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High-temperature phase transition in the coupled atom-light system in the presence of
optical collisions

A. P. Alodjants,* I. Yu. Chestnov, and S. M. Arakelian
Department of Physics and Applied Mathematics, Vladimir State University, Gorky str. 87, 600000, Vladimir, Russia

(Received 16 December 2010; revised manuscript received 31 January 2011; published 3 May 2011)

The problem of photonic phase transition for the system of a two-level atomic ensemble interacting with a
quantized single-mode electromagnetic field in the presence of optical collisions (OCs) is considered. We have
shown that for large and negative atom-field detuning a photonic field exhibits high-temperature second-order
phase transition to superradiant state under thermalization condition for coupled atom-light states. Such a
transition can be connected with superfluid (coherent) properties of photonlike low branch (LB) polaritons. We
discuss the application of metallic cylindrical waveguide for observing predicted effects.
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I. INTRODUCTION

Nowadays the investigation of phase transitions in atomic
gases represents a huge area of experimental and theoretical
research where condensed matter and statistical physics are
closely connected to the application problems of quantum
and atom optics, for example, in the field of quantum
information science (see, e.g., [1]). Although Bose-Einstein
condensation (BEC) of the atoms has been observed in many
labs, the requirement to use extremely low (up to micro-
Kelvins) temperatures strictly limits the utilization of such an
effect for practical purposes. It provides an important reason
for studying relatively high-temperature phase transitions.
Usually such transitions take place in coupled matter-field
systems; polaritons introduced many years ago for describing
the interaction of quantized field with quantum excitations in
the medium (see, e.g., [2]). At present the evidence of phase
transitions with LB polaritons and their superfluid properties
have been observed in solid state physics with semiconductor
microstructures (see, e.g., [3–5]). In such systems polaritons
can be treated as 2D gas of bosonic particles, so-called exciton
polaritons appearing in the sample of quantum wells inserted
in a semiconductor (CdTe/CdMgTe or GaAs) microcavity and
having effective mass which is many orders smaller than a free
mass of electrons. However, high- (room) temperature phase
transition for current narrow-band semiconductors seems to
be hard to reach due to exciton ionization. At the same time the
time of thermalization for polaritons in solid state structures
mentioned above is short enough and is in the picoseconds
regime [3]. In this sense polaritons in atomic physics could be
preferable for observing high-temperature phase transitions.
Such polaritons potentially possess a longer coherence time.
In particular, atomic polaritons represent superposition of
photon and polarization of two- (or multi) level atoms and
can be observed in various problems of atom-field interaction
where long-lived coherence of quantized optical field strongly
coupled with macroscopic atomic ensemble plays an essential
role (cf. [6,7]).

The primary step for the experimental observation of phase
transitions and BEC for atomic polaritons is connected with
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achieving thermal equilibrium in the coupled atom-light sys-
tem. The so-called optical collisions (OCs) have been proposed
recently for this purpose. The process of OC represents
nonresonant interaction of a quantized light field with an
atom in the presence of buffer gas particle (see, e.g., [8]).
Although the main features of OCs have been investigated both
in theory and in experiment for a long time (see, e.g., [9–11]),
the thermodynamic properties of a coupled atom-light system
have been studied quite recently [12–16]. In particular, in [12]
it has been demonstrated that OCs lead to the thermalization
of coupled (dressed) atom-light states under the interaction of
the optical field with rubidium atoms in an ultrahigh-pressure
buffer gas cell at high (530 K) temperature. Later in [13]
we have proposed a theoretical approach of a dressed-state
thermalization that accounts for the evolution of pseudospin
Bloch vector components and characterizes the essential role
of the spontaneous emission rate in the thermalization process.
Although we have used a two-level model for describing
OC process with buffer gas particles (see, e.g., [9–11]) the
dependences theoretically obtained in [13] are qualitatively
in good agreement with experimentally observed results for
rubidium atoms. The predicted time of thermalization was
in a nanosecond domain at full optical power 300 mW and
negative atom-light detuning δ/2π = −11 THz. The main
features of such a thermalization are connected with the
observed asymmetry of a saturated line shape that depends on
the temperature of atomic gas and detuning δ = ωL − ωat; ωL

and ωat are frequencies of optical field and atomic transition,
respectively.

