thermal-light ghost imaging is given
by the expression V

(N)
b = (N − 1)/(2.97 + N ). In Fig. 2, the

visibility of the ghost images for the double slit is plotted as a
function the order N .

It should be mentioned that the visibility of the correlated
imaging is scheme dependent. The visibility of the correlated
imaging in our scheme is slightly different from that in Ref.
[36]. This is because the N th-order correlated thermal-light
ghost imaging scheme proposed in the present paper is
different from the scheme in Ref. [36]. The former is a many-
ghost imaging scheme which includes one test optical arm
and N − 1 reference optical arms; the latter is a single-ghost
imaging scheme which incudes one test optical arm and only
one reference optical arm. Besides, the former contains a lens
while the latter essentially is an N th-order lensless correlated
ghost imaging scheme which is similar to the ones using
second-order correlations in pseudothermal light [6,7].

IV. CONCLUDING REMARKS

In conclusion, we have proposed a theoretical scheme of
ghost imaging in terms of N th-order correlated thermal light.
Our scheme includes one test arm and N − 1 reference arms.
The imaged object is placed on the test arm. N − 1 ghost
images are produced in the reference arms in a nonlocal
fashion by means of a higher order correlated imaging
process with an N th-order correlated thermal source and
correlation measurements. We have derived the Gaussian thin
lens equations which the positions of the ghost images obey
in the ghost imaging protocol. We have also investigated the
visibility of the ghost images in the scheme and obtained the
upper bounds of the visibility for the N th-order correlated
thermal-light ghost imaging. It has been shown that the
visibility depends on not only the spectral bandwidth of
the thermal-light source and the transmission area of the
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object but also the order number of the correlation of the
thermal-light source. It is found that the visibility of the
ghost images can be dramatically enhanced when the order of
correlation becomes larger. The present many-ghost imaging
protocol could have promising applications. On one hand, it
gives rise to a theoretical origin for developing many-ghost
imaging technology. This gives rise to the possibility of
experimentally producing correlated many-ghost images. In
fact, the higher order correlated imaging opens up new avenues
for realizing multiport information processing. On the other
hand, physically these ghost images stem from higher order
coherence or higher order correlations of optical fields. In
this sense, the appearance of the many-ghost images reveals
an observable physical effect of higher order coherence or
higher order correlations of optical fields. Hence, it is of
very significance to study higher order correlated imaging
not only for understanding well the essential physics behind
the higher coherence or higher order correlations of optical
fields but also for developing multiport information processing
technology. The experimental realization for the many-ghost
imaging protocol proposed here and practical applications
of the many-ghost imaging phenomenon deserves further
investigation.
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APPENDIX: DERIVATION OF NTH-ORDER SPECTRAL
CORRELATION FUNCTION OF THERMAL LIGHT

In this appendix, we wish to present the derivation of the
N th-order spectral correlation function of thermal light given
by Eq. (2). The N th-order spectral correlation of thermal light
is given by〈

N∏
i=1

E∗(qi)E(q′
i)

〉
= 〈E∗(q1)E(q ′

1)E∗(q2)E

× (q ′
2) · · · E∗(qN )E(q ′

N )〉. (A1)

According to the moment theorem for a Gaussian random
process, the N th-order spectral correlation of thermal light can
be expanded in terms of the first-order field correlations as〈

N∏
i=1

E∗(qi)E(q′
i)

〉
=

∑
N!

C11(q1,q
′
1)C22

× (q2,q
′
2) · · · CNN (qN,q ′

N ), (A2)

where
∑

N! denotes summation over all the N ! possible per-
mutations of the variables {q ′

1,q
′
2, . . . ,q

′
N }, and the correlation

functions Cij (qi,q
′
j ) are defined by

Cij (qi,q
′
j ) = 〈E∗(qi)E(qj )〉. (A3)

For thermal light with Gaussian statistics, making use of
Eq. (1) we have

Cij (qi,q
′
j ) = S(qi)δ(qi − q ′

j ). (A4)

Substituting Eq. (A4) into (A2), we find that

〈
N∏

i=1

E∗(qi)E(q′
i)

〉
= S(q1)S(q2) · · · S(qN )

×
∑
N!

δ(q1 − q ′
1)δ(q2 − q ′

2)

× · · · δ(qN − q ′
N ), (A5)

where
∑

N! also denotes summation over all the N ! possible
permutations of the variables {q ′

1,q
′
2, . . . ,q

′
N }.

