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Variational calculations for anisotropic solitons in dipolar Bose-Einstein condensates
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We present variational calculations using a Gaussian trial function to calculate the ground state of the Gross-
Pitaevskii equation (GPE) and to describe the dynamics of the quasi-two-dimensional solitons in dipolar Bose-
Einstein condensates (BECs). Furthermore, we extend the ansatz to a linear superposition of Gaussians, improving
the results for the ground state to exact agreement with numerical grid calculations using imaginary time and the
split-operator method. We are able to give boundaries for the scattering length at which stable solitons may be
observed in an experiment. By dynamic calculations with coupled Gaussians, we are able to describe the rather
complex behavior of the thermally excited solitons. The discovery of dynamically stabilized solitons indicates
the existence of such BECs at experimentally accessible temperatures.
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I. INTRODUCTION

Since the prediction and experimental realization of Bose-
Einstein condensates (BECs), the field of cold atomic gases
has been the subject of multiple theoretical and experimental
investigations. BECs with long-range interaction that can
be experimentally realized by the condensation of atoms
with a magnetic dipole moment such as 52Cr are of special
interest [1–3]. To stabilize such condensates, optical traps
are generally applied in all three spatial directions. However,
it has been shown by Tikhonenkov et al. [4] that stable
quasi-two-dimensional solitons are possible where a trap is
applied in only one direction perpendicular to the axis of the
aligned atomic dipoles.

Solitons are a nonlinear effect that arises when the disper-
sion and the nonlinearity cancel each other out. BEC solitons
suffer from two kinds of instabilities: First, strong attractive
particle interactions can cause the collapse of the condensate.
Second, when the interactions are only weakly attractive or
even repulsive, the BEC can dissolve in the directions where
the external trap is open.

A prerequisite for the experimental realization of solitons is
a detailed theoretical investigation of the range of parameters
where the condensate is stable. The relevant parameters are the
trap frequency, the scattering length of the contact interaction,
and the excitation energy that allows for an estimation of
the temperature range where the solitons can exist. Detailed
analysis of the stationary states and the dynamics of solitons
based on extended variational calculations is the objective of
this paper.

In the mean-field approximation, the BEC with number
of particles N is described by the extended Gross-Pitaevskii
equation (GPE). Introducing “natural” units for mass md =
2m, action h̄, length ad = (mµ0µ

2)/(2πh̄2), energy Ed =
h̄2/(2ma2

d ), and frequency γd = h̄/(ma2
d ); abbreviating asc/ad

as a; and making use of the scaling properties of the GPE
(r̃,γ̃ ,t̃ ,ψ̃,Ẽ) = (N−1r,N2γ,N−2t,N3/2ψ,NE) leads to the
scaled, extended time-dependent GPE in “natural” units:

i
d

dt
ψ (r) =

[
− � + γ 2

y y2 + 8πa |ψ (r)|2

+
∫

d3r ′ 1 − 3 cos2 θ

|r − r ′|3
∣∣ψ(r ′)

∣∣2 ]ψ(r), (1)

where the tilde is omitted. All results in this work are given in
these dimensionless units. The dipole moments of the atoms
are aligned in the z direction by an external magnetic field, and
θ is the angle between r − r ′ and the magnetic-field axis. In
the trap geometry assumed here, only a trap in the y direction
perpendicular to the magnetic field is present; i.e., γx =
γz = 0.

In Ref. [4] the GPE [Eq. (1)] was solved approximately
by use of a variational approach with a Gaussian-type orbital
and numerically exactly by simulations on a grid. The grid
calculations are numerically quite expensive. For a detailed
analysis of the parameter space of quasi-two-dimensional
solitons, we therefore introduce and employ an extended
variational method based on coupled Gaussian functions,
which has already turned out, for dipolar BECs with an
axisymmetric three-dimensional trap, to be a full-fledged
alternative to grid simulations [5–7]. In this paper the stable
ground state of the condensate is computed by imaginary-time
evolution (ITE) of an initial wave function, and it is shown
that typically, three to six coupled Gaussians are sufficient to
obtain fully converged results. For a given trap frequency γy ,
stable solitons exist in a finite range of the scattering length a;
outside that range the condensate collapses or dissolves.

