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We consider a bosonic Josephson junction made of N ultracold and dilute atoms confined by a quasi-one-
dimensional double-well potential within the two-site Bose-Hubbard model framework. The behavior of the sys-
tem is investigated at zero temperature by varying the interatomic interaction from the strongly attractive regime to
the repulsive one. We show that the ground state exhibits a crossover from a macroscopic Schrödinger-cat state
to a separable Fock state through an atomic coherent regime. By diagonalizing the Bose-Hubbard Hamiltonian
we characterize the emergence of the macroscopic cat states by calculating the Fisher information F , the
coherence by means of the visibility α of the interference fringes in the momentum distribution, and the quantum
correlations by using the entanglement entropy S. Both Fisher information and visibility are shown to be
related to the ground-state energy by employing the Hellmann-Feynman theorem. This result, together with a
perturbative calculation of the ground-state energy, allows simple analytical formulas for F and α to be
obtained over a range of interactions, in excellent agreement with the exact diagonalization of the Bose-Hubbard
Hamiltonian. In the attractive regime the entanglement entropy attains values very close to its upper limit for a
specific interaction strength lying in the region where coherence is lost and self-trapping sets in.
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I. INTRODUCTION

Ultracold and dilute alkali-metal atoms confined in a quasi-
one-dimensional (1D) double-well potential [1] are the ideal
system to study the Josephson effect [2] and, more generally,
the formation of macroscopic coherent states [3–7] and macro-
scopic Schrödinger-cat states [8–12]. The observed coherent
dynamics of the atomic cloud in the double-well potential
(bosonic Josephson junction) [1,13] is efficiently described
by Josephson equations [3] and their extensions [14–16]. The
Josephson equations are valid within the weak interatomic
interaction regime, where semiclassical approximations can
be performed and the system considered is in a coherent
state [17]. When the bosons are repulsively interacting, the
crossover from a coherent state (superfluidlike regime) to
a separable Fock state (Mott-like regime) takes place by
increasing the coupling strength between the atoms [4–7].
This crossover could be detected by measuring the visibility
α of the interference fringes in the momentum distribution
of the bosonic cloud [4,7]. In the case of attractive coupling,
the Josephson equations predict the spontaneous symmetry
breaking above a critical strength [3,16], while the two-site
Bose-Hubbard model predicts the formation of a macroscopic
Schrödinger-cat state [8–12]. Finally, when the attraction
between the bosons is sufficiently strong the collapse of the
cloud should occur [16,18].

The goal of the present paper is to investigate the co-
herence and entanglement of the N boson ground state,
with particular attention to the formation of macroscopic
Schrödinger-cat states, by using as a theoretical tool the two-
site Bose-Hubbard (BH) Hamiltonian. Both the experimental
implementation of two-mode quantum entangled states and
the two-site BH model are the ideal instruments to address the
problem of the precision of the difference number and phase

measurements [19,20]. In our work, we diagonalize the two-
site BH Hamiltonian and evaluate the coherence visibility α,
the Fisher information F , and the entanglement entropy S

of the ground state. We calculate the Fisher information and
the coherence visibility by employing the Hellmann-Feynman
theorem (HFT) (see, for example, Ref. [21]) as well. By jointly
using this theorem and a perturbative approach for calculating
the ground-state energy, we obtain simple analytical formulas
for F and α over range of interactions where the perturbative
calculation is applicable. This represents one of the main
novelties of the present paper. It is quite interesting to
compare the results obtained by applying the HFT and those
derived from the diagonalization of the BH Hamiltonian.
This comparison shows good agreement between the pre-
dictions of the two approaches, in particular, for the Fisher
information.

The aforementioned quantities, i.e., the Fisher information,
the coherence visibility, and the entanglement entropy, are
analyzed by widely exploring the atom-atom interaction range,
i.e., from strongly attractive to strongly repulsive interactions.
This study is, in particular, an analysis of the entanglement
entropy, one of the crucial points of our paper. From the
above analysis we find that the presence of a macroscopic
Schrödinger-cat state [22] in the double well, which can
be detected by repeated measurements of the distribution of
particles in the two wells [8,9], corresponds to the maximum of
the Fisher information F . The maximum of the entanglement
entropy S is obtained for attractive interactions close to the
onset of coherence loss, which corresponds to the crossover
to the self-trapped state. This maximum value is very close to
its maximum achievable value, i.e., log2(N + 1), and greater
than that of a macroscopic cat state. For sufficiently strong
attractions the coherence visibility α is quite small, but it
increases as the interaction strength becomes sufficiently
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weak. In addition, we find that by strongly increasing the
repulsive interaction, the coherence visibility, the Fisher
information F, and the entanglement entropy S go to zero.
In this strongly repulsive regime the ground state becomes a
separable Fock state with N/2 particles in each potential well.

