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Birefringent breakup of Dirac fermions on a square optical lattice
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We introduce a lattice model for fermions in a spatially periodic magnetic field that also has spatially periodic
hopping amplitudes. We discuss how this model might be realized with cold atoms in an artificial magnetic field
on a square optical lattice. When there is an average flux of half a flux quantum per plaquette, the spectrum of
low-energy excitations can be described by massless Dirac fermions in which the usually doubly degenerate Dirac
cones split into cones with different “speeds of light.” These gapless birefringent Dirac fermions arise because
of broken chiral symmetry in the kinetic energy term of the effective low-energy Hamiltonian. We characterize
the effects of various perturbations to the low-energy spectrum, including staggered potentials, interactions, and
domain-wall topological defects.
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I. INTRODUCTION

The discovery of graphene [1] and topological insulators [2]
has led to much recent interest in systems whose low-energy
excitations can be described with Dirac fermions. In parallel
there has been exploration of the possibility of generating
artificial magnetic fields for cold atoms confined in an optical
lattice. Neutral bosonic cold atoms cannot couple to a magnetic
field directly, so there have been numerous proposals [3,4] of
approaches to couple atoms to an artificial gauge field, several
of which have been implemented experimentally [5].

Quantum particles in a uniform magnetic field on a lattice
have the well-known Hofstadter spectrum [6]. We study a
Hamiltonian with a tunable Hofstadter-like spectrum that
arises from the combination of hopping and an artificial
magnetic field with a nonzero mean that are both periodically
modulated in the x and the y directions. The presence of
spatial periodicity in the amplitude as well as the phase of the
hopping is the key difference between the model we consider
here and previous work on the spectrum of particles in the
presence of magnetic fields that are periodic in both the x

and y directions [7]. This difference facilitates the unusual
Dirac-like spectrum that we discuss here.

Our main result is that in the lattice model we introduce
[Eq. (3)], when there is an average of half a flux quantum per
plaquette, and at half filling, the low-energy degrees of freedom
can be described by a Dirac Hamiltonian with the unusual
property that chiral symmetry is broken in the kinetic energy
rather than via mass terms. This has the consequence that the
doubly degenerate Dirac cone for massless fermions splits into
two cones with tunable distinct slopes, analogous to a situation
in which there are two speeds of light for fermionic excitations,
similar to birefringence of light in crystals such as calcite. We
discuss the meaning of broken chiral symmetry in our effective
model and explore the effects of various perturbations, such as
staggered potentials, domain walls, and interactions between
fermions.

The paper is structured as follows: in Sec. II we discuss a
possible scheme to realize the Hamiltonian Eq. (3), illustrate its
Hofstadter-like spectrum, and demonstrate that there are Dirac
points in the spectrum when there is an average of half a flux
quantum per plaquette. In Sec. III we discuss the low-energy

theory in the vicinity of the Dirac points, and we give brief
conclusions and discussion in Sec. IV.

II. EFFECTIVE HAMILTONIAN

We use a generalization of the approach introduced by
Sørensen et al. [4] to obtain an artificial magnetic field.
However, our results regarding the spectrum of the model
are independent of any particular experimental scheme used
to realize the model. The scheme in Ref. [4] was presented for
bosons but applies equally well to a starting point of spinless
fermions (corresponding to only one available hyperfine state
for cold atoms) with Hamiltonian

H = −J
∑
〈i,j〉

(ĉ†i ĉj + ĉ
†
j ĉi), (1)

where ĉ
†
i and ĉi are fermionic creation and annihilation

operators respectively at site i and the notation 〈i,j 〉 indicates
that we restrict the sum in the hopping term to nearest
neighbors only. There can be no Hubbard-like interaction
for spinless fermions, and since nearest-neighbor interactions
in an optical lattice system are weak, we initially ignore
interactions.

In Ref. [4], two steps are required to generate an artificial
magnetic field. First, a time-varying quadrupolar potential
V (t) = Vqp sin(ωt)x̂ŷ is applied to the system, and second,
the hopping is modulated as a function of time. During the
course of one oscillation of the quadrupolar potential, hopping
in the x direction is turned on for a very short period of
time τ � t0 = 2π

ω
at times t = nt0, where n is an integer,

and hopping in the y direction is turned on for time τ

around t = (n + 1
2 )t0. Due to the periodic oscillation in the

Hamiltonian, the time evolution operator after m periods may
be written as U (t = mt0) = U (t = t0)m.

