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Controlling directed transport of matter-wave solitons using the ratchet effect
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We demonstrate that directed transport of bright solitons formed in a quasi-one-dimensional Bose-Einstein
condensate can be reliably controlled by tailoring a weak optical lattice potential, biharmonic in both space
and time, in accordance with the degree of symmetry breaking mechanism. By considering the regime where
matter-wave solitons are narrow compared to the lattice period, (i) we propose an analytical estimate for the
dependence of the directed soliton current on the biharmonic potential parameters that is in good agreement with
numerical experiments, and (ii) we show that the dependence of the directed soliton current on the number of

atoms is a consequence of the ratchet universality.
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I. INTRODUCTION

The ratchet effect, that is, directed transport without any net
external force [1,2], has attracted enormous interest in the last
few decades owing to its wide range of potential technological
applications, including micro- and nanotechnology, as well as
its relevance in biology, where ratchet mechanisms are found
to underlie the working principles of molecular motors [3,4].
Directed ratchet transport (DRT) is today understood to be a
result of the interplay of nonlinearity, symmetry breaking [5],
and nonequilibrium fluctuations, in which these fluctuations
include temporal noise [2], spatial disorder [6], and quenched
temporal disorder [7]. While particle ratchets have been
extensively considered in different physical contexts, such as
Josephson junctions [8] and particle separation devices [9],
the study of the directed transport of particle-like excitations,
the so-called soliton ratchets, is a relatively recent subfield.
Previous studies on soliton ratchets have focused mainly
on topological solitons [7,10] and, only very recently, on
matter-wave solitons in Bose-Einstein condensates (BECs)
[11], where the average velocity of the soliton was shown
to depend on the number of atoms in the soliton. Also,
resonant ratcheting of a BEC due to the action of an external
ac biharmonic driving was studied in Ref. [12], while the
DRT of atoms in BECs subjected to spatiotemporal potentials,
biharmonic in both space and time, was recently considered in
Refs. [13] and [14].

In this work we study the DRT of nondissipative nontopo-
logical bright matter-wave solitons and provide additional
confirmation of ratchet universality [15,16], that is, that
the maximum strength of the directed soliton current is a
consequence of the existence of a universal force waveform
that optimally enhances DRT. Importantly, this was shown also
to be the case for topological solitons in the context of super-
conducting Josephson arrays [7]. Since we wish the soliton
shape to remain unaffected to justify its consideration as an
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effective quasiparticle, we assume a weak potential for matter
waves in the simple case of a quasi-one-dimensional, cigar-
shaped BEC [17]. Atlow enough temperatures (well below the
critical temperature for condensation), the macroscopic (mean-
field) wave function W(x,7) can be accurately modeled by
the one-dimensional Gross-Pitaevskii (GP) equation, which,
expressed in nondimensional units, reads [17]

iV 4+ 20+ WP = V(x,nW, (1)

where subscripts denote partial derivatives and

Vix,0) = VoWo (D)l sinx + (1 — n2) sin(2x + ¢2)],
Wo(t) = [m sin(wr) + (1 — n1) sinQCwr + ¢1)]

is the Fourier-synthesized lattice potential, where 1, » € [0,1]
and ¢;, account for the relative amplitudes and phase
differences of the two harmonics, respectively, while V; is a
measure of the intensity of the laser beams forming the lattice.
To facilitate the comparison with previous results (cf. Ref. [11],
where the particular case n; = 1/2, ¢; = 0 is considered),
we shall fix the frequency @ = 10 throughout this work. We
show below that this choice has remarkable consequences
on the soliton current due to the time and space scales
of the corresponding lattice potential being very different
[cf. Eq. (2)].

Here we demonstrate that the relative amplitudes and
the phase differences fogether play an essential role in
optimally controlling the strength and direction of the soliton
current according to the degree of symmetry breaking (DSB)
mechanism [15]. This mechanism has led to the unveiling
of a criticality scenario for DRT. Indeed, it has been shown
that optimal enhancement of DRT is achieved when maximal
effective (i.e., critical) symmetry breaking occurs, which is
in turn a consequence of two reshaping-induced competing
effects: the increase in the DSB and the decrease in the
(normalized) maximal transmitted impulse over a half-period,
thus implying the existence of a particular force waveform
that optimally enhances DRT (see Ref. [15] for more details).
To connect with physical experiments, note that the number
of atoms in the BEC is proportional to N = [ |W|%dx,
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that is, the norm of the dimensionless wave function, and
that the proportionality constant depends on the particular
experimental conditions [17]. The rest of the paper is organized
as follows. Section II provides an effective particle model
governing the dynamics of the soliton center of mass. After
identifying its relevant symmetries, we propose an analytical
estimate for the dependence of the soliton current on the
number of atoms and the biharmonic potential parameters
according to the DSB mechanism. Section III compares the
analytical predictions of Sec. II with numerical results from
both the GP equation (1), and the effective particle model.
Finally, Sec. IV presents some concluding remarks.