To complete our analysis, we exploit the known fact
that the Josephson equations for a bosonic junction can be
derived from the two-site Bose-Hubbard Hamiltonian by using
the quasiclassical coherent state; this state is characterized
by nonvanishing quantum number fluctuations. We compare
the N -boson ground-state energy obtained by diagonalizing
the BH Hamiltonian with the expectation value of the BH
Hamiltonian evaluated with respect to the quasiclassical
coherent state. In this way we show the link between the
quantum description and the quasiclassical one of the bosonic
Josephson junction.

II. THE MODEL HAMILTONIAN

We consider a dilute and ultracold atomic gas made of N

identical bosons of mass m confined by a trapping potential
Vtrap(r). This potential can be realized by the superposition of
an isotropic harmonic confinement in the the transverse radial
plane and a double-well potential VDW (x) in the axial direction
x. Then, Vtrap(r) is given by Vtrap(r) = VDW (x) + mω2

⊥(y2 +
z2)/2, where ω⊥ is the trapping frequency in the radial
plane.

We suppose that the system is quasi-one-dimensional
due to a strong transverse radial harmonic confinement. In
particular, the transverse energy h̄ω⊥ is much larger than
the characteristic energy of bosons in the axial direction. By
assuming that the two wells are symmetric, the microscopic
dynamics of our system is described by the effective two-sites
BH Hamiltonian [15]:

Ĥ = −J (â†
LâR + â

†
RâL) + U

2
[n̂L(n̂L − 1) + n̂R(n̂R − 1)],

(1)

where âk,â
†
k (k = L,R) are bosonic operators satisfying the

algebra [âk,â
†
l ] = δkl ; n̂k = â

†
kâk is the number of particles

in the kth well; U is the boson-boson interaction amplitude;
and J is the tunnel matrix element between the two wells.
Note that the sign of the hopping amplitude can be changed
by gauge transformation; in the following we refer to J as a
positive quantity. We observe that the total number operator

N̂ = n̂L + n̂R (2)

commutes with the Hamiltonian (1), so that the total number
of particles is conserved. The macroscopic parameters in the
Hamiltonian (1) are explicitly related to the atom-atom cou-
pling constant g = 4πh̄2as/m, as being the s-wave scattering
length, and to the other microscopic parameters, i.e., the atomic
mass m and the frequency ω⊥ of the harmonic trap (see
Ref. [15]). The on-site interaction amplitude U is positive
(negative) if as is positive (negative), so that it may be changed
by Feshbach resonance. The hopping amplitude J is equal to
(ε1 − ε0)/2, where ε0 and ε1 are the ground-state and first-
excited-state energies of a single boson in the double well [23].

III. COHERENT, FOCK, AND CAT STATES

At fixed number N of bosons, the ground state of the system
depends on the adimensional parameter ζ = U/J . Let us recall
what is known in the literature.

(1) In the case of zero interaction (U = 0), the ground state
of the BH Hamiltonian with a fixed total number N of bosons
is the atomic coherent state (ACS)

|ACS〉 = 1√
N!

[
1√
2

(â†L + â†R)

]N

|0,0〉, (3)

where |0,0〉 = |0〉L ⊗ |0〉R , that is, the tensor product between
the vacuum of the operator âL, |0〉L and the vacuum of âR ,
|0〉R [24,25].

(2) In the case of repulsive interaction (U > 0) the ground
state of the BH Hamiltonian can be found in two very different
regimes: the superfluidlike regime and the Mott-like regime
[4–7]. The transition from one regime to the other depends
on the parameter ζ = U/J > 0. If ζ � N , the system is
in a quasiclassical superfluid regime characterized by the
suppression of phase fluctuations: the ground state is close
to |ACS〉. If ζ � N , the BH Hamiltonian (1) yields the Mott-
insulator-like regime where number fluctuations are frozen:
the ground state is incoherent [3–7] and close to the separable
Fock state,

|FOCK〉 =
∣∣∣∣N

2
,
N

2

〉
. (4)

(3) In the case of attractive interaction (U < 0) the ground
state of the BH Hamiltonian can be close to the atomic
coherent state |ACS〉 or in an entangled superposition of
macroscopic states, i.e., macroscopic Schrödinger-cat states
[8–12]. By changing the parameter ζ = U/J < 0, the ground
state of the system evolves toward the following macroscopic
superposition state:

|CAT〉 = 1√
2

(|N,0〉 + |0,N〉), (5)

which is the linear combination of the states with all particles
in the left or in the right well. This entangled macroscopic
superposition state is also known as the NOON state or
“macroscopic cat state.” The lower ζ is, the more likely the
system is expected to be in the macroscopic Schrödinger-cat
state [7–12].