In a number of papers [15,16] authors discussed thermody-
namic properties of a two-level sodium atomic system being
under OCs with buffer gas particles in another limit of positive
atom-light detuning, that is, for δ > 0. In particular, there has
been shown a strong laser generation in the atomic ensemble
interacting with cw-laser field in the domain of a far blue wing
of spectral line under the frequent collision with buffer gas
particles. In this sense both problems, that is, lasing that occurs
in atomic system in the presence of OC and phase transition
for coupled atom-light states, evoke great interest and should
be clarified.

Physically the problems under discussion are very close to
another intriguing and long-stated problem of phase transition
for a light field (or BEC of photons) (see, e.g., [17–20]). In
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fact, the comparison of lasing and condensation phenomena
for photonic, atomic, and solid state systems as two possible
ways for achieving macroscopic coherence has long been
discussed (see, e.g., [21–23]). The first attempts to consider
some analogy between lasing under the threshold region and
second-order phase transition in ferromagnets have been made
in [21]. Later a simple Dicke model that describes an ensemble
of two-level atoms interacting with quantized electromagnetic
field in standard laser quantum theories has been proposed for
observing phase transition of photons [17]. In quantum optics
phase transition in such a system has been interpreted as a
transition to some superradiant (coherent) photonic state with
zero chemical potential [18]. At the same time it is pointed out
in [19] that in this case the establishment of spontaneous static
field (a field with zero frequency) in the medium takes place.
In fact such a phase transition creates some ferroelectric state
in the medium.

From our point of view there exist important circumstances
that must be taken into account while considering phase
transitions mentioned above. In many cases including usual
lasers, we deal in practice with nonequilibrium states of
the system (cf. [22,24]). On the other hand, Bose-Einstein
condensation phenomenon and phase transition under dis-
cussion have some meaning only in the limit of thermody-
namically equilibrium state of a coupled atom-light system
for which chemical potential is nonzero (cf. [25]). In this
sense the applicability of a convenient Dicke model for the
phase transition problem should be justified in each physical
case.

Noticing that in previous experiments [12,13] the region
of high and uniform laser intensity was about 70 µm.
Physically it means that the medium is thin and the lifetime
of photonlike polaritons discussed in this paper seems to
be short in comparison with the thermalization time of a
coupled atom-light system. However, the implementation
of special metallic waveguides of various configurations
with the length up to a few millimeters in the OCs ex-
periment performed recently (see [14]) allows us to in-
crease the time of atom-field interaction by many orders
due to photon trapping and confinement. In fact, such
waveguides pave the way to the investigation of the high-
temperature phase transition problem with polaritons in atomic
optics.

In the present paper we continue our theoretical investi-
gation of thermodynamic and critical properties of coupled
atom-light states appearing due to the interaction of two-level
atoms with a single-mode optical field in the presence of
buffer gas particles. In Sec. II we examine critical proper-
ties of photonic field under the thermalization of coupled
atom-light states. In Sec. III we study the problem of a
second-order phase transition in the system under discussion.
In particular, we suggest a simple model of polaritons
describing atom-field interaction at equilibrium. Relying
on a thermodynamical approach we consider a mean-field
Bardeen-Cooper-Schrieffer (BCS)-like gap equation for order
parameter, normalized amplitude of photonic field. In the
Appendix we discuss the properties of a cylindrical waveguide
for realizing appropriate strong atom-field coupling in a
single-mode regime. In conclusion, we summarize the results
obtained.
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FIG. 1. (Color online) Population of the upper state σbb as a
function of atom-field detuning δ/2π for 500-bar argon buffer gas
at different values of the resonant Rabi frequency �0/2π . The
parameters are γ /2π = 3.6 THz and � � 2π · 6 MHz. The inset
includes the scheme of collisionally aided absorption in a two-level
atom for δ < 0 (left panel) and for δ > 0 (right panel).

II. THERMODYNAMIC APPROACH FOR PHOTONIC
FIELD UNDER THE OC PROCESS

An optical collision (OC) is an elementary process of a
collision between an isolated atom of sort A and a foreign
(buffer) gas particle of sort B resulting in the emission or
absorption of nonresonant photons (see, e.g., [8]). The inset
of Fig. 1 includes a two-level model for characterizing the OC
process under consideration. Actually, in recent experiments
[12–14] Rabi splitting frequency, atom-field detuning, and
collisional broadening are at least three and more orders
larger than splitting frequency between hyperfine levels for
5S-5P transition in rubidium D lines (cf. [26]). As it is
demonstrated in [12,13] that the usual pressure-broadened
rubidium D1 and D2 lines are visible at a moderate optical
power P = 25 mW independently. In this limit collisional
broadening can be treated for D1 and D2 lines of rubidium
atoms separately. Contrary, at full optical power 300 mW for
which the thermalization of coupled atom-light states occurs
the essential asymmetry of D1 and D2 spectral lines and a
common shape of pressure broadening curves are clearly seen
in the experiment (cf. [12–14]). Hence the assumption of a
two-level approach for the OC problem neglecting hyperfine
structure of rubidium D lines seems to be justified (cf. [16]).

