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Confinement-induced resonances in quasi-one-dimensional traps with transverse anisotropy
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We study atom-atom scattering in quasi-one-dimensional geometries with transverse anisotropy. By assuming
an s-wave pseudopotential of contact interaction, we show that the system would exhibit a single confinement-
induced resonance, where the scattering process degenerates to a total reflection as a one-dimensional gas of
impenetrable bosons. For a general form of interaction, we present a formal calculation based on the two-channel
model and draw the same qualitative conclusion of only one confinement-induced resonance. Our findings are
inconsistent with a recent experiment by Haller et al. [Phys. Rev. Lett. 104, 153203 (2010)], where a splitting of
confinement-induced resonances has been observed in an anisotropic quasi-one-dimensional quantum gas of Cs
atoms.
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I. INTRODUCTION

The interest on low-dimensional systems has been recently
intensified by the experimental development of manipulating
ultracold quantum gases in optical lattices [1–8] and on
atom chips [9]. With the aid of tuning an external magnetic
field through a Feshbach resonance, these techniques provide
a fascinating possibility of investigating distinct physical
properties in quasi-low-dimensionality with a controllable
particle-particle interaction. Up to now, the Berezinskii-
Kosterlitz-Thouless (BKT) transition has been observed in a
series of quasi-two-dimensional (quasi-2D) pancake-shaped
Bose gases [8], and the strongly interacting Tonks-Girardeau
(TG) Bose gas has been achieved in a setup of 2D optical
lattices [2,3,10,11]. Of particular interest is the quasi-one-
dimensional (quasi-1D) regime, where only the ground state
of transverse motion is significantly populated. This regime
is important partly due to its theoretical simplicity. In fact,
the homogeneous system of 1D Bose gas with δ-contact
interaction is known as one of the few fully integrable
quantum systems [12]. In a finite system with infinitely
strong δ interactions, a N -body Bose system has been proved
to correspond via a one-to-one mapping with the highly
correlated states of the corresponding noninteracting Fermi
gas [13–18].

The quasi-1D geometry can be realized by arranging a 2D
optical lattice in the transverse (assumed to be x-y) plane, such
that the kinetic and the interaction energy of the particles are
insufficient to transfer them to transversally excited energy
levels. However, even in this ultimate limit, one should bear
in mind that the transverse degrees of freedom are of great
importance and could manifest themselves in many aspects.
For example, when the particle-particle interaction can support
a bound state, the binding energy will serve as an additional
energy scale, which can be comparable or even exceed the
transverse confinement. In this situation, the transversally
excited states will be inevitably populated and have to be
taken into account for a proper description of the system
[19,20]. On the other hand, when the interaction does not
support a bound state, the level structure of transversally
energy states will provide extra channels for the 1D scattering
process. The presence of these channels gives a scheme to tune
through the 1D scattering resonance by either changing the

three-dimensional (3D) s-wave scattering length or varying
the transverse confinement. The latter scheme is known
as confinement-induced resonance (CIR), as proposed by
Olshanii [21]. Around the resonance point of CIR, the effective
1D coupling constant can be varied from −∞ to +∞, and the
1D scattering process degenerates to a total reflection, thereby
creating a gas of impenetrable bosons.

The underlying physics of CIR is in the same spirit of
a Feshbach resonance between open and closed scattering
channels [22]. In the presence of transverse confinement,
the scattering of atoms in the transversally ground state
assumes the open channel, while the transversally excited
states as a whole can support a bound state and serve as
the closed channel. According to the Feshbach scheme, the
resonance takes place when the bound state of the closed
channel degenerates with the continuum threshold of the open
channel. By assuming a 3D Fermi-Huang pesudopotential
for the particle interaction, it is shown that the CIR takes
place in a cylindrically symmetric quasi-1D harmonic trap
at a specific ratio of as/a⊥ = −1/ζ (1/2), where as is the
3D s-wave scattering length, a⊥ = √

h̄/(µω⊥) is the length
scale of transverse harmonic oscillator with trapping frequency
ω⊥ = ωx = ωy , µ is the reduced mass of the two colliding
particles, and ζ (x) is the Riemann ζ function [21]. Further
theoretical investigation extends the discussion of CIR to
pancake-shaped quasi-2D geometry [23], to general forms of
interactions [24–26], to the three-body [27] and the four-body
[28] scattering processes, as well as to a pure p-wave scattering
of fermions [29].

Experimental evidence of CIRs has been recently reported
for bosonic [2,3,11,30] and fermionic [6] systems. In partic-
ular, an experiment by Haller et al. performs a systematic
investigation on CIRs in an ultracold quantum gas of Cs atoms
confined in a quasi-1D geometry with transverse anisotropy
[30]. By varying the 3D s-wave scattering length around a
magnetic Feshbach resonance, they determined the positions
of CIR from atom-loss and heating-rate measurements. Of
particular interest is that the CIR was found to split into
two resonances upon introducing anisotropy to the transverse
confinement ωx �= ωy . As shown in Fig. 1, one of the
resonances, CIR1, shows a pronounced shift to higher values
of as/ay by increasing anisotropy η ≡ ωx/ωy . The second
resonance, CIR2, shifts instead to lower values of as/ay . Here
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FIG. 1. (Color online) Locations of CIRs as a function of the
transverse anisotropy η ≡ ωx/ωy . By assuming a 3D Fermi-Huang
pseudopotential, we find a single CIR for all values of transverse
anisotropy (solid line). For small anisotropy of η ≈ 1, the resonance
position shifts downward with increasing η at a slope of −1/4
(dashed line). The experimental outcomes (symbols) from Ref. [30]
are also plotted for comparison, showing noticeable difference with
the theoretical results. Here the experimental data are scaled by the
resonance position with zero anisotropy as(η = 1).

ay = √
h̄/(µωy) is the harmonic oscillator length in the y

direction.
In this paper, we present a theoretical investigation on CIR

in a quasi-1D harmonic trap with transverse anisotropy. By
using a 3D Fermi-Huang pseudopotential, we show that only
one single CIR would be present for all values of anisotropy
ratio η. For small transverse anisotropy, the resonance position
of as/ay shifts downward with increasing η. This is in the
same trend as the experimental observation of CIR2 [30],
but is systematically above the measured values as shown in
Fig. 1 (solid line). The appearance of a single CIR can be well
understood by noticing that the s-wave contact interaction can
only support one bound state in the closed channel of excited
transverse modes, and the resonance can only occur when this
bound-state energy coincides with the threshold in the open
channel of ground transverse mode. In order to further validate
the observation to a general form of s-wave interaction, we
imply a formal scattering theory of a two-channel model and
draw the same qualitative conclusion of a single CIR. Upon
these findings, we conclude that the splitting of peaks of atom
loss and heating rate observed in the experiment cannot be
simply understood by the present theory.

The remainder of this paper is organized as follows. In
Sec. II, we discuss the s-wave scattering process of two
atoms in a quasi-1D geometry. By assuming a δ-contact
pseudopotential, we calculate the position of CIR for a wide
range of transverse anisotropy. This result is then confirmed by
another calculation of the closed-channel bound-state energy,
as discussed in Sec. III. Considering the fact that the CIR
takes place at the exact position where the bound state of
the closed channel degenerates to the threshold of the open
channel, we can obtain resonance condition from a different

aspect. In Sec. IV, we extend the discussion to a general
form of interaction and present a formal theory for two-atom
scattering within a two-channel model. Finally, we summarize
our findings in Sec. V. We put some detailed calculations for
Sec. IV in Appendix D, while some preliminary results for
Appendix D are posted in Appendixes A–C.