The dynamics of energetically excited solitons is studied by
solving the equations of motion for the variational parameters
in real time. The mean-field energy of the ground state is
typically only slightly below the energy threshold where the
soliton can dissolve. However, investigation of the dynamics
reveals the existence of dynamically stabilized solitons at
energies far above that threshold, indicating the possible
experimental realization of solitons at temperature T ≈ 5µK
or even higher in the limit of the GPE. The transition
temperature of a chromium BEC is experimentally given by
Tc ≈ 700 nK [1]. Therefore the soliton can be dynamically
stabilized in all such BECs.

The paper is organized as follows. In Sec. II we will
investigate the solitons with the ansatz of a single Gaussian
wave packet. The appealing simplicity of this model is that
both the stationary states and the dynamics of the solitons
can be obtained from the Hamiltonian of a pseudoparticle
moving in a three-dimensional potential. In Sec. III the
variational ansatz will be extended to a linear superposition
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of Gaussian wave packets (GWPs), and the time-dependent
variation principle (TDVP) will be applied to GWPs. The
imaginary time evolution method will be used in Sec. IV to
evaluate the ground state, and the results will be compared
to calculations with one Gaussian, as well as to numerical
grid calculations with the split-operator method. The analysis
of real-time dynamics allows us to estimate the stability of
excited solitons at finite temperatures. Concluding remarks
are given in Sec. V.

II. VARIATIONAL APPROACH WITH A
SINGLE GAUSSIAN

Although the variational ansatz with a single Gaussian
function cannot provide quantitatively correct results, the
simple model already allows us to gain deep insight into the
physics of the quasi-two-dimensional solitons.

The ansatz with a single Gaussian as a trial function in the
TDVP reads

ψ(r) = ei(Axx
2+Ayy

2+Azz
2+γ ), (2)

with the complex variational parameters

Aσ = Ar
σ + iAi

σ , σ = x,y,z (3a)
γ = γ r + iγ i . (3b)

The parameters Ai
σ determine the real half-widths Lσ =

1/
√

2Ai
σ of the Gaussian function, γ i describes the amplitude

Â = exp(−γ i) used for normalization of the wave function,
and γ r is a global phase. The variational ansatz [Eq. (2)],
of course, strongly simplifies the problem. Nevertheless, the
investigation of this model yields physical insight, and the
results for the ground state are, as will be shown, qualitatively
correct.

The mean-field energy and the chemical potential are

Emf = 〈−�〉 + 〈Vt 〉 + 1

2
(〈Vc〉 + 〈Vd〉) (4)

and ε = 〈−�〉 + 〈Vt 〉 + 〈Vc〉 + 〈Vd〉 , (5)

respectively. The expectation values with the wave function ψ

given in Eq. (2) are

〈−�〉 = Ai
x + Ai

y + Ai
z +

(
Ar

x

)2
Ai

x

+
(
Ar

y

)2
Ai

y

+
(
Ar

z

)2
Ai

z

(6)

for the kinetic term,

〈Vt 〉 = 1

4

(
γ 2

x

Ai
x

+ γ 2
y

Ai
y

+ γ 2
z

Ai
z

)
(7)

for the trapping potential,

〈Vc〉 = 8a

√
Ai

xA
i
yA

i
z

π
(8)

for the scattering potential, and

〈Vd〉 =
√

Ai
xA

i
yA

i
z

π3

(
4π

3

[
κxκyRD

(
κ2

x ,κ2
y ,1
)− 1

])
(9)

for the dipolar potential, with κx = √Ai
z/A

i
x and κy =√

Ai
z/A

i
y . The term

RD(x,y,z) = 3

2

∫ ∞

0

dt√
(x + t)(y + t)(z + t)3

(10)

denotes an elliptic integral of the second kind in “Carlson’s
form,” which can be evaluated with a fast and stable approxi-
mation algorithm [8,9] more efficiently than with the integral
representation given in Ref. [4].