We suppose that an optical field with frequency ωL interacts
nonresonantly with two-level atoms having frequency spacing
ωat in the presence of buffer gas particles. Physically OC
means that excitation of level |b〉 is impossible due to
atomic collisions only. A theoretical description of coupled
atom-light state thermalization can be given by the density
matrix approach (see, e.g., [13]). In general, the interaction
of two-level atoms with a quantized optical field in the
presence of collisions with buffer gas particles is characterized
by the following physical parameters. First, there is Rabi
frequency �̃R = �R − δη/�R that describes the splitting of
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energy levels in the presence of collisions with buffer gas
particles, �R = √

�2
0 + δ2 is a definition of the same quantity

without collisions when η = 0; �0 = 2g
√

Nph is resonant

Rabi splitting taken at detuning δ = 0; g = ( |dab|2ωL

2h̄ε0V
)1/2 is

the atom-field interaction constant, which we assume to be
identical for all atoms; dab is the atomic dipole matrix element;
V is the interaction volume; Nph is a total average number of
photons involved in the OC process.

The collisions with buffer gas particles are determined by
two parameters η and γ which can be expressed phenomeno-
logically via the average phase shift that is accumulated during
the collision (cf. [8]). Physically parameters η and γ can be also
connected with molecular potentials of a compound A + B

system. Parameter η depends on the difference 
U of diagonal
matrix elements for interacting atoms A and B due to their
collisions (scattering). According to the quantum mechanical
approach to the OC problem, 
U can be represented as

U = CnR

−n for power law of atomic interaction, Cn is a
constant that depends on a character of such interaction, R is a
distance between the atom and perturber (buffer gas particle)
for a given time, and for more details see [11].

Second, OC process is described by collisional rate (col-
lisional broadening) γ that plays an important role in the
thermalization process. In a general case parameter γ is
characterized by the density of buffer gas particles, molecular
potentials for a compound system, and depends on the value of
atom-field detuning δ (see [11]). In the experiment described in
[12] parameters γ and η are of the order of terahertz. Skipping
some details of our calculations presented in [13], we are
starting here with important results related to thermalization
of coupled (dressed) atom-field states.

Figure 1 demonstrates a calculated population of the upper
state σbb that is proportional to the total intensity of spectral
components as a function of atom-field detuning δ taken for
the interaction of a quantized field with two-level rubidium
atoms characterized by mean resonance frequency of transition
382 THz corresponding to a weighted mean of rubidium
D lines (cf. [26]). In the paper we focus on the so-called
perturbative limit when atom-field detuning δ is large enough,
that is, when inequalities |δ| > γ, η > �0 are held. In this
limit one can neglect phase shift introduced by OC, assuming
that �̃R ≈ �R . At the same time the scaled atomic population
of the upper level σbb in this case yields

σbb � 1

2
(

1 + �δ2

γ�2
0

)
[

1 + δ

|δ| tanh

(
h̄ |δ|
2kBT

)]
, (1)

where � is a spontaneous emission rate.
First, we examine the role of atomic collisions in the

thermalization process assuming that �δ2/γ�2
0 � 1; a blue

dashed curve in Fig. 1 corresponding to this limit. For negative
detuning δ < 0 from (1) we get

σbb � γ�2
0

�δ2
e−h̄|δ|/kBT , (2)

where we also suppose that inequality

h̄ |δ| � kBT (3)

is satisfied.

The relation (3) can be recognized as a “low-temperature”
limit in the framework of a convenient approach to existing
theories for phase transitions and BEC problems (cf. [27]).

The result obtained from (2) is in good agreement with
theoretical predictions for the spectral line obtained for a far red
wing (so-called adiabatic wing) (see, e.g., [11]). In particular,
the curve of spectral intensity decays exponentially in this
case.