In order to see the detailed structure of the N th-order
spectral correlation of thermal light given by Eq. (A5), we take
the case of N = 4 as an example. In this case, the fourth-order
spectral correlation given by Eq. (A5) 〈∏4

i=1 E∗(qi)E(q′
i)〉 can

be explicitly expressed as

S(q1)S(q2)S(q3)S(q4)

×{δ(q1 − q′
1)δ(q2 − q′

2)δ(q3 − q′
3)δ(q4 − q′

4)

+ δ(q1 − q′
1)δ(q2 − q′

2)δ(q3 − q′
4)δ(q4 − q′

3)

+ δ(q1 − q′
1)δ(q2 − q′

3)δ(q3 − q′
2)δ(q4 − q′

4)

+ δ(q1 − q′
1)δ(q2 − q′

3)δ(q3 − q′
4)δ(q4 − q′

2)

+ δ(q1 − q′
1)δ(q2 − q′

4)δ(q3 − q′
2)δ(q4 − q′

3)

+ δ(q1 − q′
1)δ(q2 − q′

4)δ(q3 − q′
3)δ(q4 − q′

2)

+ δ(q1 − q′
2)δ(q2 − q′

1)δ(q3 − q′
3)δ(q4 − q′

4)

+ δ(q1 − q′
2)δ(q2 − q′

1)δ(q3 − q′
4)δ(q4 − q′

3)

+ δ(q1 − q′
2)δ(q2 − q′

3δ(q3 − q′
1)δ(q4 − q′

4)

+ δ(q1 − q′
2)δ(q2 − q′

3)δ(q3 − q′
4)δ(q4 − q′

1)

+ δ(q1 − q′
2)δ(q2 − q′

4)δ(q3 − q′
1)δ(q4 − q′

3)

+ δ(q1 − q′
2)δ(q2 − q′

4)δ(q3 − q′
3)δ(q4 − q′

1)

+ δ(q1 − q′
3)δ(q2 − q′

1)δ(q3 − q′
2)δ(q4 − q′

4)

+ δ(q1 − q′
3)δ(q2 − q′

1)δ(q3 − q′
4)δ(q4 − q′

2)

+ δ(q1 − q′
3)δ(q2 − q′

2)δ(q3 − q′
1)δ(q4 − q′

4)

+ δ(q1 − q′
3)δ(q2 − q′

2)δ(q3 − q′
4)δ(q4 − q′

1)

+ δ(q1 − q′
3)δ(q2 − q′

4)δ(q3 − q′
1)δ(q4 − q′

2)

+ δ(q1 − q′
3)δ(q2 − q′

4)δ(q3 − q′
2)δ(q4 − q′

1)

+ δ(q1 − q′
4)δ(q2 − q′

1)δ(q3 − q′
2)δ(q4 − q′

3)

+ δ(q1 − q′
4)δ(q2 − q′

1)δ(q3 − q′
3)δ(q4 − q′

2)

+ δ(q1 − q′
4)δ(q2 − q′

2)δ(q3 − q′
1)δ(q4 − q′

3)

+ δ(q1 − q′
4)δ(q2 − q′

2)δ(q3 − q′
3)δ(q4 − q′

1)

+ δ(q1 − q′
4)δ(q2 − q′

3)δ(q3 − q′
1)δ(q4 − q′

2)

+ δ(q1 − q′
4)δ(q2 − q′

3)δ(q3 − q′
2)δ(q4 − q′

1)}. (A6)

It is straightforward to see that the fourth-order spectral
correlation given by Eq. (A6) can be rewritten as the following
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expression:

〈
4∏

i=1

E∗(qi)E(q′
i)

〉
=

4∑
ri �= rj ,si �= sj

(
4∏

i=1

δ(qri
− q′

si
)

)′

× S(q1)S(q2)S(q3)S(q4), (A7)

where the prime in the summation means that all of the
repeating terms are subtracted from the summation over ri

and si with both ri and si taking 1,2,3,4 for i = 1,2,3,4. It

can be checked that for arbitrary N , the N th-order spectral
correlation of thermal light can be expressed as〈

N∏
i=1

E∗(qi)E(q′
i)

〉
=

N∑
ri �= rj ,si �= sj

(
N∏

i=1

δ(qri
− q′

si
)

)′

× S(q1)S(q2) · · · S(qN ), (A8)

where the prime in the summation means that all of the
repeating terms are subtracted from the summation over ri and
si with both ri and si taking 1,2, . . . ,N for i = 1,2, . . . ,N .
Equation (A8) is Eq. (2).
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