II. HAMILTONIAN AND TWO-BODY SCATTERING
PROBLEM

We consider the problem of two interacting atoms with mass
m colliding in a 2D harmonic confinement in the transverse
x-y plane:

U (r) = m

2

(
ω2

xx
2 + ω2

yy
2
)
. (1)

In general, the transverse trapping frequencies ωx,y along the x

and y directions are different, with transverse anisotropy ratio
η = ωx/ωy . The atomic motion along the z axis is assumed to
be free. Then the Hamiltonian of the system is given by

Ĥ = − h̄2

2m
∇2

r1
− h̄2

2m
∇2

r2
+ U (r1) + U (r2) + V (r1 − r2),

(2)

where V (r1 − r2) is the interatomic interaction potential, and
r1 and r2 denote the positions of the two atoms, respectively.
For sufficiently low energies, the 3D atom-atom scattering
is dominated by s-wave scattering. Therefore, in the present
and the next sections, we model the interaction potential V

by a Fermi-Huang-Yang pseudopotential [31] in the form of
regularized δ function,

V (r) = 4πh̄2as

m
δ(r)

∂

∂r
r, (3)

where as is the 3D s-wave scattering length. The discussion of
a general form of interaction is left in Sec. IV.

One great advantage of harmonic trapping potential is the
center of mass (c.m.) and relative degrees of freedom can
be decoupled. Substituting new coordinates r = r1 − r2 and
R = (r1 + r2)/2, we separate the full Hamiltonian into the
c.m. part Ĥc.m. and the relative part Ĥrel,

Ĥc.m. = − h̄2

2M
∇2

R + 2U (R), (4)

Ĥrel = − h̄2

2µ
∇2

r + U (r)

2
+ V (r), (5)

where M = 2m and µ = m/2 are the total and reduced masses,
respectively. The eigenfuctions of the c.m. Hamiltonian are
simply a combination of harmonic oscillators in the transverse
plane and plane waves along the z direction, which can be
safely dropped from our discussion. The relative Hamiltonian
can be expressed in a dimensionless form, in which all lengths
are scaled in units of ay = √

h̄/(µωy) and all energies are
scaled in units of h̄ωy . The eigenfunctions �(r) of the relative
motion thus are governed by the Schrödinger equation[

−1

2
∇2

r + 1

2
(η2x2 + y2) + 2πasδ(r)

∂

∂r
r

]
�(r) = E�(r),

(6)
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where the eigenenergy E = (k2
z + η + 1)/2 is the summation

of the longitudinal kinetic energy k2
z and the zero-point energy

of the transverse confinement. In this paper we assume the
incident wave function is in the transverse ground state and
longitudinal kinetic energy is smaller than energy spacing
between the ground and first excited transverse modes; that
is, k2

z < min{η,1}. In this case, the asymptotic scattering-state
wave function in the limit of |z| → ∞ would be definitely in
the transverse ground state.

As a result of the zero-range pseudopotential V (r), the
scattering state with odd parity along the z direction does not
get any phase shift. Then the relevant scattering amplitude is
zero. Thus, we focus on the scattering state with even parity
in the following discussion.

In the region of r �= 0, the pseudopotential V (r) takes zero
value. Therefore, the atomic motion with respect to different
eigenstates of the transverse confinement are decoupled with
each other. Thus, the Schrödinger equation (6) can be solved
analytically, and the solution with even parity and outgoing
boundary condition in the z direction takes the form

�(x,y,z) = [cos(kzz) + fee
ikz|z|]η1/4�0(

√
ηx)�0(y)

+
∑

(nx,ny )′
Bnxny

η1/4�nx
(
√

ηx)�ny
(y)e−κnxny |z|,

(7)

where κnx,ny
= √

2nxη + 2ny − k2
z and the summation runs

over all combinations of (nx,ny) except the (nx = 0,ny = 0)
ground mode. In the expression above, η1/4�n(

√
ηx) and

�n(y) are the normalized wave functions of the nth excited
states of the x and y confiments, respectively, with �n(t) being
the dimensionless wave function of harmonic oscillator

�n(t) = e−t2/2

π1/4
√

2nn!
Hn(t). (8)

Here Hn(t) is the Hermite polynomial.
The scattering amplitude fe and the parameters Bnxny

can
be formally extracted from the connection condition given by
the s-wave pseudo potential V (r) at the origin r = 0. To this
end we substitute Eq. (7) into (6) and do the integration

lim
ε→0

∫ +ε

−ε

dz

∫ ∫ +∞

−∞
dxdy

[
η1/4�∗

nx
(
√

ηx)�∗
ny

(y)
]

(9)

on both sides of the equation. Then we get

fe = 2πas

ikz

η1/4|�0(0)|2S, (10)

Bnxny
= −2πas

κnxny

η1/4�nx
(0)�ny

(0)S, (11)

where the factor S is defined as

S =
[

∂

∂r
r�(r)

]
r→0

=
[

∂

∂z
z�(0,0,z)

]
z→0+

. (12)

To derive the final expression of the scattering amplitude,
we substitute Eqs. (10) and (11) into Eq. (7) and express
�(0,0,z) in terms of the parameter S. Substituting this result

into Eq. (12), we get the equation for S:

S =
(

1 + 2πas

ikz

η1/4 |�0 (0)|2 S
)

η1/4 |�0 (0)|2

− asη
1/2β (kz,η)S, (13)

where β(kz,η) = [∂zz�(z,kz,η)]z→0+ is the regular part of the
series

�(z,kz,η) = 2π
∑

(nx,ny )′

∣∣�nx
(0)

∣∣2∣∣�ny
(0)

∣∣2

κnxny

e−κnxny z. (14)

Solving S from Eq. (13), we finally obtain the quasi-1D
scattering amplitude:

fe = −1

1 − ikz

[
a−1

s η−1/2 + β(kz,η)
]
/2

. (15)

In the low-energy limit of kz → 0, this expression can be
approximated by a scattering amplitude,

f δ
e (kz) = −1

1 + ikza1D
, (16)

for a 1D δ-potential V1D = g1Dδ(r) of coupling strength g1D =
−a−1

1D , where the 1D scattering length takes the form

a1D = −1

2

[
1√
ηas

+ β(0,η)

]
. (17)

The CIR takes place at the position where a1D approaches
zero, hence indicating a complete reflection of the scattering
amplitude. By introducing back the physical unit, we obtain
the CIR condition

as

ay

= − 1√
ηβ(0,η)

. (18)

From this result, we can see clearly that only one single CIR
would be present for arbitrary values of transverse anisotropy
ratio η.

We stress that the partial derivative ∂/∂z and the summation
over transversally excited states (nx,ny)′ in � cannot be
interchanged because the series does not converge uniformly,
and the summation must be done first. This is related to the
divergent behavior of the Green’s function at small r , which
is regularized by the operator ∂r (r·). Thus, to determine the
positon of CIR, we generally need to numerically evaluate the
series �(z,0,η) for a set of z and extract the coefficient β(0,η)
through the fit

�(z,0,η) = α(0,η)

z
+ β(0,η) + γ (0,η)z + · · · . (19)

In order to do this, we rewrite the series as

�(z,0,η) =
∑

(sx ,sy )′
Psx

Psy

e−2
√

sxη+syz

√
sxη + sy

, (20)

where sx and sy are non-negative integers and the summation
runs over all possible combinations except the ground state
(sx = 0,sy = 0). The coefficient is

Psi
= (2si)!