Now let us switch over to a positive-valued large atom-field
detuning, that is, to δ > 0. In this case we get from (1)

σbb ≈ γ�2
0

�δ2
. (4)

Equation (4) reproduces a physical result for a far blue wing
(so-called, static wing of spectral line) well known from the
theory of OCs (cf. [11]). The result is that the population of
the upper level is inversely proportional to square of atom-light
detuning.

However, according to our theoretical approach important
features of population of the upper state are connected with
the dependence of σbb on temperature T of atomic gas.

The thermalization of coupled atom-light (dressed) states
occurs if condition

�/γ � �2
0

/
δ2 � 1 (5)

is fulfilled. In particular, for large �0 the σbb approaches Dirac-
Fermi distribution function

σbb ≈ 1

1 + e−h̄δ/kBT
. (6)

In [12,13] the best result concerning coupled atom-light
state thermalization has been experimentally observed for
maximally accessible atom-field detuning δ/2π = −11 THz
and resonant Rabi frequency �0/2π = 0.1 THz (indicated by
solid curve in Fig. 1). The obtained time of thermalization was
10 times shorter than the natural lifetime for rubidium D lines.

For further processing it is important to determine a total
atom-field excitation (polariton) density ρ as

ρ = λ2 + σbb, (7)

that we consider to be constant at thermal equilibrium. In (7)
λ2 = 〈f †f 〉/N is a normalized average photon number, f (f †)
is annihilation (creation) operator for the photons absorbed (or
emitted) due to atomic collisions at the equilibrium, and N is
a number of atoms.

The thermodynamic property of a coupled atom-light
system depends on the contribution of photonic and atomic
parts in Eq. (7) which is usually considered in some specific
limits.

The so-called low density limit ρ � 0.5 for atom-field
excitations (polaritons) implies that

λ2 � 1, (8a)

σbb � σaa � 1, (8b)

which is obtained at negative atom-field detuning δ < 0 at
“low-temperature” limit (3), when atoms mostly populate their
ground state |a〉.
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Relation (8a) represents the necessary prerequisite for
observing a second-order phase transition in various physical
systems being at low temperatures (cf. [7,25,27]). As for the
problem of OCs a low density limit (8) can be achieved at
high temperatures but for a very large atom-field detuning |δ|.
An experimentally accessible relative photon number involved
in the atom-field interaction and estimated for Rabi frequency
�0/2π = 0.1 THz is Nph/N � 6.24 × 10−3 (see [12,13]). We
assume that inequality (8a) is fulfilled for the system under
discussion.

The saturation of atomic population is achieved at excitation
density ρ ≈ 0.5 for h̄|δ| � kBT . This is the so-called secular
approximation (see [8]) for which OCs tend to equalize
dressed-state populations which is not the case of our study
here.

For positive detuning (δ > 0) from (7) and (8) we obtain
ρ > 0.5 (σbb > 0.5) that corresponds to the limit of population
inversion in a two-level atomic ensemble (cf. [15]). Physically,
such a system is unstable because of spontaneous emission pro-
cesses from the upper level. In particular, relevant population
σbb diminishes at a large positive detuning for any fixed laser
intensity (see Fig. 1).

To find photonic field properties under OC process at
equilibrium we consider (7) as an equation for order parameter
λ at the given density ρ. Putting in (7) λ = 0 for critical value
αc of vital parameter α ≡ h̄δ/kBT that determines the phase
boundary between normal and “superradiant” states one can
obtain

αC = −ln [(1 − ρ) /ρ] . (9)

Furthermore, one can get from (6)–(8) an expression for order
parameter λ(α) as a function of atom-field detuning δ or
temperature T

λ(α) = λ∞

{
1 − 1

ρ[1 + (1/ρ − 1)α/αC ]

}1/2

, (10)

where λ∞ ≡ √
ρ is an order parameter at “zero temperature”

limit (3).
Equation (10) gives an opportunity to interpret critical

properties of the photonic field occurring due to OCs as a
result of atom-field thermalization. To be more specific, we
suppose atom-light detuning δ to be negative. While modulus
|δ| is small enough (such that h̄|δ| � kBT ,γ ), the elementary
processes of emission (or absorption) of photons by atoms
happen independently on the atomic collisions with buffer gas
particles during their free motion. The atomic collisions lead to
the dephasing of emitted radiation. In this sense they are worse
and we deal with a “normal” (incoherent) state for photons.