II. THEORETICAL APPROACH

We consider a standard variational approach [18] to derive
an ordinary differential equation governing the dynamics of
the soliton center of mass by making the collective variable
ansatz

V(x,1) = %sech [%(x — g)] ellete—E)+0] (3)

where the soliton center of mass &(¢) and c(¢) are func-
tions to be determined from the Euler-Lagrange equations
d(@L4/dq)/dt = dL4/dq, where L, is the effective La-
grangian evaluated at ansatz (3) and ¢ corresponds to each
variational parameter (i.e., £ and c). Defining the soliton phase
as ® = c(x — &), one has that L, = [ Ldx, where

L=—-Wd, — [V + W20+ S0t — W2V (x,1) (4)

is the Lagrangian density corresponding to the GP equation (1).

The Euler-Lagrange equations yield the soliton velocity ¢ = &
and a Newtonian equation for the soliton center of mass:

d’¢

T2t Wa(t)[n2cos € + (1 —m2)f cos(28 + ¢2)] =0, (5)
where T = wt/Q, Q*= w?Nsinh(n/N)/(7V,), and B =
2sech(;r/N). Equation (5) is an effective model that describes
the dynamics of matter-wave solitons as point particles through
the Newtonian equation

&’ dVer(®)
dr? dg

under the action of the effective potential

I—m
2

Veir(§) = Wa(r) [772 sing + B sin(2€ + ¢2)} - (6

Since the DSB mechanism establishes that there exists a
quantitative relationship between symmetry breaking (cause)
and DRT (effect), the fact that the breakages of the space and
time shift symmetries of the force derived from the lattice
potential are uncoupled [see Egs. (2) and (5)] means that both
breakages should contribute independently (but not separately;
see below) to the DRT. Thus, we propose the following scaling
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for the average velocity when the two kinds of symmetry are
broken simultaneously:

(V) ~ CF(n1,91)G(n2,2),
I—m

F(n.¢1) = % + cos 1. (7)
2—m+P
Gln.¢2) = #_PEZS cos ¢a.

where v = d&/dt, (~) indicates the average over time and
initial conditions, and

3313 —641,+32
en-te~ for 0<m <8/9,

2-3np, for 8/9<m<1,

while C is a fitting constant that depends on the remaining
system parameters. The scaling laws (7), come from the
following considerations.

First, it has been shown [15] that there exists a universal
force waveform that optimally enhances directed transport by
symmetry breaking. Specifically, such a particular waveform
has been shown to be unique for both temporal and spatial
biharmonic forces. This universal waveform is a direct con-
sequence of the DSB mechanism: It is possible to define a
quantitative measure of the DSB on which the strength of
DRT must depend. The interested reader is encouraged to find
the details on the derivation of Eq. (8) in Ref. [15].

Second, analysis of the symmetries in Eq. (5) indicates
that the mere breakage of the spatial shift symmetry (i.e.,
O0<m<l1,¢r#0, m, n =0,1) is insufficient to yield a
nonzero asymptotic soliton current [19]. However, our ex-
tensive numerical simulations (see Sec. III) showed that the
soliton current does not decay noticeably after integration
times ~107 x 27 /w, that is, one can take such a long
transient to be an asymptotic soliton current for any practical
(experimental) purposes [20]. Accordingly, one could expect
from the DSB mechanism that the average velocity also may
effectively depend on the degree of breakage of the spatial shift
symmetry over such an extremely long time scale. Thus, the
dependence of the spatial factor G(1,,¢,) on 1, is obtained
by computing the maximal impulse (integral of the spatial
force) transmitted by the (normalized; see the second paper in
Ref. [15] for details) optical lattice potential at ¢ = ¢ opr = 0
over a half-period. Also, we used a first-order approximation
for the dependence of the spatial factor G(1,,¢,) on ¢, since a
scaling in closed form is not readily available for arbitrary ¢,.
Nonetheless, it is worth noting that for the usual case where
the two spatial harmonics are in phase or in opposition, that is,
¢> = 0 or , respectively, such a first-order approximation is
exact. Itis important to stress at this point that the specific form
of the measure of the DSB is not crucial to obtain approximate
scaling laws like Eqgs. (7). What is most important from the
ratchet universality application is that one can obtain a good
approximation for the optimal parameter values that maximize
ratcheting [cf. Eq. (9)].