Our modification to the proposal in Ref. [4] is that when
hopping is turned on in the x direction at time t = nt0, hopping
is also turned on in the y direction with an amplitude 0 �
β � 1 relative to the hopping in the x direction. At time t =
(n + 1

2 )t0, hopping is turned on in the y direction, and hopping
in the x direction is turned on with amplitude β relative to the
hopping in the y direction as illustrated in Fig. 1. The operator
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FIG. 1. (Color online) Time dependence of the hopping and
the quadrupolar potential during the course of one period of the
quadrupolar potential.

for hopping in the x direction is T̂x = −J
∑

x,y(ĉ†x+1,y ĉx,y +
H.c.) with a similar expression for T̂y . We may write the time
evolution operator as

U (t = mt0) = [e−(iτ/2h̄)(βT̂x+T̂y )e2πiαx̂ŷe−(iτ/h̄)(T̂x+βT̂y )

× e−2πiαx̂ŷe−(iτ/2h̄)(βT̂x+T̂y )]m, (2)

where α = Vqp/πh̄ω and we have set the lattice constant to
unity. To lowest order in J τ/h̄ we can write this in the form

U = e−iHeff t/h̄,

Heff = −J0

∑
x,y

{[(1 + βe2πiαx)ĉ†x,y+1ĉx,y + H.c.]

+ [(β + e2πiαy)ĉ†x+1,y ĉx,y + H.c.]}, (3)

with J0 = τJ /t0.

A. Hofstadter-like spectrum

A more conventional way to write this Hamiltonian is in
the form

Heff = −
∑
ij

[
tij e

(ie/h̄)
∫ i

j
A·dl

ĉ
†
i ĉj + H.c.

]
, (4)

from which we may identify the amplitude of the hopping

tx+1,y = J0

√
1 + β2 + 2β cos(2παy), (5)

tx,y+1 = J0

√
1 + β2 + 2β cos(2παx), (6)

and the artificial magnetic field

Bz = 2παh̄

e

{
β2 + β cos(2παx)

1 + β2 + 2β cos(2παx)

− 1 + β cos(2παy)

1 + β2 + 2β cos(2παy)

}
. (7)

This field is the sum of a spatially uniform piece with
magnitude 2πh̄α

e
and a piece that is spatially periodic in both the

x and y directions. If β = 0, the hopping amplitude is J0 and
the field is uniform with strength 2πh̄α

e
, corresponding to a flux

of αφ0 per plaquette (where φ0 is the flux quantum) as found
in Ref. [4], and there is a Hofstadter spectrum. If β = 1, then
Bz = 0, but the hopping parameters are still spatially periodic.
At β intermediate between 0 and 1, both the hopping and the
magnetic field are spatially periodic in x and y. This illustrates
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FIG. 2. Energy spectrum (in units of J0) as a function of α when
β = 1: there is no artificial magnetic field, yet due to the periodic
hopping, the spectrum has some similarities with the Hofstadter
spectrum.

the essential difference between the model we consider and
previous work on quantum particles in a periodic magnetic
field on a lattice—there is spatial periodicity of 1/α in the
amplitude of the hopping as well as in the magnetic field. For
finite β the spectrum (illustrated for β = 1 in Fig. 2) as a
function of α is reminiscent of the Hofstadter spectrum.

B. Half a flux quantum per plaquette

When α = 1/2 there is an average of half a flux quantum
per plaquette and Heff simplifies to a tight-binding model with
four sites in the unit cell as shown in Fig. 3(a).