A physical picture is changed significantly by increasing
atom-field detuning δ at high buffer gas pressures. For large |δ|
under the condition of h̄|δ| � kBT it is no longer possible to ig-
nore correlations between elementary acts of atomic collisions
with buffer gas particles and photon emission (or absorption).
This is a case of OCs. Each collision happens in a very short
time period compared with the time interval separating two
collisions. Watching OCs for a long time when many collisions
happen and frequent transitions of atomic population between
dressed states occur it is possible to create some population
of coupled atom-light states in thermodynamic equilibrium
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FIG. 2. (Color online) Order parameter λ vs vital parameter α

(normalized atom-light detuning δ) for T = 530 K temperature of
atomic gas. In the inset a phase boundary for critical parameter αC vs
LB polariton density ρ is presented (see the text).

due to the thermalization process. This population can be
established for “usual” (bare) atomic levels only for large
values of atom-field detuning. In this case Eq. (10) represents
transition to some ordering (“superradiant”) state as a result of
forming macroscopic “spontaneous” polarization for a coupled
atom-light system. It should be noticed that the existence of
some small residual polarization of the atomic system has been
predicted in [13] as a result of the atom-light (dressed) states
thermalization.

Figure 2 demonstrates phase transition behavior for order
parameter λ for the system under discussion. From a practical
point of view it is much easier to vary atom-field detuning
δ instead of atomic gas temperature T . The dashed curve
corresponds to density ρ = 0.27 in accordance with experi-
mentally achieved detuning δ/2π = −11 THz. The solid curve
is relevant to low density limit (8). The critical value |αC | of
parameter α is increased by decreasing excitation density ρ

(see inset in Fig. 2). In the low density limit (8) Eq. (10) is
simplified and looks like λ(α) � λ∞[1 − (ρ)α/αC−1]1/2. Phase
transition occurs for large enough detuning (or at lower
temperatures).

For positive detuning (δ > 0) the problem of phase
transition under discussion is sophisticated. Formally, full
thermalization of coupled atom-light states and relevant phase
transition can be achieved at infinite resonant Rabi splitting
frequency �0 and atom-field detuning δ, when the population
of the upper level is σbb = 1 [see (6)]. However, an approach to
OCs that characterizes the thermalization process is valid only
for limited values of detuning such as |δ| � ωat. For any finite
�0 the variation of atom-field detuning δ or gas temperature T

drives a coupled atom-light system out of thermal equilibrium
even if such an equilibrium (or quasiequilibrium) has been
initially achieved (Fig. 1). In this sense the fulfillment of
condition (5) for coupled atom-light states permits us to create
a population inversion in a two-level atomic ensemble and
to realize nonequilibrium (or quasiequilibrium) transition to
lasing as a result (cf. [15,16]).
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III. PHASE TRANSITION IN A COUPLED ATOM-LIGHT
SYSTEM UNDER EQUILIBRIUM

While OCs result in thermalization of coupled (dressed)
atom-light states, Eq. (10) describes the phase transition under
discussion only qualitatively. Strictly speaking, a rigorous
thermodynamical approach to critical properties of a coupled
atom-light system at equilibrium is needed.

We describe the interaction of a single-mode light field
f with an atomic ensemble by relevant (Dicke) Hamiltonian
(cf. [13,17])

H = h̄ωLf †f + h̄ωat

2

N∑
j=1

Sz,j + h̄κ√
N

N∑
j=1

(S†
−,j f + f †S−,j ),

(11)

where κ = g
√

N is a collective parameter of atom-field
interaction, S−,j is a transition operator for j th atom, and
Sz,j is an operator of atomic population imbalance.

From the mathematical point of view for the definition of
S−,j and Sz,j operators it is possible to use Pauli spin matrices
representation (cf. [18]) or explore annihilation (aj , bj ) and
creation (a†

j , b†j ) operators for bosonic atoms at the ground |a〉
and excited |b〉 states in the second quantization representation,
respectively. The latter one enables definitions S−,j = a

†
j bj

and Sz,j = b
†
j bj − a

†
j aj (see [28]).