Third, the temporal factor F(n;,¢;) is obtained by noting
that the matter-wave soliton as a point particle undergoes
an adiabatically varying spatial optical lattice potential on
average over the relevant time scale 27 /w. This means that
the dependence of the average velocity on the breakage of
the symmetries associated with the temporal force should

P(np) = ®)
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FIG. 1. (Color online) Average velocity (v) versus soliton effec-
tive mass N calculated using the GP equation (1) [thick solid (blue)
line] and the effective model of Eq. (5) [dashed (red) line]. Also
plotted is the scaling law (7) with 1, = 1, o5 (V) [cf. Eq. (9); thin solid
(black) line]. Fixed parameters: Vo =1, @ = 10, n; =1, 1, = 0.5,
¢, =0, and C = —0.79.

be fairly insensitive to the specific spatial dependence of
the potential. Thus, one can consider a linear (local) spatial
dependence instead, Vg(§) = Wq(7)E, to readily obtain an
analytical estimate accounting for the effect of the temporal
force, which is the function F(n;,¢;) in Eq. (7).

It is worth noting that the ratchet universality [15] predicts
that the optimal value of the relative amplitude 1, comes from
the condition that the amplitude of cos £ must be twice as large
as that of cos(2¢ + ¢,) in Eq. (5) and, hence, that it depends
on the soliton’s size:

B 177" cosh(zr/N)]™"
n2,0pt == [1 + ﬁ] == |:1 + T] B (9)

which satisfies limy _, oo 112,0pt = 4/5 and also limy_,0 72,0pt =
0. Interestingly, this optimal ratcheting value for 1, induces a
ratcheting where (i) larger solitons (for sufficiently large N)
move faster and (ii) the soliton current vanishes for sufficiently
small N [11]—this is confirmed by our own simulations (see
Fig. 1). Indeed, from the scaling law (7), we see that the spatial
factor G(1,,¢,) (and hence the average velocity) presents, as a
function of 1,, a single maximum at n, = 4/5 [i.e., N — 00;
cf. Eq. (9)] that vanishes at n, = 0 [i.e., N = 0; cf. Eq. (9)].
Furthermore, as demonstrated in Fig. 1, the average velocity
tends to saturate rather quickly as N is increased. We therefore
assume a clearly localized soliton in the scaling (7), for which
the ratchet dynamics is well described by the effective particle
model (5).

III. NUMERICAL RESULTS

We found good agreement between the scaling, Eq. (7), and
extensive numerical results from both the GP equation (1),
and the effective particle model, Eq. (5). Some illustrative
examples are depicted in Figs. 2— 4, where the average velocity
(v) is plotted versus different lattice potential parameters
for Vo =1, w = 10, and N = 12. This value for N ensures
the convergence of the effective model to the original GP
equation (1). This, in turn, allows us to efficiently model
the matter-wave soliton as an effective quasiparticle—as long
as the quasi-one-dimensional mean-field model (1), remains
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FIG. 2. (Color online) Average velocity (v) versus (a) relative
amplitude 7, for ¢, = 7 and ; = 1 (unbroken time shift symmetry),
(b) relative amplitude 1, for ¢; =0 and 7, = 1 (unbroken space
shift symmetry), (c) phase difference ¢, for n, =4/5 and n, =1
(unbroken time shift symmetry), (d) phase difference ¢, for n; = 2/3
and 7, = 1 (unbroken space shift symmetry), (e) relative amplitude
n for ¢; =0, n, = 4/5, and ¢, = 7, and (f) phase difference ¢, for
nm =2/3,n, =4/5, and ¢, = 7. Results were calculated using the
GP equation (1) [thick (blue) solid lines] and the effective particle
model (5) [dashed (red) lines]. Also plotted is the scaling law (7) [thin
(black) solid lines]. Fixed parameters: Vo = 1, N = 12, = 10, and
C =—-0.79.
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FIG. 3. (Color online) Average velocity (v) versus relative am-
plitude 1, for (a) n; =2/3, ¢, = ¢, = 0,and N = 12; (b) n; =2/3,
¢r=m, pp=0,and N =12; (c) n, =2/3, ¢ =0, ¢, =, and
N =12; and (d) n; =2/3, ¢ =0, ¢, = m, and N — oo. Results
presented as in Fig. 2 for fixed parameters: V) =1, w = 10, and
C =—-0.79.
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FIG. 4. (Color online) Average velocity (v) versus (a, b) n; and ¢, for n, =4/5, and ¢, = 0; (c, d) n, and ¢, for n; =0, and ¢, = 0;
(e, f) n; and n, for ¢; = ¢, = 0. (a, c, e) Results calculated using the effective particle model (5); (b, d, f) corresponding results from the
scaling law (7). Fixed parameters: Vy = 1, N = 12, » = 10, and C = —0.79.