22si (si!)2
= �

(
si + 1/2

)
√

π�(si + 1)
, (21)

where �(x) is the Euler γ function.
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Before discussing the general cases with arbitrary η, we first
focus on the cylindrically symmetric trap with η = 1, where
an analytical result is available. In this case, we define a new
summation variable s = sx + sy and get

�(z,0,η = 1) =
∞∑

s=1

e−2
√

sz

√
s

. (22)

To reach this expression, we have utilized the relation
n∑

m=0

�(m + 1/2)

�(m + 1)

�(n − m + 1/2)

�(n − m + 1)
= π (23)

for n = 1,2,3, . . . being positive integers. The series of
Eq. (22) has been evaluated [21], leading to the well-known
result of β(0,η = 1) = ζ (1/2) ≈ −1.4603, . . . , and the CIR
condition reads

as

ay

= − 1

ζ (1/2)
. (24)

Next, we discuss the general case of η �= 1. For a trap with
slight transverse anisotropy �η = η − 1 � 1, we can expand
the function � in Eq. (14) to linear order of �η. Notice that
the series is uniformly convergent for all finite η; thus, it is
safe to interchange the summation and the partial derivative of
η, leading to

�(z,0,η) ≈ �(z,0,1) + �η
∂�

∂η

∣∣∣∣
η=1

+ O(�η2), (25)

with the coefficient

∂�

∂η

∣∣∣∣
η=1

= −1

4

∞∑
s=1

(
1√
s

+ 2z

)
e−2

√
sz. (26)

The first term in the bracket corresponds to the same sum-
mation as in Eq. (22), and the second term can be evaluated
as

∞∑
s=1

2ze−2
√

sz2 = 1

z
+ O(z), z → 0+, (27)

where we have used the relation
∞∑

s=1

2z2e−2
√

sz2
x →z→0+

2
∫ ∞

0
dxe−2

√
x + O(z2). (28)

As a consequence, we reach the expression of � for η ∼ 1:

�(z → 0+,0,η) ≈ 2 − �η

2z
+ ζ (1/2)

(
1 − �η

4

)
+ O(z).

(29)

Substituting the expression above into Eq. (18), we get the
CIR condition

as

ay

≈ − 1

ζ (1/2)

(
1 − η − 1

4

)
, for η ∼ 1, (30)

which indicates that the position of CIR would shift downward
with a slope of −1/4 if we introduce a slight transverse
anisotropy by increasing η = ωx/ωy . This result is in the
same qualitative trend as the experimental measurement of
CIR2 [30] (see Fig. 1), but with a slope only about half of the
experimental observations.

FIG. 2. Locations of CIR as a function of the transverse
anisotropy η = ωx/ωy . By varying η from the cylindrically sym-
metric case η = 1, the CIR position shows nonmonotonic behavior
and crosses over the magnetic Feshbach resonance to reach the BCS
regime with negative scattering length (vertical lines).

On further increasing or decreasing the transverse
anisotropy, the position of CIR can be determined by nu-
merically evaluating and fitting � to Eq. (19). The results
are plotted in Fig. 2 for a wide range of η. It is shown that the
resonance position of as/ay acquires a nonmonotonic behavior
of η and diverges at a critical frequency ratio ηc ≈ 18.5 (or
equivalently η−1

c ≈ 0.054), where the 3D scattering length
crosses through the magnetic Feshbach resonance to the BCS
side of as < 0. This behavior can be understood by noticing
that by continuously imposing the transverse anisotropy, the
quasi-1D geometry will eventually cross over to a quasi-2D
system, where the s-wave CIR occurs at the BCS side of the
magnetic Feshbach resonance [23,25].

III. TWO-CHANNEL MODEL AND BOUND-STATE
ENERGY

In the previous section, we present a study on the two-
body s-wave scattering process in a transversely anisotropic
quasi-1D geometry. We find a single CIR as in a cylindrically
symmetric quasi-1D trap. Remembering that CIR is a Fesh-
bach resonance between the open channel of the transversally
ground state and the closed channel of exited states, the
uniqueness of CIR is rooted from the fact that only one bound
state can be supported by the s-wave pseudopotential. Thus,
it is illuminating to study the bound states of the closed
channel and examine the CIR condition from the binding
energy.

In order to extract the detailed information of the eigenstate
structure, we add an additional harmonic trap along the axial
z direction with frequency ωz, and take the limit of ωz →
0 afterward. This procedure allows us to take advantage of
the simple form of harmonic oscillators. The dimensionless
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Hamiltonian of the relative motion of two interacting particle
takes the form

Ĥrel = −1

2
∇2

r + 1

2
(η2x2 + y2 + ε2z2) + 2πasδ(r)

∂

∂r
(r·).

(31)

Here we use ay = √
h̄/(µωy) as the length unit and h̄ωy as the

energy limit. By taking the limit of ε = ωz/ωy → 0, we will
reduce to the original problem with no axial confinement.

Since the CIR is, in fact, a Feshbach resonance between
transversally ground mode and the manifold of excited
modes, we need to investigate the relevant bound state of
the decoupled excited manifold and determine when this
bound-state energy coincides with the continuum threshold
of the ground transverse mode. Thus, we proceed by formally
splitting the Hamiltonian onto “ground” (g), “excited” (e), and
“ground-excited coupling” (ge) parts according to

Ĥrel = Ĥg + Ĥe + Ĥge

= P̂gĤ P̂g + P̂eĤ P̂e + (P̂gĤ P̂e + P̂eĤ P̂g), (32)

where P̂g = |00〉⊥〈00|, P̂e = ∑
(nx,ny )′ |nxny〉⊥〈nxny | are the

corresponding projection operators. Here |nxny〉⊥ represents
the eigenstate of the transverse harmonic oscillators with
quantum number nx and ny and the summation (nx,ny)′ runs
over all possible combinations except the ground mode |00〉⊥.

The ground Hamiltonian Ĥg has a 1D coordinate represen-
tation, which corresponds to the motion of a one-dimensional
particle in the presence of a δ barrier and an axial harmonic
trap. In the limit of ε → 0, the spectrum of Ĥg is continuous for
energies above the threshold energy Eg0 = (η + 1)/2, which
represents the zero-point energy of the transverse mode. In
the same limit, the spectrum of the excited Hamiltonian Ĥe

is also continuous for energies greater than Ee0 = 3(η + 1)/2.
However, as we see below, Ĥe also supports a bound state
with energy Eeb < Ee0 for all values of 3D scattering length
as . According to the Feshbach scheme, a resonance would
occur when the bound-state energy of Ĥe coincides with the
continuum threshold of Ĥg , leading to the resonance condition

Eeb = Eg0 = η + 1

2
. (33)

The bound-state energy Eeb of Ĥe can be found by
projecting the total wave function � onto the excited Hilbert
space �e = P̂e� and decomposing into harmonic oscillators
of the excited Hilbert space [32,33]

�e(r) =
∑

(nx,ny )′

∑
nz

cnxnynz
�nx

(
√

ηx)�ny
(y)�nz

(
√

εz), (34)

where �n(t) are the dimensionless harmonic oscillators as
given by Eq. (8). Substituting the expansion (34) into the
Schrödinger equation Ĥ�e = E�e yields