Since the atomic medium is very dense (nat � 1016 cm−3)
one can neglect inhomogeneous (Doppler) broadening because
Doppler broadening does not restrict the thermalization pro-
cess and is by two orders smaller than parameter κ , that is,
κ/2π ≈ 0.624 THz for resonant Rabi frequency �0/2π =
0.1 THz (cf. [12,13]). Hence the so-called strong atom-field
coupling condition that plays an important role in the problem
of phase transition with polaritons is fulfilled in our case (cf.
[3–5]). In this limit one can introduce collective atomic ladder
operator S− and operator of atomic population imbalance Sz

as follows:

S− =
N∑

j=1

S−,j , (12a)

Sz =
N∑

j=1

Sz,j . (12b)

Operators introduced in (12) obey su(2) algebra commuta-
tion relations

[S−,S
†
−] = −Sz, (13a)

[Sz,S−] = −2S−. (13b)

For describing excitations of a two-level atomic system we
define annihilation (φ) and creation (φ†) excitation operators
by using the so-called Holstein-Primakoff transformation (cf.
[29])

S− =
√

N − φ†φφ, (14a)
S
†
− = φ†

√
N − φ†φ, (14b)

Sz = 2φ†φ − N. (14c)

The relations (13) are preserved when operators φ

and φ† obey usual commutation relation for the Bose

system:

[φ,φ†] = 1. (15)

For a large number of atoms N it is possible to treat
operators S− and S

†
− as

S− =
√

Nφ − φ†φ2

2
√

N
, (16a)

S
†
− =

√
Nφ† − φ†2

φ

2
√

N
. (16b)

The last term in (16) characterizes nonlinear effects for
atomic excitations under the atom-field interaction. However,
in the low density limit defined as

φ†φ � N (17)

we can obtain from (16) simple expressions for operators φ

and φ†, that is, we get

P ≡ φ = 1√
N

S−, (18a)

P † ≡ φ† = 1√
N

S
†
−. (18b)

Taking into account Eq. (14c), it is easy to see that
condition (17) exactly corresponds to the relation (8b) obtained
for large and negative atom-field detuning δ < 0. In this
case collective atomic excitations described by operator φ

characterize a macroscopic polarization P of atomic system.
Taking into account Eqs. (14c), (17), and (18), Hamilto-

nian (11) can be easily reduced to the form

H = h̄ωLf †f + h̄ωatφ
†φ + h̄κ(φ†f + f †φ). (19)

At the steady state for a coupled atom-light system
Hamiltonian (19) can be diagonalized with the help of unitary
transformations

�1 = ϑ1f + ϑ2φ, (20a)

�2 = ϑ1φ − ϑ2f, (20b)

where ϑ2
1,2 = 1

2 (1 ± δ√
δ2+4κ2 ) are Hopfield coefficients that

obey normalization condition ϑ2
1 + ϑ2

2 = 1.
The annihilation operators �1,2 in Eqs. (20a) and (20b)

characterize two types of quasiparticles due to the atom-field
interaction, that is, upper and lower branch polaritons. By
using relation (15) it is easy to show that operators defined in
(20a) and (20b) obey commutation relations

[�1,�
†
1] = [�2,�

†
2] = 1. (21)

Below we focus on photonlike polaritons necessary for
explaning photonic phase transition for the light field in the
system under discussion.

The equation for order parameter λ at equilibrium can be
derived from a variational (thermodynamic) approach (see,
e.g., [18]). In their calculations the authors use a canonical
ensemble with chemical potential µ = 0 applied to Dicke
Hamiltonian (11). However, this approach cannot be justified
even for a pure photonic system posing phase transition at
equilibrium. For example, as it is shown in [30] the chemical
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potential for photonic gas being under BEC condition is
nonzero.

In the paper we use a grand canonical ensemble with finite
chemical potential and coherent basis for the photonic field
for calculating partition function Z(N,T ) = Tr(e−H ′/kBT ),
H ′ = H − µNex is a modified Hamiltonian, and Nex = f †f +
1
2

∑N
j=1 Sz,j is the number of excitations.

Evaluating partition function Z(N,T ) under the mean-field
approximation one can obtain (cf. [18])

ω̃Lλ = κ2λ tanh
[

h̄
2kBT

(
ω̃2

at + 4κ2λ2
)1/2 ]

(
ω̃2

at + 4κ2λ2
)1/2 , (22)

where we introduced denotations ω̃L ≡ ωL − µ, ω̃at ≡
ωat − µ.