valid, that is, for low enough temperatures. As predicted from
the ratchet universality, a single value of the fitting constant
C (= —0.79) is enough to fit the scaling law to a/l/ numerical
results. Note that this in turn provides strong support for the
effective particle model (5).

Figures 2(b) and 2(d) confirm that the breakage of the space
shift symmetry is a necessary condition to have a nonzero
soliton current as expected [19], while Figs. 2(a) and 2(c)
show that even transient soliton currents for unbroken time
shift symmetry follow the ratchet universality, which was
an unanticipated result. Indeed, for the case of a symmetric
temporal force (n; = 0) and an asymmetric spatial force, one
typically finds that the maximum average velocity is achieved
over a certain range around the optimal relative amplitude
n2,0pt = 4/5 and at the optimal phase differences ¢, op = 0,7
[cf. Eq. (7)], where the two values of ¢, correspond to soliton
currents in opposite directions [see Figs. 2(a) and 2(c)]. For the
case of asymmetric spatial and temporal forces, one obtains
a similarly good agreement between the theoretical scaling
and the numerics. In particular, the dependence of the average
velocity on the temporal force parameters confirms reasonably
well the implications of having very different space and time
scales in the lattice potential, as can be appreciated in Figs. 2(e)
and 2(f).

Additional confirmation of the scale analysis described
by Eq. (7) is provided in Fig. 4, where the results from
the effective particle model (5) [Figs. 4(a), 4(c), and 4(e)]
are in excellent agreement with those corresponding to the
scaling (7) [Figs. 4(b), 4(d), and 4(f)]. Remarkably, for
the case of asymmetric spatial and temporal forces, the
dependence of the average velocity on the relative amplitude
of the spatial force provides additional unanticipated support
for the DSB mechanism. Indeed, when the breakages of the
shift symmetries of both kinds of force induce soliton currents
in the same direction [as in Fig. 3(a), where ¢; = ¢, = 0],
the maximum of the average velocity is larger than that

corresponding to the case where the induced soliton currents
are in opposition [as in Fig. 3(b), where ¢ = 7,¢, =0]. It
is worth noting that both maxima occur over certain ranges
around the predicted optimal value 1, o, = 4/5, the range in
the former case being much smaller than in the latter case,
while an intermediate range appears in the case of a symmetric
temporal force [n; = 0; cf. Fig. 2(a)]. Finally, a comparison
of the average velocities of two solitons subjected to the same
lattice potential but with different sizes [N = 12, Fig. 3(c),
and N — oo, Fig. 3(d)] provides additional confirmation
that larger solitons move faster. The corresponding optimal
values of the relative amplitudes for N = 12 and N — oo are,
respectively, 72, ope = 0.794523 and 0, oy = 4/5 [cf. Eq. (9)],
confirming in turn the ratchet universality. Finally, let us stress,
as pointed out before, that the theoretical optimal parameter
values match extremely well the maximal ratcheting scenarios
in Figs. 2 and 3; specifically, the extrema in Figs. 2(a), 3(b),
3(c), and 3(d) are reached very close to the optimal value
12,0pt = 4/ 5.

IV. CONCLUSIONS

In summary, we have demonstrated that optimal control of
directed transport of matter-wave solitons can be achieved by
suitably tailoring a weak optical lattice potential, biharmonic
in both space and time, in accordance with the degree-of-
symmetry-breaking mechanism. This mechanism has allowed
us to propose an analytical scaling law for the strength of the
directed soliton current that is fully confirmed by numerics.
Additionally, it explains why the directed soliton current is
dependent on the number of atoms, a result previously found
numerically [11]. We expect that the present findings should
be readily testable by experiment on the basis of experimental
advances in implementing ratchets for BECs [13] and could
find applications in coherent atom optics, atom interferometry,
and atom transport [20]. In particular, application of the ratchet
universality to atomic soliton lasers [21] could be possible,
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in principle, by considering a suitable temporal variation of
Feshbach resonances so that the relevant symmetries of the
corresponding effective equation for the soliton center of mass
may be broken. Additional applications to soliton accelerators
[22] would deserve further exploration following the same
line of thinking. Finally, another interesting point that warrants
further investigation is the apparent lack of decay in the soliton
current that we observed when the temporal symmetry is not
broken.