A very interesting issue to address is the study of the
coherence and entanglement in a bosonic Josephson junction
by varying the ratio U/J from negative to positive values and
keeping fixed the number N of atoms. To accomplish this task
we solve numerically the following eigenproblem,

Ĥ |Ej 〉 = Ej |Ej 〉, (6)

for a fixed number N of bosons. In this case the Hamiltonian
Ĥ can be represented by a (N + 1) × (N + 1) matrix in the
Fock basis |i,N − i〉 = |i〉L ⊗ |N − i〉R with i = 0,...,N . For
each eigenvalue Ej , with j = 0,1,...,N , the corresponding
eigenstate |Ej 〉 will be of the form

|Ej 〉 =
N∑

i=0

c
(j )
i |i,N − i〉. (7)
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FIG. 1. (Color online) Coefficients |c(0)
i |2 of the repulsive (U > 0)

ground state |E0〉 [see Eq. (7)] of the bosonic junction as a function
of i/N . |ci,0|2 are plotted for four values of the adimensional
parameter ζ = U/J � 0. Note that

∑N

i=0 |c(0)
i |2 = 1 and the total

number of coefficients is N + 1. The coefficients |c(0)
i |2 and i/N are

adimensional quantities.

In Fig. 1 we plot the coefficients |c(0)
i |2 of the repulsive

(U > 0) ground state |E0〉 for different values of the parameter
ζ = U/J . In correspondence to each value of ζ , we have
studied the ground state for N = 30 (solid line) and N =
300 (dashed line). Let us focus on the solid line. The figure
shows that the width of the peak of |c(0)

i |2 becomes narrower
by increasing ζ . Hardening of the localization corresponds to
a reduction of the coherence. This is related to the fact that
the ground state |E0〉 is becoming the “separable Fock state”
|FOCK〉. The same kind of behavior is observed if the number
of particles N is increased. From the plots reported in Fig. 1,
we can see that given ζ , the greater N is the stronger the
localization.

In Fig. 2 we plot the coefficients |c(0)
i |2 of the attractive (U <

0) ground state |E0〉 for different values of the parameter ζ =
U/J . In correspondence to each value of ζ , we have analyzed
the ground state for N = 20 (solid line) and N = 30 (dashed
line). Once the number of bosons N is fixed, we see that by
increasing ζ a crossover occurs. There exists a value of ζ , say
ζcr (ζcr � −0.116 for N = 20 and ζcr � −0.076 for N = 30),
for which a valley appears in the middle of |c(0)

i |2. This is a
signature of the fact that the system is losing coherence and the
junction is approaching the self-trapping regime. The above-
mentioned crossover takes place from a ground state which
has the maximal probability at i = N/2 (single peak centered
around i = 0) for ζ = 0, to a ground state which has the same
maximal probability at i = n and i = N − n (two separated
peaks symmetric with respect to i = 0) with n approaching 0
as ζ decreases. Thus, for a sufficiently small ζ (i.e., ζ < 0 and
|ζ | large) the ground-state |E0〉 has the maximal probability
to be in the state in which the bosonic population in each
well fluctuates around N/2. For a sufficiently large ζ , instead,
the ground state |E0〉 has the maximal probability to be in a
“macroscopic cat state”: a linear superposition of states with
macroscopically different occupations. From the plots shown
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FIG. 2. (Color online) Coefficients |c(0)
i |2 of the attractive (U < 0)

ground state |E0〉 [see Eq. (7)] of the bosonic junction as a function of
i/N . |ci,0|2 are plotted for four values of the adimensional parameter
ζ = U/J � 0. The coefficients |c(0)

i |2 and i/N are adimensional
quantities.

in Fig. 2, we can see that the larger N is, the larger the attraction
for which the crossover to the “macroscopic cat state” occurs.

Finally, we can summarize that Figs. 1 and 2 show the
crossover from the macroscopic cat state |CAT〉 for ζ � 0
to the separable Fock state |FOCK〉 for ζ � 0, crossing the
atomic coherent state |ACS〉 at ζ = 0.

It is quite important to note that the ground state |E0〉 has
definite parity, namely, the distribution of the coefficients c

(0)
i

is even with respect to i/N = 1/2. As consequence, we have
that 〈n̂L〉 = N/2 = 〈n̂R〉.