Equation (22) is similar to the gap equation that charac-
terizes a second-order phase transition for various systems
in solid-state physics (see, e.g., [27]). For finding chemical
potential µ in our case one can use polariton number operator
Npol = �

†
1�1 + �

†
2�2. With the help of Eqs. (12b), (14c), and

(20) Npol can be represented as

Npol = f †f +
N∑

j=1

b
†
j bj = N

2
+ Nex. (23)

Density ρ of total excitations occurring in a closed atom-light
field system defined in (7) can be interpreted as a polariton
number density, that is, ρ ≡ Npol/N . In the thermodynamic
limit it approaches

ρ = λ2 + 1

2

⎧⎨
⎩1 − ω̃at tanh

[
h̄

2kBT

(
ω̃2

at + 4κ2λ2
)1/2 ]

(
ω̃2

at + 4κ2λ2
)1/2

⎫⎬
⎭ . (24)

The last term in the brackets of Eq. (24) characterizes
normalized population imbalance S̃z = Sz/N at thermal equi-
librium. In particular, it is (cf. [25])

S̃(eq)
z = − ω̃at tanh

[
h̄

2kBT

(
ω̃2

at + 4κ2λ2
)1/2 ]

(
ω̃2

at + 4κ2λ2
)1/2 . (25)

Combining (24) and (22) for chemical potential µ we get

µ1,2 = 1
2 (ωat + ωL ± �R,eff), (26)

where �R,eff =
√

δ2 − 8κ2
(
ρ − λ2 − 1

2

)
is a new effective

Rabi splitting frequency.
At low polariton densities [see (8)] Eq. (26) defines normal

state (λ = 0) for upper (µ1) and lower (µ2) polariton branch
frequencies, respectively. Inserting (26) into (22) we arrive at

ω̃L1,2 = κ2 tanh
[

h̄
2kBT

(
ω̃2

at1,2 + 4κ2λ2
)1/2 ]

(
ω̃2

at1,2 + 4κ2λ2
)1/2 , (27)

that are BCS-like equations for upper (index “1”) and lower
(index “2”) branch polaritons, respectively, ω̃L1,2 = 1

2 [δ ∓
�R,eff], ω̃at1,2 = 1

2 [−δ ∓ �R,eff].

The critical temperature TC of phase transition (for given
atom-field detuning δ) can be obtained from (27) for λ = 0
and looks like

TC1,2 = h̄|ω̃at1,2|
2kB tanh−1[±(2ρ − 1)]

. (28)

The results obtained from Eq. (28) are consistent with
existing theories of BCS-like phase transition in polariton
system (cf. [7,25]).

For very large atom-light detuning, that is, for |δ| � κ , a
normalized population imbalance (25) looks like

S̃(eq)
z ≈ δ

|δ| tanh (h̄ |δ| /2kBT ) . (29)

Equation (29) corresponds to equilibrium population of the
upper level achieved at full thermalization of coupled atom-
light states in the presence of OCs and described by Eq. (6).
In the same limit the critical temperature Tc approaches

Tc = h̄δ

2kB tanh−1(2ρ − 1)
. (30)

Equation (30) immediately comes from Eq. (7) taken for order
parameter λ = 0.

At the same time Eq. (28) defines critical value αC of
α parameter (normalized atom-field detuning δ) for fixed
temperature T of atomic gas for which we get

αC = − ln

(
1 − ρ

ρ

)
− 2h̄2κ2 (ρ − 1/2)

k2
BT 2 ln [(1 − ρ)/ρ]

. (31)

Equation (31) characterizes phase boundary between pho-
tonic superradiant (coherent) and normal states taken at λ = 0
for the given temperature T of an atomic ensemble. In
accordance with experimental conditions of [12–14], kBT �
h̄κ and the last term in (31) vanishes. In this case we recognize
Eq. (9) for critical parameter αC that characterizes the OC
process at full equilibrium.

For negative atom-light detuning, that is, for δ < 0, we can
interpret the phase transition under consideration as a transition
to superfluid state of LB photonlike polaritons (�2 � −f )
occurring under the OC process in the low-density limit (8).
In this case order parameter λ can be recognized as a polariton
wave function. In the Appendix we represent the main features
of cylindrical waveguides for observing phase transition with
polaritons. Superfluid properties of polaritons can be eluci-
dated taking into account a weak interaction between them
and can be described in the momentum representation (cf. [4]).
Such an interaction arises due to nonlinear effects in atom-field
interaction, described by second terms in expressions (16)
for S− and S

†
− (cf. [31]). We expect that in the future it

will be possible to examine superfluid properties of such
polaritons by using very thin-walled (up to 60 nm) waveguides
for the experiment with Josephson junctions at high enough
temperatures.