Labeling the four sites in the unit cell as A, B, C, and D,
and Fourier transforming in space, we may rewrite the effective
Hamiltonian in the following form:

H =
∑

k

ψ
†
k [Ek − Hk]ψk, (8)

−J

+J

k x

k y

J+

J+ J −

−J−

A C

DB

(a) (b)
E

FIG. 3. (Color online) (a) Unit cell of tight-binding model with
hopping parameters indicated. (b) Dirac cones corresponding to J+
and J− bands.
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with

Hk = 2

⎛
⎜⎜⎜⎝

0 J+ cos ky J+ cos kx 0

J+ cos ky 0 0 −J− cos kx

J+ cos kx 0 0 J− cos ky

0 −J− cos kx J− cos ky 0

⎞
⎟⎟⎟⎠ ,

where J± = J0(1 ± β) and ψT
k = (cAk,cBk,cCk,cDk). We find

that the dispersion is

Ek = ±J±
√

cos2 kx + cos2 ky,

and we note that when β = 1, J− = 0, so there will be a
flatband at Ek = 0 and a dispersing band associated with J+.
We can also see that in the vicinity of the points K±,± =
(±π

2 , ± π
2 ), the spectrum is linear,

Eq = ±J±
√

q2
x + q2

y , (9)

where q = k − (±π
2 , ± π

2 ), and there are cones with two dif-
ferent slopes, corresponding to J± respectively, as illustrated
in Fig. 3(b). When β = 0, the two slopes are identical, whereas
as β → 1, the J− band becomes flat, and the J+ band remains
conical. Several authors recently considered lattice models
closely related to the β = 1 limit of our model. In these models
there are three bands, one flat, and one Dirac-like [8]. The
β = 1/2 spectrum matches that of Weyl fermions considered
in Refs. [9,10]. When β �= 1, the underlying Dirac structure
of the problem is exposed, which allows us to use a symmetry
approach to understand this unusual dispersion.

III. LOW-ENERGY THEORY

We expand around the Dirac points and represent the low-
energy theory (with k measured with respect to K) as

Hk = 2J0[(γ 0γ 1 + iβγ 3)kx + (γ 0γ 2 + iβγ 5)ky], (10)

where we use a nonstandard representation of the γ matri-
ces in which γ 0 = σ3 ⊗ σ3, γ 1 = iσ2 ⊗ I2, γ 2 = iσ3 ⊗ σ2,
γ 3 = −iσ1 ⊗ I2, and γ 5 = −γ 0γ 1γ 2γ 3 = −iσ3 ⊗ σ1. The
matrices γ 0, γ 1, γ 2, and γ 3 satisfy the Clifford algebra
γ µγ ν + γ νγ µ = 2gµν with Minkowski metric gµν .

The dimension of the minimal representation of the Clifford
algebra in 2 + 1 dimensions is 2, allowing for the 2 × 2
Pauli matrices as a choice for the γ ’s. A nonminimal 4 × 4
representation as we have used above leads to a freedom in
the choice of the γ 0 matrix, i.e., a matrix with (γ 0)2 = I4 that
anticommutes with γ 1 and γ 2. Candidates for γ 0 are then
{γ 0,γ 0γ 3,γ 0γ 5,γ 1γ 2}. The matrices {γ 0,γ 0γ 3,γ 0γ 5} form a
triplet and γ 1γ 2 forms a singlet with respect to the SU(2)
“chiral”-symmetry group with generators { i

2γ 3, i
2γ 5, i

2γ 35}
(where γ 35 ≡ γ 3γ 5). Each different choice of γ0 corresponds
to a different labeling of the four sites in the unit cell. The
elements of the chiral group generate transformations between
each labeling. For example, the generator γ 5 translates the
plaquette indices to the labeling of the neighboring lattice cell
along the y direction, while γ 3 translates the plaquette indices

to the neighboring cell in the x direction:

e(π/2)γ 5

⎛
⎜⎜⎝

cA

cB

cC

cD

⎞
⎟⎟⎠ = i

⎛
⎜⎜⎝

cB

cA

−cD

−cC

⎞
⎟⎟⎠ , e(π/2)γ 3

⎛
⎜⎜⎝

cA

cB

cC

cD

⎞
⎟⎟⎠ = i

⎛
⎜⎜⎝

cC

cD

cA

cB

⎞
⎟⎟⎠ .