To conclude this section, we want to stress the role played by
the gap, �E, between the ground state and the first excited state
of the Hamiltonian (1). In fact, when this gap approaches zero,
the even and the odd states become quasidegenerate, allowing
parity symmetry breaking. Let us focus on the attractive
interactions, U < 0. In the classical limit, U → −∞, the
ground state is doubly degenerate comprising the two Fock
states |N,0〉 and |0,N〉. The degeneracy is lifted by quantum
fluctuations, and a gap between the even and the odd linear
combination of the two Fock states sets in. By standard
semiclassical analysis (see Ref. [26]), we can estimate the
gap �E between the two quasidegenerate ground states in the
|U |N → ∞ limit:

�E = |U | √N (N + 2)∫ 1
0 dx e−Nx2[2ξ+1+2 ln x]

e−Nξ , (8)

where ξ is a positive quantity given by

ξ = ln

( |U|N
J

)
− 1. (9)

This asymptotic expression holds for sufficiently large values
of the product UN , as shown in Fig. 3, where �E is plotted
as a function of N for U/J = −0.15. We can see that the
diagonalization of the Hamiltonian (1) predicts a gap closing
in N according to a law (dashed line) which is well represented
by the one given by Eq. (8) (solid line of Fig. 3).
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FIG. 3. (Color online) On the vertical axis the energetic gap �E

at U/J = −0.15. On the horizontal axis the number of bosons N .
The solid line is obtained with Eq. (8). The circles on the dashed line
are the points obtained from the diagonalization of the Hamiltonian
(1). Note that the vertical axis is in logarithmic scale. �E is in units
of J.

IV. COHERENCE AND ENTANGLEMENT AT ZERO
TEMPERATURE

In this section we quantitatively characterize the coherence
and the entanglement properties of the ground state by devoting
particular attention to the emergence of the macroscopic cat
state. Let us start with this last issue. To this end, we recall
the definition of the quantum version of the Fisher information
FQFI [22,27,28]

FQFI = (�n̂L,R)2, (10)

where

(�n̂L,R)2 = 〈(n̂L − n̂R)2〉 − (〈n̂L − n̂R〉)2. (11)

It is worth observing that the above definition of the Fisher
information, which we use hereafter, holds only for pure states
(i.e., only for not mixed states). The expectation values at the
right-hand side of Eqs. (10) and (11) are taken with respect to
the ground state |E0〉 which, having definite parity, satisfies the
condition 〈n̂L〉 = 〈n̂R〉. In terms of the coefficients c

(0)
i , FQFI

is given by

FQFI =
N∑

i=0

[2i − N ]2|c(0)
i |2. (12)

It is convenient to normalize FQFI at its maximum value N2

by defining the Fisher information F as

F = FQFI

N2
. (13)

F gives the width of the distribution |c(0)
i |2 centered at

i/N = 1/2. As expected, F = 1 holds for the macroscopic cat
state |CAT〉, and F = 0 for the separable Fock state |FOCK〉.

We have studied F as a function of the parameter ζ = U/J .
The results are shown in Fig. 4 for N = 20 (solid line)
and N = 30 (dashed line). The Fisher information F is a
monotonic decreasing function of ζ for both attractive and
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FIG. 4. (Color online) Fisher information F of the ground state
|E0〉 of the bosonic junction as a function of the parameter ζ = U/J .
Left panel: attractive bosons (U < 0). Right panel: repulsive bosons
(U > 0). Solid line: N = 20. Dashed line: N = 30. Note that the
horizontal axis of the right panel is in logarithmic scale. The Fisher
information F and ζ are adimensional quantities.

repulsive interactions. On the attractive side (left panel of
Fig. 4), there exists a value of ζ , say ζF (ζF � −0.135 for
N = 20 and � −0.08 for N = 30), for which the second
derivative of F is zero.

It is quite interesting, now, to observe that by using the
HFT theorem (see, for example, Ref. [21]) a relation can be
established between the Fisher information F and the partial
derivative of the ground-state energy E0 with respect to U ,
∂E0

∂U
. According to the HFT, we have that

∂E0

∂U
= 〈E0|∂Ĥ

∂U
|E0〉. (14)

The aforementioned relation is given by the following formula:

F = 4

N2

∂E0

∂U
+ 2

N
− 1. (15)

In the limit U/J → −∞, the hopping operator in Hamiltonian
(1) can be treated within perturbation theory. To the zero order,
J = 0, the energy E

(0)
0 of the ground state of the on-site

interaction operator is
UN

2
(N − 1). This level is twofold

degenerate, and the two states corresponding to this energy

satisfying 〈n̂L〉 = N/2 = 〈n̂R〉, i.e.,
1√
2

(|N,0〉 + |0,N〉) and

1√
2

(|N,0〉 − |0,N〉), have opposite parity.