PHYSICAL REVIEW A 83, 053617 (2011)

ACKNOWLEDGMENTS

We thank Dario Poletti for feedback concerning the nu-
merical methods used to integrate the GP equations. R.C.G.
gratefully acknowledges the hospitality of the Grupo de Fisica
No Lineal (GFNL; University of Sevilla, Spain) and support
from Grant No. NSF-DMS-0806762, Plan Propio de la Uni-
versidad de Sevilla, and Grant No. JAC09-1-4669, from Junta
de Andalucia and Ministerio de Ciencia e Innovacion, Spain.

[1] P. Hanggi and R. Bartussek, Lect. Notes Phys. 476, 294 (1996);
H. Linke, ed., Appl. Phys. A (Special Issue) 75(2), 167 (2002).

[2] P. Reimann, Phys. Rep. 361, 57 (2002).

[3] K. Sbovoda, Ch. F. Schmidt, B. J. Schnapp, and S. M. Block,
Nature (London) 365, 721 (1993); D. Astumian, Science 276,
917 (1997).

[4] E. Jiilicher, A. Ajdari, and J. Prost, Rev. Mod. Phys. 69, 1269
(1997); R. Chacén and N. R. Quintero, BioSystems 88, 308
(2007).

[5] S. Flach, O. Yevtushenko, and Y. Zolotaryuk, Phys. Rev. Lett.
84, 2358 (2000).

[6] A. B. Kolton, Phys. Rev. B 75, 020201(R) (2007).

[7] P. J. Martinez and R. Chacdn, Phys. Rev. Lett. 100, 144101
(2008).

[8] E. Goldobin, A. Sterck, and D. Koelle, Phys. Rev. E 63, 031111
(2001); E. Trias, J. J. Mazo, F. Falo, and T. P. Orlando, ibid. 61,
2257 (2000).

[9] V. R. Misko, S. Savel’ev, F. Marchesoni, and F. Nori, Physica C
426431, 147 (2005).

[10] S. Flach, Y. Zolotaryuk, A. E. Miroshnichenko, and M. V.
Fistul, Phys. Rev. Lett. 88, 184101 (2002); M. Salerno and
N. R. Quintero, Phys. Rev. E 65, 025602 (2002); M. Salerno
and Y. Zolotaryuk, ibid. 65, 056603 (2002); C. R. Willis and
M. Farzaneh, ibid. 69, 056612 (2004); L. Morales-Molina, F. G.
Mertens, and A. Sanchez, ibid. 73, 046605 (2006).

[11] D. Poletti, T. Alexander, E. Ostrovskaya, B. Li, and Yu. S.
Kivshar, Phys. Rev. Lett. 101, 150403 (2008); D. Poletti,
E. A. Ostrovskaya, T. J. Alexander, B. W. Li, and Yu. S. Kivshar,
Physica D 238, 1338 (2009); D. Poletti, G. Benenti, G. Casati,
P. Hénggi, and B. Li, Phys. Rev. Lett. 102, 130604 (2009).

[12] L. Morales-Molina and S. Flach, New J. Phys. 10, 013008
(2010).

[13] G. Ritt, C. Geckeler, T. Salger, G. Cennini, and M. Weitz, Phys.
Rev. A 74, 063622 (2006); T. Salger, S. Kling, T. Hecking,
C. Geckeler, L. Morales-Molina, and M. Weitz, Science 326,
1241 (2009).

[14] C. E. Creffield and F. Sols, Phys. Rev. Lett. 103, 200601 (2009);
G. Benenti, G. Casati, S. Denisov, S. Flach, P. Hianggi, B. Li,
and D. Poletti, ibid. 104, 228901 (2010); C. E. Crefield
and F. Sols, ibid. 104, 228902 (2010).

[15] R. Chacén, J. Phys. A 40, F413 (2007); 43, 322001 (2010).

[16] N. R. Quintero, J. A. Cuesta, and R. Alvarez-Nodarse, Phys.
Rev. E 81, 030102(R) (2010).

[17] P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez,
eds., Emergent Nonlinear Phenomena in Bose-Einstein
Condensates. Theory and Experiment (Springer-Verlag, Berlin,
2008).