0 =
∑

(nx,ny )′

∑
nz

cn(En − E)Pn(x,y,z)

+ 2πasδ(r)
∂

∂r
r

∑
(nx,ny )′

∑
nz

cnPn(x,y,z), (35)

where

Pn(x,y,z) ≡ �nx
(
√

ηx)�ny
(y)�nz

(
√

εz). (36)

Here, n is a shorthand notation for (nx,ny,nz), and En = (nx +
1/2)η + (ny + 1/2) + (nz + 1/2)ε is the eigenenergy of 3D
harmonic oscillators. To determine the expansion coefficients
cn’s we project Eq. (35) onto state �n′

x
�n′

y
�n′

z
with arbitrary

n′
x , n′

y , and n′
z, leading to

cn = 2πas
√

ηεPn(0,0,0)C
E − En

. (37)

Here C is a constant fixed by normalization of the wave
function, and the value is related to the limiting behavior of
�e(r) for r approaching zero as

C =
[

∂

∂r
r�e(r)

]
r→0

. (38)

Substituting the solution (37) for coefficients cn into
Eq. (38), we can cancel out the constant C and obtain the
equation for the eigenenergy E,

− 1

2πas

=
[

∂

∂r
r�e(E,r)

]
r→0

, (39)

where

�e(E,r) =
∑

(nx,ny )′

∑
nz

√
ηεPn(0,0,0)Pn(x,y,z)

nxη + ny + nzε − E , (40)

and E = E − E0 denotes the eigenenergy shifted by the zero-
point energy E0 = (η + 1 + ε)/2. It should be emphasized
that the regularization operator ∂r (r·) and the summation in
Eqs. (39) and (40) cannot be interchanged, since the series is
not uniformly convergent. As we see later, this is related to the
divergent behavior of �e at small r , which is regularized by
∂r (r·). To perform the summation in Eq. (40) we express the
denominator in terms of the following integral [33]

1

nxη + ny + nzε − E =
∫ ∞

0
dte−t(nxη+ny+nzε−E). (41)

Notice that the summation in �e runs over the excited modes
with nx + ny > 0; hence, this integral representation is valid
for E < min[η,1], that is, for the eigenstate with energy
less than E0 + min[η,1]. Notice that, in the limiting case
of ε → 0, the zero-point energy represents the open-channel
threshold E0(ε → 0) = Eg0. Thus, we can safely use the
integral representation (41) for E � 0 and determine the
Feshbach resonance condition.

To perform the summation over nx , ny , and nz, we
apply the generating function for the products of Hermite
polynomials [34]

∞∑
n=0

σn

2nn!
Hn(x)Hn(y) = e(2σxy−σ 2x2−σ 2y2)/(1−σ 2)

√
1 − σ 2

. (42)

Upon inserting Eq. (41) into (40) and performing the sum-
mation according to (42), we obtain the following integral
representation for the wave function:

�e(E,r) = ψ I
e(E,r) + ψ II

e (E,r), (43)
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where

ψ I
e(E,r) =

√
ηε

(2π )3/2

∫ ∞

0
dt

et(E+E0)

√
sinh(ηt) sinh(t) sinh(εt)

× exp

[
−ηx2

2
coth(ηt) − y2

2
coth(t)

− εz2

2
coth(εt)

]
, (44)

ψ II
e (E,r) = −2

√
ηε

(2π )3/2

∫ ∞

0
dt

1√
sinh(t)

exp

[
t
(
E + ε

2

)

− ηx2 + y2

2
− εz2

2
coth(εt)

]
. (45)

Next we investigate the behavior of the wave function for
small values of r . Note that the integral of ψ II

e is well behaved
at r = 0 and can be carried out analytically, leading to

ψ II
e (E,r = 0) = −

√
ηε

π3/2

∫ ∞

0
dt

etE
√

1 − e−2εt

= −
√

η

2π
√

ε

�(−E/2ε)

�(−E/2ε + 1/2)
. (46)

On the other hand, ψ I
e is divergent in the limit of r → 0,

where the main contribution to the integral comes from small
arguments t . In the leading order we neglect the energy
dependence of E , and the expansion of (44) for small t reads

ψ I
e(E,r) ≈ 1

(2π )3/2

∫ ∞

0
dt

e−r2/(2t)

t3/2
= 1

2πr
. (47)

By adding the two terms together, we note that the wave
function �e diverges in the same way as the Green’s function in
a homogeneous space. This can be understood by remembering
that at short distances the behavior of the wave function is
mainly determined by the interaction between particles and
has negligible dependence on the global trapping potential.
Substituting the expression of wave function �e into (39), the
divergent behavior will be regularized by the operator ∂r (r·)
and hence make no contribution to the equation. Therefore, we
can subtract from �e the right-hand side of (47) and obtain a
simpler expression determining the bound state energy:

−√
π

as

= F(E), (48)

where

F(E) =
∫ ∞

0
dt

[ √
ηεetE/2

√
(1 − e−ηt )(1 − e−t )(1 − e−εt )

−
√

ηεetE/2

√
1 − e−εt

− 1

t3/2

]
. (49)

Notice that this representation is valid for all values of E � 0.
In the limiting case of E = 0, the second and the third terms
remove the divergence for t → ∞ and t → 0, respectively,
and hence guarantee the convergence of F(0).

Finally, we turn to the discussion of quasi-1D regime by
pushing to the limit of ε → 0. This corresponds to lowering the
axial (z) trapping frequency such that it is much weaker than
the transverse x-y confinement. In this limiting case, the main

contribution to the integral of F comes from small arguments
t , and we can perform the approximation

√
1 − e−εt ≈ √

εt in
the determinator to obtain

F(E)≈
∫ ∞

0
dt

[ √
ηetE/2

√
t(1 − e−ηt )(1 − e−t )

−
√

ηetE/2

√
t

− 1

t3/2

]
.

(50)

Considering the fact that the CIR takes place when the
eigenenergy Eeb = E + E0 = Eg0, we reach the equation for
the CIR condition in physical units as

as

ay

= −
√

π

F(0)
. (51)

A numerical evaluation of functionF shows that this condition
predicts exactly the same CIR position as (18), as one should
expect. In particular, in the cylindrically symmetric case
of η = 1, the integral of F can be performed analytically,
leading to

F(E) =
∫ ∞

0
dt

[
e−t(1−E/2)

√
t(1 − e−t )

− 1

t3/2

]

= √
πζH

(
1

2
,1 − E

2

)
, (52)

where ζH(s,a) ≡ ∑∞
n=0(n + a)−s denotes the Hurwitz ζ func-

tion. Upon substituting the expression above into the CIR
condition (51) and noticing that ζH(1/2,1) = ζ (1/2), we
recover the known result of (24).

In Fig. 3 we show the bound-state energy Eeb of the
closed-channel Hamiltonian as a function of 3D scattering
length as/ay for several different choices of η. In each plot, the
location of CIR is indicated by dotted lines as the eigenenergy
crosses the open-channel threshold Eg0. We also verify that the
quasi-1D regime for two interacting atoms does not require an
infinitesimally small value of ε, but is already realized for
ε ∼ 0.1, as illustrated in Fig. 3 as (red) dashed lines. We
have also studied the case of ε = 0.001, which is close to
the realistic experimental setup [30], and note an excellent
agreement with the quasi-1D energy levels, which on the scale
of Fig. 3 are indistinguishable.