At the first nonvanishing order the ground-state energy is
given by [29]

E0 � E
(0)
0 + J 2

U

N

N − 1
. (16)

By substituting this energy into the expression (15), we obtain

F = 1 − 4

N (N − 1) ζ 2
, (17)

which approaches 1 as ζ → −∞.
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Also in the limit U/J → +∞, we can treat the hopping
operator of the Hamiltonian (1) as a perturbation to the J =
0 BH Hamiltonian (1). To the lowest order, the ground-state
energy E

(0)
0 of the on-site interaction operator is equal to

UN

2

(
N

2
− 1

)
, which corresponds to the separable Fock state

(4). At the first nonvanishing order we get

E0 � E
(0)
0 − J 2 N

U

(
N

2
+ 1

)
. (18)

By substituting this energy into the expression (15), we obtain

F = 2 (N + 2)

N ζ 2
, (19)

which goes to zero as ζ → +∞.
In the opposite limit, U → 0, the on-site interaction term

can be considered as a perturbation in the Hamiltonian (1). For
U = 0, the ground-state energy E

(0)
0 of the hopping operator

is equal to −NJ , which corresponds to the atomic coherent
state (3). To the first order in perturbation theory, we obtain

E0 � E
(0)
0 + U N (N − 1)

4
. (20)

By substituting this energy into the expression (15), we obtain

F = 1

N
, (21)

which tends to 0 when N tends to infinity. In Fig. 5 we show
the comparison between the Fisher information F obtained
by diagonalizing the Hamiltonian (1) (dashed line) and that
obtained by using Eq. (17), attractive bosons, and Eq. (19),
repulsive bosons (see the dot-dashed line).

In cold atom physics it is customary to investigate the
coherence properties of condensates in terms of their momen-
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FIG. 5. (Color online) Fisher information F of the ground
state |E0〉 of the bosonic junction as a function of the parameter
ζ = U/J for N = 30. Left panel: attractive bosons (U < 0). Right
panel: repulsive bosons (U > 0). Dashed line: F obtained from the
diagonalization of the Hamiltonian (1). Dot-dashed line: F obtained
from Eq. (17) (U < 0) and Eq. (19) (U > 0). The Fisher information
F and ζ are adimensional quantities.

tum distribution n(p), defined as the Fourier transform of the
one-body density matrix ρ1(x,x ′) [4,5,7]:

n(p) =
∫

dxdx ′ exp[−ip(x − x ′)] ρ1(x,x ′), (22)

where

ρ1(x,x ′) = 〈�̂(x)†�̂(x ′)〉. (23)

Here the operators �̂(x) and �̂(x)†, obeying the standard
bosonic commutation rules, annihilate and create, respectively,
a boson at the point x; the average 〈· · ·〉 is the ground-state
average. Following Refs. [4,5,7], it is possible to show that the
momentum distribution n(p) can be written as

n(p) = n0(p)[1 + α cos(pd)]. (24)

Here n0(p) is the momentum distribution in the fully incoher-
ent regime [which depends on the shape of the double-well
potential VDW (x)], and d is the distance between the two
minima of VDW (x). α is a real quantity which measures the
visibility of the interference fringes. This visibility is given by

α = 2 |〈â†
LâR〉|
N

(25)

and characterizes the degree of coherence between the two
wells.

The expectation value of the operator â
†
LâR is evaluated in

the ground state |E0〉 and the visibility α is given by

α = 2

N

N∑
i=0

c
(0)
i c

(0)
i+1

√
(i + 1)(N − i). (26)

We have analyzed α as a function of the parameter ζ = U/J

for N = 20 (solid line) and N = 30 (dashed line). The results
of this analysis are reported in Fig. 6. As expected, we see that
the coherent state, ζ = 0, has maximum visibility, α = 1. On
the attractive side (left panel of Fig. 6) there is a value of ζ ,
say ζα , for which the second derivative of α is zero. We have
verified that ζα = ζF ; for a given N such a quantity is close
to the aforementioned ζcr . We observe that both for N = 20
and for N = 30, the coherence visibility α exhibits a plateau
where it is almost independent of the interaction strength and
is very close to one. Except for this region, in correspondence
to a fixed value of ζ , the greater the value of N the smaller
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FIG. 6. (Color online) Coherence visibility α of the ground state
|E0〉 of the bosonic junction as a function of the parameter ζ =
U/J . Left panel: attractive bosons (U < 0). Right panel: repulsive
bosons (U > 0). Solid line: N = 20. Dashed line: N = 30. Note that
the horizontal axis of the right panel is in logarithmic scale. The
coherence visibility α and ζ are adimensional quantities.
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is α. This behavior is reversed for repulsive interactions, as
shown in the right panel of Fig. 6, from which we can see that
by increasing ζ , α slowly decreases.