[18] B. A. Malomed, Prog. Opt. 43, 71 (2002).

[19] S. Denisov, L. Morales-Molina, S. Flach, and P. Hinggi, Phys.
Rev. A 75, 063424 (2007).

[20] K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet,
Nature 417, 150 (2002); L. Khaykovich, F. Schreck, G. Ferrari,
T. Bourdel, J. Cubizolles, L. D. Carr, Y. Castin, and C. Salomon,
Science 296, 1290 (2002).

[21] L. D. Carr and J. Brand, Phys. Rev. A 70, 033607 (2004); M. L.
Rodas-Verde, H. Michinel, and V. M. Pérez-Garcia, Phys. Rev.
Lett. 95, 153903 (2005).

[22] Y. V. Bludov and V. V. Konotop, Phys. Rev. A 75, 053614
(2007); A. V. Carpentier and H. Michinel, Europhys. Lett. 78,
10002 (2007).

053617-5


http://dx.doi.org/10.1007/BFb0105447
http://dx.doi.org/10.1016/S0370-1573(01)00081-3
http://dx.doi.org/10.1038/365721a0
http://dx.doi.org/10.1126/science.276.5314.917
http://dx.doi.org/10.1126/science.276.5314.917
http://dx.doi.org/10.1103/RevModPhys.69.1269
http://dx.doi.org/10.1103/RevModPhys.69.1269
http://dx.doi.org/10.1016/j.biosystems.2006.09.040
http://dx.doi.org/10.1016/j.biosystems.2006.09.040
http://dx.doi.org/10.1103/PhysRevLett.84.2358
http://dx.doi.org/10.1103/PhysRevLett.84.2358
http://dx.doi.org/10.1103/PhysRevB.75.020201
http://dx.doi.org/10.1103/PhysRevLett.100.144101
http://dx.doi.org/10.1103/PhysRevLett.100.144101
http://dx.doi.org/10.1103/PhysRevE.63.031111
http://dx.doi.org/10.1103/PhysRevE.63.031111
http://dx.doi.org/10.1103/PhysRevE.61.2257
http://dx.doi.org/10.1103/PhysRevE.61.2257
http://dx.doi.org/10.1016/j.physc.2005.01.021
http://dx.doi.org/10.1016/j.physc.2005.01.021
http://dx.doi.org/10.1103/PhysRevLett.88.184101
http://dx.doi.org/10.1103/PhysRevE.65.025602
http://dx.doi.org/10.1103/PhysRevE.65.056603
http://dx.doi.org/10.1103/PhysRevE.69.056612
http://dx.doi.org/10.1103/PhysRevE.73.046605
http://dx.doi.org/10.1103/PhysRevLett.101.150403
http://dx.doi.org/10.1016/j.physd.2008.10.003
http://dx.doi.org/10.1103/PhysRevLett.102.130604
http://dx.doi.org/10.1088/1367-2630/10/1/013008
http://dx.doi.org/10.1088/1367-2630/10/1/013008
http://dx.doi.org/10.1103/PhysRevA.74.063622
http://dx.doi.org/10.1103/PhysRevA.74.063622
http://dx.doi.org/10.1126/science.1179546
http://dx.doi.org/10.1126/science.1179546
http://dx.doi.org/10.1103/PhysRevLett.103.200601
http://dx.doi.org/10.1103/PhysRevLett.104.228901
http://dx.doi.org/10.1103/PhysRevLett.104.228902
http://dx.doi.org/10.1088/1751-8113/40/22/F01
http://dx.doi.org/10.1088/1751-8113/43/32/322001
http://dx.doi.org/10.1103/PhysRevE.81.030102
http://dx.doi.org/10.1103/PhysRevE.81.030102
http://dx.doi.org/10.1016/S0079-6638(02)80026-9
http://dx.doi.org/10.1103/PhysRevA.75.063424
http://dx.doi.org/10.1103/PhysRevA.75.063424
http://dx.doi.org/10.1038/nature747
http://dx.doi.org/10.1126/science.1071021
http://dx.doi.org/10.1103/PhysRevA.70.033607
http://dx.doi.org/10.1103/PhysRevLett.95.153903
http://dx.doi.org/10.1103/PhysRevLett.95.153903
http://dx.doi.org/10.1103/PhysRevA.75.053614
http://dx.doi.org/10.1103/PhysRevA.75.053614
http://dx.doi.org/10.1209/0295-5075/78/10002
http://dx.doi.org/10.1209/0295-5075/78/10002