(11)
Similarly, γ 35 translates the plaquette one lattice cell along
the x and one lattice cell along the y direction. When β = 0,
the elements of the chiral group are symmetries of Hk . When
β �= 0, the γ 3 and γ 5 terms in Hk break the chiral symmetry
and shifts along either the x or y direction do not leave Hk

invariant. We emphasize that this manifest chiral symmetry
breaking is inherently different from the conventional notion
of spontaneous chiral symmetry breaking in field theoretical
models, which is the signature of mass generation [11].

An additional discrete symmetry of Hk (which arises from
the hopping structure in Hk) that holds even when β �= 0 is

� = i

2
(γ 1γ 3 + γ 2γ 5) − i

2
(γ 2γ 3 − γ 1γ 5),

which corresponds to a reflection about the diagonal AD in the
unit cell, with cA → cA, cB → cC , cC → cB , and cD → −cD .
The action of � on Hk is to exchange kx and ky .

A. Fermion birefringence

As illustrated in Fig. 3(b) the dispersion equation (9)
admits massless fermions with two different “speeds of light”
controlled by β. The eigenvectors (written as row vectors) for
the positive- and negative-energy J+ bands are �1 = 1√

2
(1, −

sin θ, − cos θ,0) and �2 = 1√
2
(1, sin θ, cos θ,0); while the

eigenvectors for the J− bands are �3 = 1√
2
(0, cos θ, − sin θ,1)

and �4 = 1√
2
(0, − cos θ, sin θ,1), where we write kx =

k cos θ and ky = k sin θ . The linear combinations �1 + �2

and �3 + �4 have nonzero amplitude only on the A and D

sites, respectively. Any other state will break up into fast (J+)
and slow (J−) fermionic excitations, analogous to fast and
slow modes in an optically birefringent medium.

B. Staggered potentials

Staggered on-site potentials are a natural perturbation to
Hk in the context of cold atoms on an optical lattice. The most
general form of such a potential is

� =
∑

k

ψ
†
k [�0I4 + �1γ

0 + �2(iγ 1γ 3 + iγ 2γ 5)

+�3(iγ 1γ 3 − iγ 2γ 5)]ψk, (12)

where we may set �0 = 0 since this just corresponds to a
uniform shift of the chemical potential. The �1 term violates
chiral symmetry in the usual way but is Lorentz invariant and
hence introduces a gap in the dispersion of the fermions,

Ek = ±
√

�2
1 + 4J 2±k2. (13)

When β = 1 there are flatbands at E = ±�1 that intersect the
J+ bands only at (kx,ky) = (0,0). The birefringence property
discussed above is unaffected by the �1 term. We combine
iγ 1γ 3 and iγ 2γ 5 into a Lorentz-invariant term (�2) and a
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Lorentz-violating term (�3). There are two cases in which
we have obtained simple analytic solutions for the spectrum:
case I, �1 �= 0, �2 �= 0, �3 = 0, for which

Ek =
⎧⎨
⎩

�2 ±
√

(�1 + �2)2 + 4J 2+k2,

−�2 ±
√

(�1 − �2)2 + 4J 2−k2;

and case II, �1 �= 0, �2 = 0, �3 �= 0, for which

Ek =
⎧⎨
⎩

�3 ±
√

(�1 − �3)2 + 4J 2+k2
y + 4J 2−k2

x,

−�3 ±
√

(�1 + �3)2 + 4J 2+k2
x + 4J 2−k2

y.

In case I the dispersion is isotropic in momentum space
and there are flatbands when β = 1, whereas in case II, the
dispersion is anisotropic, with the anisotropy governed by β

through J±. In both cases, there is a shift in the spectrum and
at least one set of massive modes (however, in both cases there
can be a set of massless modes whose dispersion is given by
the upper half of a cone if �1 = ±�2,3 and �0 = ∓�2,3).