The Hellmann-Feynman theorem provides a relation be-
tween the coherence visibility α and the derivative of the
ground-state energy E0 with respect to J :

∂E0

∂J
= 〈E0|∂Ĥ

∂J
|E0〉, (27)

leading to

α = − 1

N

∂E0

∂J
. (28)

By use of the perturbative results previously obtained for the
ground-state energy E0 [see Eqs. (16), (18), and (20)], we
can evaluate the coherence visibility (28) in the three regimes
U/J → −∞, U/J → +∞, and U → 0. In the first case,
Eq. (16) gives

α = − 2

(N − 1)ζ
, (29)

which, in the limit ζ → −∞, tends to 0. For U/J → +∞,
Eq. (18) provides

α = N + 2

ζ
, (30)

which tends to zero when ζ → +∞. Finally, at weak coupling
(U → 0) the perturbative result (20) gives the limiting value

α = 1. (31)

In Fig. 7 we show the comparison between the coherence
visibility α obtained by diagonalizing the Hamiltonian (1)
(dashed line) and that obtained by using Eq. (29) for attractive
bosons or Eq. (30) for repulsive bosons (see the dot-dashed
line).

At this point we can conclude that the joint application of the
HFT and the perturbations theory to calculate the ground-state
energy allows very simple analytical formulas to be obtained
for the Fisher information F [Eqs. (17) and (19)] and for the
coherence visibility α [Eqs. (29) and (30)], at least over a
certain range of values of the interaction strength.
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FIG. 7. (Color online) Coherence visibility α of the ground
state |E0〉 of the bosonic junction as a function of the parameter
ζ = U/J for N = 30. Left panel: attractive bosons (U < 0). Right
panel: repulsive bosons (U > 0). Dashed line: α obtained from the
diagonalization of the Hamiltonian (1). Dot-dashed line: α from
Eq. (29) (U < 0) and Eq. (30) (U > 0). The coherence visibility
α and ζ are adimensional quantities.

We analyze, now, the quantum entanglement pertaining to
the ground-state |E0〉. When the system is in |E0〉, the density
matrix ρ̂ is

ρ̂ = |E0〉〈E0|. (32)

In this case, an excellent measure of the entanglement between
the two wells is provided by the entanglement entropy S [30].
This quantity is defined as the von Neumann entropy of the
reduced density matrix ρ̂L defined by

ρ̂L = TrRρ̂, (33)

which is a matrix obtained by partial tracing of the total density
matrix (32) over the degrees of freedom of the right well. The
entanglement entropy S is given by

S = −Tr ρ̂L log2 ρ̂L = −
N∑

i=0

∣∣c(0)
i

∣∣2
log2

∣∣c(0)
i

∣∣2
. (34)

For a given number of bosons N , the maximum value for
S, say S(max,N), is given by log2(N + 1). We have studied S

as a function of the parameter ζ = U/J for N = 20 (solid
line) and N = 30 (dashed line). The results of this analysis,
which is one of the most crucial studies of this paper, are
reported in Fig. 8. We can see that the maximum entanglement
is attained for a finite attractive interaction ζS . The larger
the value of N , the weaker the attraction for which S has
a maximum, which is equal to 4.26 when N = 20 and 4.72
when N = 30. These values are smaller than S(max,20) = 4.39
and S(max,30) = 4.95, respectively, and greater than 1, i.e., the
entanglement entropy of a macroscopic cat state (see Table I).
The macroscopic cat state is not the maximally entangled state
achievable in the bosonic Josephson junction. Moreover, we
find that the interactions corresponding to the entanglement
entropy maxima are ζS � −0.13 for N = 20 and ζS � −0.084
for N = 30. These values are close to the ζcr values (onset of
the coherence loss and the self-trapping regime within the
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FIG. 8. (Color online) Entanglement entropy S of the ground
state |E0〉 of the bosonic junction as a function of the parameter ζ =
U/J . Left panel: attractive bosons (U < 0). Right panel: repulsive
bosons (U > 0). Solid line: N = 20. Dashed line: N = 30. Note that
the horizontal axis of the right panel is in logarithmic scale. The
entanglement entropy S and ζ are adimensional quantities.
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TABLE I. The coefficients c
(0)
i , the zero-temperature Fisher information F , entanglement entropy S, and visibility α for the atomic coherent

state (3), the separable Fock state (4), and the macroscopic cat state (5) in the presence of a finite even number N of bosons.

State c
(0)
i F S α

|ACS〉
(

1

2N

N !

i!(N − i)!

) 1
2 1

N
log2

2N

N !
+ 1

2N−1

N∑
i=2

N !

i!(N − i)!
log2 i! 1

|FOCK〉 δi,N/2 0 0 0

|CAT〉 1√
2

[δi,0 + δi,N ] 1 1 0

junction dynamics) discussed for the attractive ground-state
coefficients (see the discussion regarding Fig. 2).

From the right panel of Fig. 8 we see that for repulsive
interactions, S decreases by increasing ζ .