It is also illuminating to investigate the bound-state energy
of the full Hamiltonian as Ĥrel�(r) = Eb�(r). This can be
done by decomposing the wave function into the complete set
of harmonic oscillators,

�e(r) =
∑

nx,ny ,nz

cnxnynz
�nx

(
√

ηx)�ny
(y)�nz

(
√

εz), (53)

and following the same procedure as in derivation of (49). As
a result, the bound-state energy is determined by the equation∫ ∞

0
dt

[ √
ηεet(Eb−E0)/2

√
(1 − e−ηt )(1 − e−t )(1 − e−εt )

− 1

t3/2

]
=−√

π

as

.

(54)

Upon comparing with the equation for the bound-state energy
of the closed-channel Hamiltonian (35), we notice that in the
cylindrically symmetric case of η = 1, the bound-state energy
Eeb of the closed channel Hamiltonian and the bound-state
energy Eb of the full Hamiltonian is related via

Eeb = Eb + 2 for η = 1. (55)
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FIG. 3. (Color online) Bound-state energy Eeb of the closed-channel Hamiltonian and bound-state energy Eb of the full Hamiltonian, as
calculated for the quasi-1D limit with ε = ωz/ωy → 0 (solid line). The results of Eeb for small but finite ε = 0.1 are also shown for comparison
(dashed line). The CIR occurs at the position where Eeb coincides with the threshold of the ground Hamiltonian Eg0, as schematically drawn
in the figures (dotted line).

For general cases of arbitrary η, the difference between Eeb

and Eb has dependence on as , as can be observed in Fig. 3
[green (gray) solid lines].

IV. THE TWO-CHANNEL CALCULATION FOR GENERAL
FORMS OF INTERACTION

In the previous discussion of CIR, we have employed a
single-channel zero-range pseudopotential to model the 3D
interatomic interaction. Nevertheless, in the realistic cases, the
atom-atom interactions have finite ranges and multichannels
with respect to different hyperfine states. The 3D scattering
length as is determined by the interchannel Feshbach reso-
nance, which is controlled by magnetic field B through the
B-dependent inter-channel detuning. To take into account of
these characters, in this section we provide a formal calculation
of the effective quasi-1D scattering length a1D with a general
two-channel model which is more realistic for the interatomic
interaction. Our formal calculation can explicitly give the
qualitative behavior of a1D with respect to the magnetic field B

and show clearly that there is only one resonant point where a1D

takes zero value. This is consistent with our previous findings
based on the usage of pseudopotential.

In the two-channel model, the atoms are initially localized
in the open channel with a two-atom hyperfine state |o〉s .
During the scattering process, the atomic motion in the open

channel is assumed to be near resonant with a bound state
|�〉 in the closed channel, whose threshold energy is much
higher than the scattering energy. The interchannel coupling
can induce quantum transition between the two channels and
then vary the scattering amplitude.

In our calculation, the Hamiltonian for the atomic relative
motion takes the form

Ĥrel = T̂z + Ĥ⊥ + ε (B) |c〉s〈c| + V̂ . (56)

where ε(B) is the threshold energy of the closed channel with
respect to the hyperfine state |c〉s and can be tuned as a linear
function of magnetic field B. In this Hamiltonian, T̂z is the
kinetic energy in the z direction, Ĥ⊥ is the Hamiltonian of
the transverse degrees of freedom. As in the above sections,
we denote the ground state of the transverse Hamiltonian Ĥ⊥
as |00〉⊥. The two-channel interaction term V̂ can be further
expressed as

V̂ = Vbg (r) |o〉s〈o|+Vcl (r) |c〉s〈c|+ [W (r) |o〉s〈c|+H.c.] ,

(57)

where r is the 3D relative coordinate between the two atoms,
Vbg(r) and Vcl(r) are the interatomic interaction potentials
in the open and closed channels, respectively, W (r) the
interchannel coupling, and H.c. denotes Hermitian conjugate.
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For simplicity, we assume Vbg(r) to be a short-range potential
with

Vbg (r) = 0, r > r∗. (58)

Such a simple model is reasonable for the formal calculation
provided that the realistic atom-atom interaction potential is
a short-range potential (e.g., the Yukawa potential), which
decays faster than any power-law function of the atom-atom
distance r . In ultracold atomic gases, the atoms experience a
long-range van der Waals potential which behaves as 1/r6 in
the long-range region, rather than a short-range one. However,
it has been proved that in the low-energy limit there is no
difference between the behaviors of the 3D s-wave scattering
amplitude from the van der Waals potential and the short-range
potential [35,36]. Therefore, we use Eq. (58) as a reasonable
simplification for the discussion on low-energy scattering.

In our system the spatial parity along the z direction is
conserved. Since the s-wave bound state in the closed channel
has an even parity, the Feshbach resonance between the open
and closed channels can only change the scattering amplitude
for states with even parity in the open channel. Namely, the
scattering amplitude with respect to odd parity is independent
on magnetic field B. Therefore, in this section we only
concentrate on the scattering amplitude for states with even
parity.

The 1D effective scattering length a1D can be evaluated
from an analysis of scattering states. Before the scattering
process, the two atoms are moving in the ground state |00〉⊥
of the transverse Hamiltonian Ĥ⊥ with relative momentum
k. Then the relevant scattering state |ψ (+)(k)〉 is given by the
Lippmann-Schwinger equation [37],

|ψ+(k)〉 = |k〉z|00〉⊥|o〉s + G
(+)
0 (k2)V̂ |ψ (+)(k)〉, (59)

where |k〉z is the eigenstate of T̂z with even parity z〈z|k〉z =
cos(kz) and G

(+)
0 (k2) is the free Green’s operator,

G
(+)
0 (k2) = 1

k2 + i0+ − T̂z − Ĥ⊥ − ε(B)|c〉s〈c|
. (60)

Throughout this section, we use the natural unit with h̄ = µ =
1. The state |ψ (+)(k)〉 can be rewritten as

|ψ (+)(k)〉 = |ψo (k)〉|o〉s + |ψc (k)〉|c〉s , (61)

where |ψo(k)〉 and |ψc(k)〉 are the spatial states corresponding
to the open and closed channels, respectively. As shown
in Appendix A, the Lippmann-Schwinger equation (59) of
|ψ (+)(k)〉 can be reexpressed as [38]

|ψo(k)〉 = |ψ (+)
bg (k)〉 + G

(+)
bg (k) W |ψc (k)〉, (62)

|ψc (k)〉 = 1

k2 + � (B)
|�〉〈�|W |ψo (k)〉, (63)

where |ψ (+)
bg (k)〉 is the background scattering state defined by

the background Lippmann-Schwinger equation

|ψ (+)
bg (k)〉 = |k〉z|00〉⊥ + G

(+)
bg (k) Vbg (r) |k〉z|00〉⊥. (64)

Here G
(+)
bg (k) is the background Green’s operator given by

G
(+)
bg (k) = 1

k2 + i0+ − T̂z + Ĥ⊥ + Vbg
. (65)

In Eq. (63) the detuning �(B) is defined as

�(B) = Ecb − ε(B), (66)

where Ecb is the binding energy of the bound state |�〉 in the
closed channel.