C. Interactions

As we consider spinless fermions, there will be no on-
site Hubbard interaction, so we consider nearest-neighbor
interactions of the extended Hubbard type (for cold atoms
in an optical lattice these will generally be weak):

Hint =
∑
〈ij〉

Vijninj . (14)

Setting all of the Vij = V0, we can write the interaction
Hamiltonian in terms of spinors as

Hint = V0

16

∑
k

[(ψ̄kγ
0ψk)2 − (ψ̄kψk)2], (15)

with ψ̄k = ψ
†
k γ

0. The identity and γ 0 that appear in the
kernels of the quartic interaction terms are the only elements
of the Clifford algebra that either commute or anticommute
with all of the elements of the Lorentz group and the chiral
group, ensuring that the interactions remain invariant under any
rotation of the lattice by the Lorentz group or relabeling of the
plaquette indices by the chiral group. At the mean-field level,
the (ψ̄ψ)2 term breaks chiral symmetry by introducing an
effective-mass term m0γ

0, and the (ψ̄γ 0ψ)2 term renormalizes
the chemical potential as δI4. For weak interactions, the
mean-field interaction Hamiltonian is

H MF
int =

∑
k

ψ
†
k [(δI4 + m0γ

0) + (m1γ
0γ 1 + m2γ

0γ 2

+m3iγ
3 + m5iγ

5)]ψk, (16)

where δ = 〈nA〉 + 〈nB〉 + 〈nC〉 + 〈nD〉, and the order param-
eter for staggered charge-density-wave order m0 = 〈nA〉 −
〈nB〉 − 〈nC〉 + 〈nD〉 arises from the Hartree term. The remain-
ing masses m1, m2, m3, and m5 arise from the Fock term—if
these are dropped and β = 0, we recover the mean-field
approximation of the Gross-Neveu model [12]. Similarly to
a �1γ

0 staggered potential, the Hartree term leads to massive
excitations, but does not destroy fermion birefringence. The
detailed study of interactions when β �= 0 is a topic for future
investigation.

For small values of β, when Hint is added to Eq. (3) there
is a mapping between the weak-interaction-strength regime
considered above to the strong-interaction-strength limit that
preserves the property of birefringence:

Ek(β,V0) = βEk(β−1,β−1V0). (17)

This arises from the appearance of the chiral symmetry
generators γ 3 and γ 5 in the kinetic energy and their duality
with Lorenz group generators γ 0γ 1,γ 0γ 2. Upon choosing a
different representation of Clifford algebra elements, one can
transform γ 0γ 1 ↔ γ 3,γ 0γ 2 ↔ γ 5.

D. Topological defects

Broken chiral symmetry at β �= 0 implies that there cannot
be straightforward vortices, but domain walls of the form
�1(x)γ 0 where limx→∞ �1(x) = � and limx→−∞ �1(x) =
−� can occur. If β = 0 the solutions are well known. When
β �= 0 we can find zero-energy bound states with different
spatial extents for the ± solutions:

ψ+(x) = e−κ+
∫ x

0 ds�1(s)u+, ψ−(x) = e−κ−
∫ x

0 ds�1(s)u−,

where u+ = (1,0,i,0), u− = (0, − i,0,1), and κ± = 1/2J±.

IV. DISCUSSION

The model we introduce here has the unusual feature of
low-energy excitations that are birefringent massless fermions
arising from broken chiral symmetry. We suggested a particu-
lar procedure based on Ref. [4] as a way to realize this model
with cold atoms in an optical lattice. This might not be the
only route to realize the model: recent work by Lan et al. [10]
on cold atoms suggested a procedure that gives a model with
the same spectrum as the α = 1/2, β = 1/2 version of our
model. Additionally, as noted in a similar context [13], it
might be possible to engineer an appropriate semiconductor
heterostructure.

An important feature of the birefringent fermion dispersion
that we find here is that the slopes of the J+ and J− bands
can be controlled by the parameter β. Possible applications of
birefringent properties might include a filter for Dirac fermions
in cold atom systems (via spatially varying β) or birefringent
Klein tunneling [10]. Flatbands such as Landau levels enhance
interactions, suggesting that the flatbands we observe here
when β = 1, which are robust to the addition of a staggered
potential and weak interactions may allow for interesting
correlated phases when interactions beyond the mean field
are taken into account [14]. Future avenues for research on
this model could include the study of such correlated phases
when β �= 0. Generalization of the model to fermions with
spin would allow for on-site Hubbard interactions, that could
require an approach similar to those used to study QED3 in
high-temperature superconductors [15].
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