We conclude this section by summarizing, for a finite even
number N of bosons and at zero temperature, the expansion
coefficients c

(0)
i , the Fisher information F , the entanglement

entropy S, and the visibility α for the atomic coherent
state (3), the separable Fock state (4), and the macroscopic
cat state (5) (see Table I).

A. Results with two bosons

When N = 2, it is straightforward to calculate Ej and |Ej 〉.
The ground state |E0〉 reads

|E0〉 = A

(
|2,0〉 + ζ +

√
ζ 2 + 16

2
√

2
|1,1〉 + |0,2〉

)
, (35)

where the A is the constant of the normalization, which is

A = 2√
16 + ζ 2 + ζ

√
ζ 2 + 16

. (36)

The energy E0 is

E0 = U − √
U 2 + 16 J 2

2
. (37)

The Fisher information (13) calculated with respect to the
state (35) is given by the following expression:

F = 8

16 + ζ 2 + ζ
√

ζ 2 + 16
. (38)

The coherence visibility (26) for the state (35) is, instead,
given by

α = 4(ζ +
√

ζ 2 + 16)

16 + ζ 2 + ζ
√

ζ 2 + 16
. (39)

It is possible, also, to evaluate the entanglement entropy (34)
when the system is in the state of (37). We have that S can be
written as follows:

S = −A2

(
2 log2

[
2(ζ +

√
ζ 2 + 16)2

(16 + ζ 2 + ζ
√

ζ 2 + 16)2

]

+
(

ζ 2 + ζ
√

ζ 2 + 16

4

)
log2

[
(ζ +

√
ζ 2 + 16)2

32 + 2ζ 2 + 2ζ
√

ζ 2 + 16

])
.

(40)

Concluding, we observe that when ζ → −∞ the state (35)
tends to

|ψ0〉 = 1√
2

(|2,0〉 + |0,2〉). (41)

This is the macroscopic superposition state (5) with two
bosons. In the limit ζ → −∞, the energy (35) tends to

U + 4J 2

U
. The Fisher information (38) tends to 1, the co-

herence visibility (39) to 0, and the entanglement entropy (40)
to 1.

When the limit ζ → 0 is met, the state (35) tends to

|ψ0〉 = 1
2 (|2,0〉 + √

2|1,1〉 + |0,2〉), (42)

which is the atomic coherent state (3) with two bosons. In this
case, the energy (37) tends to −2J . In the above-mentioned
limit, the Fisher information (38) tends to 1/2, the coherence
visibility (39) to 1, and the entanglement entropy (40) to 3/2,
in agreement with the first row of Table I.

Finally, let us analyze the limit ζ → +∞. We have that the
ground state (35) tends to

|ψ0〉 = |1,1〉, (43)

which is the separable Fock state (4) with two bosons. In
the previous limit, the Fisher information (38), the coherence
visibility (39), and the entanglement entropy (40) tend to 0.

B. Quasiclassical coherent state with number fluctuations

In this section, for the sake of completeness, we compare
the N -boson ground state with the quasiclassical coherent state
as follows.

The familiar Josephson equations [3,17] of the bosonic
Josephson junction can be obtained from the BH Hamiltonian
(1) by using the quasiclassical coherent state |QC〉. This state is
given by the tensor product of the coherent state |CS〉L, which
describes the Bose-Einstein condensate in the left well and
the coherent state |CS〉R, which describes the Bose-Einstein
condensate in the right well. The state |CS〉 is thus given by

|QC〉 = |CS〉L ⊗ |CS〉R, (44)

where |CS〉k (k = L,R) is such that [31]

|CS〉k = e−|zk|2/2
∞∑

n=0

zn
k√
n!

|n〉. (45)
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The complex quantity zk is the eigenvalue of the annihilator in
the kth well, i.e.,

âk|CS〉k = zk |CS〉k. (46)

The absolute values of the two zk are related to the average
occupancy of the two wells:

Nk ≡ 〈QC|n̂k|QC〉 = |zk|2. (47)

so zk are conveniently parameterized as zk = √
Nk exp(iθk),

where θk are phase variables. The quasiclassical coherent
state |QC〉 does not have a fixed number of particles and
consequently allows for nonvanishing quantum fluctuations of
the total number of bosons. The average boson number in the
state |QC〉 is simply given by N = NL + NR = |zL|2 + |zR|2.