IV. CONCLUSIONS AND OUTLOOK

We consider a phase transition problem in a two-level
atomic ensemble strongly interacting with an optical field. The
main features of such a phase transition are connected with a
coupled atom-light state thermalization occurring due to the
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OCs process with buffer gas particles. Such a thermalization
can be achieved experimentally for a large value of negative
atom-field detuning δ. Using a thermodynamic approach
(partition function) we established a gap equation under a
mean-field approximation for order parameter λ, normalized
average optical field amplitude. In the paper we present simple
arguments confirming that the obtained thermalization of
coupled atom-light states leads to the photonic phase transition
to the superradiant (coherent) state and is characterized by
some ordering (equilibrium state) for two-level atomic system.
Nontrivial solution of Eq. (22) with λ �= 0 leads to the
appearance of a macroscopic stationary polarization of the
atomic medium that is proportional to the order parameter λ.

The equilibrium properties of a coupled atom-light system
offer a promising approach to studying the critical behavior
of photonlike LB polaritons under the low-density limit
(8). In this respect we discuss special metallic waveguides
for providing necessary atom-field interaction and achieving
suitable polariton lifetime, as a result. In particular, the
phase transition under discussion can be connected with
transition to the superfluid (coherent) state for such polaritons
characterizing superposition of a quantized optical field and a
macroscopic atomic polarization. In the presence of the phase
transition the atomic polarization evolves in time with the
frequency that is equal to the chemical potential µ2 ≈ ωat − |δ|
for LB polaritons. This property enables us to observe the
phase transition under discussion experimentally.

We note that the results obtained above can be useful
for observing true BEC occurring with atomic polaritons.
In this case we need to realize certain trapping potential
for LB polaritons. One simple way for that is to use a
biconical waveguide cavity for which waveguide radius R

varies smoothly along the z coordinate. A similar dielectric
(bottle-like) cavity based on tapered optical fiber has been
recently proposed for improving atom-light coupling strength
(see, e.g., [32]). In our case such a cavity enables us to create
an appropriate trapping potential for photons as well as for
polaritons in the z dimension. It is important that in this case
the lifetime of photonlike polaritons can be long enough and
is determined by the cavity Q factor. These problems will be
a subject of intensive study both in theory and experiment in
forthcoming papers.
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APPENDIX A: PHOTON CONFINEMENT IN
CYLINDRICAL WAVEGUIDE

Let us briefly discuss the possibility of observing the phase
transition under discussion with LB polaritons in a metallic
cylindrical waveguide. The implementation of metallic micro-
tubes for investigating coupled atom-light state thermalization
under OC has been demonstrated in [14]. The properties of an
optical field in the ideal empty waveguide without any losses
are well known (see, e.g., [33]). In particular, wave vector
component kmp = gmp/R of the field in the cross section
of the waveguide is orthogonal to the z axis and quantized;
gmp represents the root of the equation Jm(k⊥R) = 0, R

is a waveguide radius, and m and p are integer numbers
characterizing azimuthal and transversal field distribution
respectively. At the same time there exist continuum modes
with wave vectors kz in the z direction. Physically it means
that it is possible to establish a dispersion relation for photonic
field in the waveguide as

ωL � ck⊥,mp + h̄k2
z

/
2mph, (A1)

where we have introduced photon mass mph = h̄k⊥,mp/c. Thus,
for a cylindrical waveguide spatial degrees of freedom in x and
y directions are suppressed and photons remain confined in the
plane which is perpendicular to the z axis. At the same time
Eq. (A1) implies the existence of a finite polariton mass in the
waveguide. For example, mass mpol of photonlike polaritons is
about 2.6 × 10−36 kg which implies a high-temperature phase
transition in our case (cf. [3–5]).

It is possible to define from Eq. (A1) the so-called cutoff
wave number k(c)

mp = k⊥,mp = gmp/R for which a waveguide
mode propagation constant vanishes. In the experiment it is
preferable to use a fundamental TM01 mode with quantum
numbers m = 0, p = 1 (g01 = 2.4048) as a cavity mode for the
atom-field interaction. In particular, we require the fulfillment
of conditions µ1,2,ωL > ck

(c)
01 for characteristic frequencies

that describe a coupled atom-light system. The condition under
discussion can be represented in some other way by using
radius R of the waveguide as c

g01

ωat−|δ| < R < c
g11

ωat+|δ| , where
g11 � 3.8317. The fulfillment of the last inequality guarantees
that only a single waveguide mode effectively interacts with the
atomic ensemble at a large atom-light detuning δ. Notably, that
according to the condition presented above the diameter of the
waveguide should be approximately of the order of wavelength
λRb � 785 nm for rubidium atom D-line transition (cf. [14]).
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