Substituting Eq. (63) into (62), and multiplying the Dirac
bra 〈�|W on both the left-hand and the right-hand sides of (62),
we obtain a linear equation for the factor 〈�|W |ψo(k)〉. The
solution of this equation leads the open-channel component of
the scattering state:

|ψo (k)〉 = |ψ (+)
bg (k)〉 + G

(+)
bg (k) W |�〉〈�|W |ψ (+)

bg (k)〉
� (B) − 〈�|WG

(+)
bg (k) W |�〉

. (67)

The 1D scattering length a1D(B) can be extracted from the
asymptotic behavior of the open-channel spatial state |ψo(k)〉
in the long-distance limit |z| −→ ∞. As shown in Appendix D,
in this region we have

z〈z|ψ (+)
bg (k)〉 = [

cos(kz) + f bg
even (k) eik|z|] |00〉⊥, (68)

z〈z|G(+)
bg (k) = −i

eik|z|

2k
|00〉⊥〈ψ (−)

bg (k) |, (69)

where |ψ (−)
bg (k)〉 is the background scattering state with ingoing

boundary condition and f
bg
even(k) is the background scattering

amplitude with low-energy behavior:

f bg
even (k → 0) = −1 + ika

bg
1D. (70)

Here a
bg
1D ∈ R is the background scattering length.

We can also prove that G(+)
bg (k = 0) is a Hermitian operator,

as shown in Appendix D. Therefore, in the long-distance region
we have

z〈z|ψ (+)
o (k)〉 = [cos(kz) + feven (k; B) eik|z|]|00〉⊥, (71)

with the scattering amplitude given by

feven (k → 0; B) = −1 + ika1D (B) (72)

in the low-energy limit. Here, the B-dependent scattering
length a1D(B) takes the form

a1D (B) = a
bg
1D + lim

k→0

1

2k2

|〈�|W |ψ (+)
bg (k)〉|2

�(B) − 〈�|WG
(+)
bg (0) W |�〉

.

(73)

To obtain the expression (73), we have also used the results
|ψ (+)

bg (k)〉 ∝ k and |ψ (−)
bg (k)〉 = −|ψ (+)

bg (k)〉, which are proved
in the limiting case of k → 0 as shown in Appendix D.

The result of a1D(B) expressed in (73) is the central result
of this section. It gives the behavior of a1D as a function of the
magnetic field B through the magnetic Feshbach resonance.
Notice that �(B) is a linear function of B; thus, one can
immediately read from Eq. (73) that there is only one resonant
point,

B∗ = 1

µm

[
Ecb − 〈�|WG+

bg(0)W |�〉 + �a/a
bg
1D

]
, (74)
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leading to zero value of a1D(B∗) = 0. Here we have assumed
ε(B) = µmB and �a is defined as

�a = lim
k→0

1

2k2
|〈�|W |ψ (+)

bg (k)〉|2. (75)

This observation is in consistent with our findings in the
previous sections by assuming a δ pseudopotential. We stress
that this formal scattering calculation is based on a very general
form of the quasi-1D Hamiltonian (56), and the qualitative
conclusion of one single CIR remains valid regarless of the
details of transverse confinement or the interatomic potential.

V. CONCLUSION

In summary, we have presented a detailed analysis of the
scattering process of two interacting atoms confined in a
quasi-1D harmonic trap. We analyzed the possibility of CIR,
where the 1D scattering degenerates to a total reflection as a
1D gas of impenetrable bosons. By modeling the interatomic
interaction by a 3D δ pseudopotential, we have shown that
only one single CIR would be present in a quasi-1D trap
with arbitrary transverse anisotropy. The location of this
resonance has nonmonotonic dependence on the transverse
anisotropy ratio η = ωx/ωy . For slight transverse anisotropy
with η ∼ 1, the position of CIR varies with the same trend as
the experimental observation of CIR2 [30], but deviates from
the measurements in a quantitative level. The other resonance
observed in experiment, CIR1, cannot be accounted for by the
present theory. To extend the discussion to general forms of
s-wave interaction, we presented a formal theory within a two-
channel model and draw the same qualitative conclusion of one
CIR for transverse confinement with arbitrary anisotropy.

To understand this discrepancy, we notice that the resonance
positions determined by experiments are extracted from the
atom-loss and heating-rate measurements. Both of these signa-
tures are determined by the three-body recombination process.
In 3D Fermi gases, it is observed that the maximum of atom
loss and heating could be largely shifted from the resonance
peak, due to the creation of weakly bound molecules. In
that case, when the binding energy of molecules is small
and the heating associated with three-body recombination is
negligible, the molecules could remain in the trap and have
less contribution to the atom loss, leading to a double-peak
structure for a single Feshbach resonance [39,40]. For Bose
gases in confined geometry, it will be also illuminating
to investigate the effect of the three-body recombination
process, and we look forward to investigating the three-body
recombination process and calculating the recombination rate
for Bose gases in confined geometry. Another factor that may
have influence is the finite collisional energy effect in a realistic
experimental situation, while we consider only a zero-energy
s-wave scattering process in our analysis.

Note added in proof. Recently, we became aware of a work
posted by Peng et al. [41], which discusses CIRs in quasi-1D
geometries with transverse anisotropy and reaches similar
results as our calculation with pseudopotential. However, the
formal theory which is valid for a more general form of
interaction is not discussed in Ref. [41].
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APPENDIX A: BACKGROUND LIPPMANN-SCHWINGER
EQUATION

In this appendix we derive the Lippmann-Schwinger equa-
tions (62) and (63) for the scattering state |ψ (+)(k)〉. We first
substitute Eq. (61) into (59), and get

|ψo (k)〉 = |k〉z|00〉⊥ + G
(+)
fo (k2)Vbg|ψo (k)〉

+G
(+)
fo (k2)W |ψc (k)〉, (A1)

|ψc (k)〉 = Gfc(k2)Vcl|ψc (k)〉 + Gfc(k2)W |ψo (k)〉, (A2)

with the free Green’s operators G
(+)
fo and Gfc in the open and

closed channels, respectively,

G
(+)
fo (k2) = 1

k2 + i0+ − T̂z − Ĥ⊥
, (A3)

Gfc(k2) = 1

k2 − T̂z − Ĥ⊥ − ε(B)
. (A4)

By defining the closed-channel Green’s function Gcl,

Gcl(k
2) = 1

k2 − T̂z − Ĥ⊥ − Vcl − ε(B)
, (A5)

we obtain the relations

G
(+)
fo (k2) = G

(+)
bg (k2) − G

(+)
bg (k2)VbgG

(+)
fo (k2); (A6)

Gfc(k2) = Gcl(k
2) − Gcl(k

2)VclGfc(k2), (A7)

where G
(+)
bg (k2) is defined in (65). Substituting Eqs. (A6) and

(A7) into the last terms of the right-hand side of Eqs. (A1)
and (A2), and using the Lippmann-Schwinger equation (64)
for the background scattering state |ψ (+)

bg (k)〉, as well as the
approximation

Gcl(k
2) ≈ |�〉〈�|

k2 + � (B)
, (A8)

with �(B) defined in Eq. (66), we get Eqs. (62) and (63) for
the states |ψo(k)〉 and |ψc(k)〉.

APPENDIX B: LOW-ENERGY BEHAVIOR OF 1D
SCATTERING STATE AND GREEN’S OPERATOR

In this appendix we discuss the low-energy behavior of the
scattering state in a single-channel 1D scattering problem. The
results of this part are not directly used in the main text of our
paper, but are prerequisite for the calculation in Appendix D.