The expectation value E of the BH Hamiltonian (1)
evaluated with respect to the state (44) is

E = 〈QC|Ĥ |QC〉 = −N J
√

1 − z2 cos φ + N2 U

4
(1 + z2),

(48)
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FIG. 9. (Color online) On the vertical axis, the energy of the
ground state |E0〉, E0 (solid line), the energy (48) calculated for z = 0,
Ez=0 (dashed line), and the energy (48) calculated for z = zsb, Ez=zsb

(dot-dashed line). On the horizontal axis the parameter ζ = U/J .
Left part of the upper panel: attractive bosons (U < 0). Right part of
the upper panel: repulsive bosons (U > 0). Lower panels: three insets
for attractive bosons. We have set N = 30. E is in units of J, and ζ is
an adimensional quantity.

where z = (NL − NR)/N and φ = θR − θL. In formula (48)
we recognize the total energy of a nonrigid pendulum,
which represents the mechanic analog of a bosonic Josephson
junction [3,17]. In fact, the state |QC〉 is expected to be close
to the ground state |E0〉 in the weak-coupling regime [17]. It
is straightforward to show that the minima of the energy (48)
are obtained with φ = 0 and

z = zsb = ±
√

1 − 4

ζ 2 N2
if ζ < − 2

N
(49)

z = 0 if ζ > − 2

N
.

Note that ζ = −2/N signals the onset of the self-trapping
regime within an attractive 1D bosonic Josephson junction
[16]. The energy (48) calculated for z = 0, say Ez=0, and for
z = zsb, say Ez=zsb

, becomes

Ez=0 = N

(
N U

4
− 1

)
(50)

Ez=zsb
= J 2

U
+ N2 U

2
. (51)

It is interesting to compare the energy E of the quasiclassical
state |QC〉 with the energy E0 of the state |E0〉, that is, the
ground state of the BH Hamiltonian with a fixed number N

of bosons (see also Ref. [32]). From the upper right panel
of Fig. 9, obtained with N = 30, we see that for repulsive
bosons, E0 (solid line) is smaller than Ez=0 (dashed line).
For attractive bosons, the situation is much more complex.
Let us focus on the lower panels of Fig. 9. We can see that
there are three different regions. In the first one [left panel:
ζ < −2/N − � (� > 0)] we have that Ez=zsb

< E0 < Ez=0;
in the second region (middle panel: −2/N − � < ζ < −2/N )
we have that Ez=zsb

< Ez=0 < E0; in the third region (right
panel: ζ > −2/N) we have that Ez=0 < E0. Note that the
greater is N the smaller is �.
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FIG. 10. (Color online) Coherence visibility α of the bosonic
junction as a function of the dimensionless parameter ζ = U/J . Left
panel: attractive bosons (U < 0). Right panel: repulsive bosons (U >

0). Solid line: results from Eq. (26). Dashed line: results from Eq. (52).
Note that the horizontal axis of the right panel is in logarithmic scale.
The coherence visibility α and ζ are adimensional quantities.
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The coherence visibility (25) calculated with respect to the
state |QC〉 reads

α =
√

1 − z2, (52)

with z given by Eqs. (49). In Fig. 10 we report the comparisons
between the coherence visibility calculated by using the
ground state |E0〉 of the BH Hamiltonian (1) and that calculated
by using Eq. (52). Figure 10 clearly shows that the coherence
visibility α of the quasiclassical coherent state |QC〉 is strictly
equal to one only for a non-negative interaction strength.
Moreover, from the left panels (attractive bosons) of Fig. 10,
we can see that the greater the number of particles in the
system, the better the agreement between the predictions
derived from the two approaches.

The Fisher information F , Eqs. (12) and (13), calculated
with respect to the state |QC〉, is simply given by

F = 1

N
. (53)

This is the same result that one obtains when the system is
in the atomic coherent state (3), i.e., the exact eigenstate for
U = 0.

V. CONCLUSIONS

We have investigated an atomic Josephson junction in the
presence of a finite number of interacting ultracold bosons
confined in a quasi-one-dimensional geometry. By using the

two-site Bose-Hubbard Hamiltonian toolbox, we have carried
out zero-temperature analysis by finding the ground state of
the system. We have characterized the presence of macro-
scopic Schrödinger-cat states, the coherence properties, and
quantum correlations by calculating the Fisher information,
the visibility of the interference fringes in the momentum
distribution, and the entanglement entropy as functions of the
boson-boson interaction strength. The joint application of the
Hellmann-Feynman theorem and of the perturbative approach
to evaluate the ground-state energy allows analytical formulas
to be obtained, within the interactions range in which the per-
turbative theory is applicable, both for the Fisher information
and for the coherence visibility. The Fisher information and the
coherence visibility predicted by these formulas are in good
agreement with those evaluated by diagonalizing the two-site
Bose-Hubbard Hamiltonian. In the attractive regime we have
found that the presence of macroscopic Schrödinger-cat states
corresponds to a maximum of the Fisher information, while
the entanglement entropy has a maximum when the system
begins to lose coherence and to exhibit self-trapped dynamics.
The maximal entanglement entropy is larger than that of a
macroscopic cat state and, in fact, is very close to its theoretical
upper limit.
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