A. Hamiltonian form of the equations of motion

The ground state of the GPE can, in principle, be obtained
by minimizing the mean-field energy in Eq. (4). Alternatively,
the TDVP can be applied to derive equations of motion for the
variational parameters in Eq. (3). The equations of motion can
be used to investigate the dynamics of the soliton, and we can
find the stationary states of the system by searching for the
fixed points of these equations. The stable fixed point with the
lowest mean-field energy denotes the ground state.

For the ansatz of a single Gaussian the system can be
transformed to the descriptive form of a Hamiltonian system
by the coordinate transformation

Ar
σ = pσ

4qσ

, Ai
σ = 1

8q2
σ

, σ = x,y,z. (11)

The Hamiltonian in the (q, p) coordinates

H = p2
x + p2

y + p2
z

2
+ 1

8q2
x

+ 1

8q2
y

+ 1

8q2
z

+ 2γ 2
y q2

y

+
√

2
π
a

8qxqyqz

+ 1

24
√

2πqz

[
1

q2
z

RD

(
q2

x

q2
z

,
q2

y

q2
z

,1

)
− 1

qxqy

]

(12)

has the conventional form H = T + Vh. It can be shown that
Hamilton’s equations

q̇ = ∂H

∂ p
= p, ṗ = −∂H

∂q
= −∂Vh

∂q
(13)

lead to the same equations of motion as the TDVP applied to
the variational parameters in Eq. (3).

The potential Vh is visualized in Fig. 1. The isopotential
surfaces close to the stable fixed point have an ellipsoidal form.
At the trap energy Emf = γy , the potential becomes open. The
unstable fixed point at values of qy smaller than the local
minimum is given by the saddle point where the surrounding
isosurfaces have hyperbolic form. In Fig. 1(c) the potential
at a smaller scattering length close to the bifurcation point is
shown. The local minimum and the saddle point approach one
another and coincide at the critical scattering length acrit.

B. Stationary states and linear stability

The fixed points of the system can now be easily calculated
by a nonlinear root search for q̇ = 0 and ṗ = 0 in Hamilton’s
equations [Eq. (13)]. In Fig. 2, the mean-field energy and
the chemical potential of the stable ground state and of an
excited unstable state are shown as functions of the scattering
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FIG. 1. (Color online) Three-dimensional potential Vh(q) for
γy = 2000 visualized by isosurfaces. (a) Scattering length a = 0.1.
The ellipsoidal form of the isosurfaces marks the stable minimum,
and the hyperbolic form of the isosurfaces close to zero marks the
saddle point. In (b) the potential is rotated to show that the saddle
point lies at smaller qy values than the minimum. (c) Same as (a) but
at scattering length a = 0.08, lowered toward the bifurcation point.
The minimum and the saddle point approach each other.

length. The two branches emerge in a tangent bifurcation
at the critical scattering length acrit. In Fig. 2(c) the width
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FIG. 2. (Color online) Mean-field energy (a), chemical
potential (b), and width parameters of the trial function for the stable
ground state on a logarithmic scale (c) as functions of the scattering
length for different values of trap frequencies.

parameters corresponding to the ground state show that, with
increasing scattering length, the soliton gets very broad and
finally dissolves.

To analyze the stability of the solution of the GPE, the
eigenvalues 
 of the six-dimensional Jacobi matrix

J = ∂
(
Ȧr

σ ,Ȧi
σ

)
∂
(
Ar

σ ,Ai
σ

)
∣∣∣∣∣
Ȧσ =0

, σ = x,y,z, (14)

or equivalently in the canonical coordinates, the eigenvalues
−
2 of the three-dimensional real symmetric Hesse matrix
∂2Vh/∂q2|∇Vh=0 of the potential Vh(q) are calculated. The
results are shown in Fig. 3. The eigenvalues appear in pairs
of different sign and are all purely imaginary for the stable
state. The linear stability for different trap frequencies shows
qualitatively similar behavior.