We consider a 1D scattering problem with symmetric short-
range potential with

U (z) = U (−z) ; (B1)

U (|z| > r∗) = 0. (B2)
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The wave function φ(+)(k; z) of the scattering state with even
parity hence satisfies the Lippmann-Schwinger equation,

φ(+)(k; z)

= cos(kz) +
∫

dz′[g(+)
0 (k; z,z′) × U

(
z′) φ(+) (k; z)

]
,

(B3)

where g
(+)
0

(
k; z,z′) is the 1D Green’s function

g
(+)
0 (k; z,z′) = z〈z| 1

k2 + i0+ − T̂z

|z′〉z

= −i
1

2k
eik|z−z′ |. (B4)

It is straightforward to show that the Lippmann-Schwinger
equation (B3) is equivalent with the time-independent
Schrödinger equation [37],

− d2

dz2
φ(+) (k; z) + U (z) φ(+) (k; z) = k2φ(+) (k; z) , (B5)

with the boundary condition

φ(+) (k; |z| > r∗) = cos(kz) + f (k) eik|z|. (B6)

Here f (k) is the scattering amplitude.
To investigate the low-energy behavior of φ(+)(k; z) and

f (k), we expand φ(+)(k; z) in series of k,

φ(+) (k; z) = φ0 (z) + φ1r (z) k + iφ1i (z) k + O(k2), (B7)

where φ1r (z) and φ1i(z) are assumed to be real functions of z.
Setting k = 0 in Eq. (B5), we get for φ0(z)

− d2

dz2
φ0(z) + U (z) φ0 (z) = 0. (B8)

Considering the fact that the potential U (z) takes zero value in
the region of |z| > r∗, the solution φ0(z) of the equation above
would be a constant within this outer region. Therefore, in the
inner region of |z| � r∗, we acquire the following boundary
condition:

d

dz
φ0 (z)

∣∣∣∣
|z|=r∗

= 0. (B9)

This boundary condition is a strong requirement such that
only some special kinds of U (z) [e.g., the most trivial case
with U (z) = 0] can lead to a nonzero solution of Eq. (B8).
Here we assume our potential are not of this special form; then
we have

φ0 (z) 0,φ(+) (k → 0; z) ∝ k. (B10)

Substituting the equation above into (B6), we obtain the low-
energy behavior

f (k → 0) = −1 + O(k) (B11)

of the scattering amplitude with even parity.
Now we focus on the linear terms of k. Expanding Eq. (B5)

to the first order of k, we find that the functions φ1r (z) and
φ1i(z) defined in Eq. (B7) also satisfy Eq. (B8). The expansion
of Eq. (B6) further shows that φ1r (z) takes constant value
in the outer region of |z| > r∗. Thus, in the inner region of
|z| � r∗ the wave function φ1r (z) satisfies the same equation

and boundary condition as φ0(z), leading to

φ1r (z) = φ0 (z) = 0. (B12)

As a consequence, the scattering state φ(k; z) with even parity
acquires the following form in the low-energy limit k → 0

φ(+) (k → 0; z) = ikφ1i (z) ; φ1i (z) ∈ R, (B13)

which yields

f (k → 0) = −1 + ika + O(k2); a ∈ R. (B14)

Next we discuss the low-energy behavior of the 1D Green’s
operator

g(k2) = 1

k2 − T̂z − U (z)
. (B15)

In the limiting case of k → 0, the Green’s operator can be
expressed as

z〈z|g(+)(k2 → 0)|z′〉z = −
∫ ∞

0
dp

φ(+)∗(p; z)φ(+)(p; z′)
p2

.

(B16)

The convergence of this integral representation is guaranteed
by noticing that φ+(p; z) ∝ p in the limit of p → 0, as we have
shown above. Besides, the expression above also satisfies

z〈z|g(+)(k2 → 0)|z′〉z = z〈z′|g(+)(k2 → 0)|z〉∗z , (B17)

which indicates that the Green’s operator converges to a
Hermitian operator in this low-energy limit.

Finally, we discuss the low-energy behavior of the scat-
tering state φ(−)(k,z) with ingoing boundary condition. The
Lippmann-Schwinger equation for φ(−)(k,z) reads

φ(−) (k,z) = cos(kz)+
∫

dz′[g(−)
0 (k; z,z′) × U (z′)φ(−)(k,z′)

]
,

(B18)

where g
(−)
0 (k; z,z′) is defined as

g
(−)
0

(
k; z,z′) = z〈z| 1

k2 − i0+ − T̂z

|z′〉z

= i
1

2k
eik|z−z′|. (B19)

It is easy to prove that φ(−)(k,z) and φ(+)(k,z) satisfy the
same 1D Schrödinger equation with the same eigenvalue, and
they also share the same parity. Thus, φ(−)(k,z) is proportional
to φ(+)(k,z) and we have

φ(−) (k,z) = ξ (k) φ(+) (k,z) . (B20)

By expanding Eqs. (B3) and (B18) to the zeroth order of k,
and using Eqs. (B4), (B13), (B19), and (B20), we obtain

1 − i

2

∫
dz′φ1i(z

′)U (z′) = 0; (B21)

1 + i

2
ξ (k → 0)

∫
dz′φ1i(z

′)U (z′) = 0, (B22)

which leads to

ξ (k → 0) = −1 (B23)

φ(−) (k,z) = −φ(+) (k,z) (B24)

in the limit of k → 0.
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APPENDIX C: THE ASYMPTOTIC BEHAVIOR OF 1D
GREEN’S OPERATOR

In this appendix we discuss the asymptotic behavior of the
1D Green’s operator. We focus on the case with even parity
since it is the only relevant term in our problem. In this case,
the 1D Green’s operator reads

g(+)
even(k; z,z′) = z〈z|P̂even

1

k2 + i0+ − T̂z − U (z)
P̂even|z′〉z,

(C1)

where P̂even is the projection operator to the space of states
with even parity of z.

We first investigate the asymptotic behavior of the free even
Green’s function,

g
(+)
even0(k; z,z′) = P̂eveng

(+)
0 (k; z,z′)P̂even, (C2)

with g
(+)
0 (k; z,z′) defined in (B4). In the case of |z| > r∗ and

|z′| < r∗, we can show clearly that

g
(+)
even0(k; z,z′) = −i

1

2k
eik|z| cos(kz′). (C3)

Now we consider the behavior of g(+)
even(k; z,z′). We notice

that g(+)
even(k; z,z′) satisfies the Lippmann-Schwinger equation

g(+)
even(k; z,z′)

= g
(+)
even0(k; z,z′)+

∫
dz′′g(+)

even0(k; z,z′′)U (z′′)g(+)
even(k; z′′,z′).

(C4)

Therefore, according to Eq. (C3), we know that in the region
of |z| > r∗ and |z′| < r∗ we have

g(+)
even(k; z,z′) = −i

1

2k
eik|z|χ (k,z′)∗, (C5)

where

χ (k,z′)∗

= cos(kz′) +
∫

dz′′[ cos(kz′′) × U (z′′)g(+)
even(k; z′′,z′)

]
.

(C6)

Here we have used the fact that U (z) = 0 in the region of
|z| > r∗. Notice that Eq. (C6) implies

χ (k,z′) = cos(kz′) +
∫

dz
[
U (z′′) × g(−)

even(k; z′′,z′) cos(kz′′)
]
,

(C7)

where the Green’s function g(−)
even(k; z,z′) is defined as

g(−)
even(k; z,z′) = z〈z|P̂even

1

k2 − i0+ − T̂z − U (z)
P̂even|z′〉z.

(C8)

It is apparent that the right-hand side of Eq. (C7) is equivalent
with the Lippmann-Schwinger equation (B18) for the scatter-
ing state φ−(k,z) with ingoing boundary condition, leading to
χ (k,z) = φ−(k,z). Thus, in the region of |z| > r∗ we have

g(+)
even(k; z,z′) = −i

1

2k
eik|z|φ(−)(k,z′)∗. (C9)

APPENDIX D: BACKGROUND SCATTERING STATE

In this appendix we investigate the low-energy behavior
of the background scattering state |ψ (+)

bg (k)〉|o〉s , the back-

ground Green’s function G
(+)
bg and the background scattering

amplitude f
bg
even. The state |ψ (+)

bg (k)〉 is given by the Lippmann-
Schwinger equation (64). For convenience we define the states
|ψ (+)

bg (k)〉P,Q as

|ψ (+)
bg (k)〉P = P̂g|ψ (+)

bg (k)〉, (D1)

|ψ (+)
bg (k)〉Q = (1 − P̂g)|ψ (+)

bg (k)〉, (D2)

where P̂g = |00〉⊥〈00| is the projection operator to the
transversally ground state. Following a similar procedure
as in Appendix A, we can write the Lippmann-Schwinger
equation (64) as

|ψ (+)
bg (k)〉P = |φ(+)

P (k)〉z|00〉⊥ + G
(+)
P (k) X̂|ψ (+)

bg (k)〉Q;

(D3)

|ψ (+)
bg (k)〉Q = G

(+)
Q (k) X̂|ψ (+)

bg (k)〉P , (D4)

where

G
(+)
P (k) = 1

k2 + i0+ − T̂z + P̂g(Ĥ⊥ + Vbg)P̂g

; (D5)

G
(+)
Q (k) = 1

k2 − T̂z + (1 − P̂g)(Ĥ⊥ + Vbg)(1 − P̂g)
; (D6)

X̂ = P̂g(Ĥ⊥ + Vbg)(1 − P̂g) + H.c., (D7)

and |φ(+)
P (k)〉z is the 1D scattering state with respect to the

potential ⊥〈00|Vbg(r)|00〉⊥ in the z direction. We further
rewrite Eq. (D4) as

|ψ (+)
bg (k)〉Q =

∑
i

|ci〉di, (D8)

with

di = 1

k2 − εi

〈ci |X̂|ψ (+)
bg (k)〉P . (D9)

Here |ci〉 is the eigenstate of the Hamiltonian T̂z + (1 −
P̂g)(Ĥ⊥ + Vbg)(1 − P̂g) with eigenenergy εi . Combining
Eqs. (D3)–(D4) and (D8)–(D9) together, we get a set of
equations for the parameters di , leading to the following
expression for the state |ψ (+)

bg (k)〉P

|ψ (+)
bg (k)〉P =|φ(+)

P (k)〉z|00〉⊥
+

∑
i,j

G
(+)
P (k)X̂|ci〉D−1

ij (k)〈ci |X̂|φ(+)
P (k)〉z|00〉⊥,

(D10)

where D−1
ij (k) are the elements of the inverse of matrix D(k)

Dij (k) = (k2 − εi)δij − 〈ci |XG
(+)
P (k) X̂|cj 〉. (D11)

Now we investigate the behavior of |ψ (+)
bg (k)〉P in the limit

of k → 0. As shown in Appendix B, in this low-energy limit
the 1D scattering state |φ(+)

P (k)〉z is a linear function of k, and
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the Green’s function G
(+)
P (k) becomes a constant Hermitian

operator. Substituting these properties into Eq. (D10), we get

|ψ (+)
bg (k → 0)〉P ∝ k. (D12)

That is, the background scattering state |ψ (+)
bg (k)〉P also linearly

depends on k in the low-energy limit. Substituting (D12) into
(D4), we get the low-energy behavior of the total background
scattering state

|ψ (+)
bg (k → 0)〉 ∝ k. (D13)

Using this result, and following the same analysis as in
Appendix B, we can show that the background Green’s
operator G

(+)
bg (k) defined in Eq. (65) converges to a Hermitian

operator in the low-energy limit k → 0.
In the above we obtained the low-energy behavior of

the background scattering state and the background Green’s
function. Next we consider the low-energy behavior of the
background scattering amplitude. We also assume Vbg(r) = 0
for r > r∗. Then in the region of |z| → ∞, the wave function
of |ψ (+)

bg (k)〉Q decays to zero while the wave function of

|ψ (+)
bg (k)〉P can be expanded as

⊥〈00|z〈z|ψ (+)
bg (k)〉P = cos kz + f bg

even (k) eik|z|, (D14)

with the background scattering amplitude

f bg
even (k) = f P

even (k) − i
1

2k

∑
ij

z〈φ(−)
P (k) |⊥〈00|U |ci〉

×D−1
ij (k) 〈ci |U |φ(+)

P (k)〉z|00〉⊥. (D15)

Here f P
even(k) is the scattering amplitude for the state |φ(+)

P (k)〉z,
and |φ(−)

P (k)〉z is the 1D scattering state with respect to

⊥〈00|Vbg(r)|00〉⊥ under the ingoing boundary condition. To
derive the equation above, we have used the behavior of the

1D Green’s function G
(+)
P (k) in the region of z > r∗ (see

Appendix C):

z〈z|⊥〈00|G(+)
P (k) |00〉⊥|z′〉z = −i

1

2k
eik|z|

z〈φ(−)
P (k) |z′〉z.

(D16)

As we have shown in Appendix B, the scattering amplitude
f P

even(k) and scattering states |φ(±)
P (k)〉z have the following

properties in the limit k → 0:

f P
even (k) = −1 + ikaP

1D, aP
1D ∈ R; (D17)

|φ(+)
P (k)〉z = −|φ(−)

P (k)〉z. (D18)

Then it is obvious to see that Eq. (D15) can be reformed as

f bg
even (k) = −1 + ika

bg
1D, (D19)

where the background scattering length,

a
bg
1D = aP

1D + lim
k→0

1

2k2

∑
ij

z〈φ(+)
P (k) |⊥〈00|U |ci〉

×D−1
ij (k) 〈ci |U |φ(+)

P (k)〉z|00〉⊥, (D20)

takes real value.
At the end of this appendix, we stress that the analysis in

Appendix C on the asymptotic behavior of the 1D Green’s
operator can be straightforwardly generalized to the quasi-1D
case and we have

z〈z|G(+)
bg (k) = −i

eik|z|

2k
|00〉⊥〈ψ (−)

bg (k) | (D21)

in the region of |z| > r∗. Here the scattering sate |ψ (−)
bg (k)〉

with ingoing boundary condition is given by

|ψ (−)
bg (k)〉 = |k〉z|00〉⊥ + G

(−)
bg (k) Vbg (r) |k〉z|00〉⊥, (D22)

with

G
(−)
bg (k) = 1

k2 − i0+ − T̂z + Ĥ⊥ + Vbg
. (D23)
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