C. Dynamics with a frozen Gaussian

Hamilton’s equations [Eq. (13)] describe the dynamics
of the soliton with the potential Vh(q). The systematic
investigation and visualization of the dynamics of a Hamil-
tonian system with three degrees of freedom is a nontrivial
task. However, the force in the y direction is dominated
by the strong harmonic-trap potential. If, therefore, γy is
sufficiently large, at least for the ground state of the condensate,
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FIG. 3. (Color online) Real and imaginary parts of the eigenvalues
of the Jacobi matrix J as a function of the scattering length for
the trap frequency γy = 2000. The stable branch shows purely
imaginary eigenvalues; the unstable one has nonvanishing real parts.
The eigenvalues of the stable 
s and unstable branch 
u coincide at
the bifurcation point. The inset shows a magnification of the rectangle.

qy takes nearly the value of the harmonic-oscillator ground
state. As further simplification of the problem, we therefore
restrict the dynamics to the plane given by the condition

q̈y = ṗy ≈ 1

4q3
y

− 4γ 2
y qy

!= 0 ⇒ qy = 1

2
√

γy

, (15)

which corresponds to a frozen Gaussian ansatz in the qy

direction. For γy = 2000, the plane qy ≈ 0.011 is marked in
Fig. 1(b).

The dynamics of the wave function [Eq. (2)] with fixed
parameters Ar

y = 0, Ai
y = 1/8q2

y = γy/2 is described in the
canonical coordinates qx and qz by the two-dimensional
potential

V2D,h (qx,qz) = 1

8q2
x

+ 1

8q2
z

+ γy +
√

2γya

4
√

πqxqz

+ 1

24
√

2πqz

[
−2

√
γy

qx

+ 1

q2
z

RD

(
q2

x

q2
z

,
1

4q2
z γy

,1

)]
, (16)

which is illustrated in Fig. 4.
To describe the dynamics of this two-dimensional system, it

is convenient to analyze Poincaré surfaces of section (PSOSs).
For the PSOSs shown in Fig. 4, an adequate choice is to use
the rotated coordinates and momenta(

q1

q2

)
=
(

cos α sin α

− sin α cos α

)(
qx

qz

)
, (17a)

(
p1

p2

)
=
(

cos α sin α

− sin α cos α

)(
px

pz

)
, (17b)

with α = arctan (qz, min/qx, min) and the crossing condition
q2 = 0. For constant energy, different initial conditions are
integrated. The border of the allowed energy range is given by

p1 = ±
√

2
(
Emf − V2D,h

)
. (18)
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FIG. 4. (Color online) Periodic trajectories in the potential V2D,h

at different values of energy for γy = 2000 and scattering length a =
0.1. The red dashed line denotes the surface of section for the PSOSs.
There are two periodic trajectories that belong to symmetric and
antisymmetric oscillations of the soliton. The symmetric oscillations
are hardly visible, because they lie on top of one another and are
almost parallel to the surface of section.

In Fig. 5(a), a PSOS at an energy close to the ground state
is shown. The motion is completely regular, and an elliptic
fixed point of the Poincaré map is present, which belongs
to the antisymmetric periodic oscillation of the condensate.
The symmetric oscillation is not visible in the PSOS for the
surface of section that is almost parallel to it. By increasing
the energy toward Emf = γy , the turning points of the periodic
oscillations in Fig. 4 move to larger values of qx and qz

(for the symmetric oscillation, only one turning point; for the
antisymmetric, both). For Emf = γy they lie at infinity; i.e., the
soliton dissolves. In the Poincaré map the resonant tori decay
according to the Poincaré-Birkhoff theorem, building the same
number of elliptic and hyperbolic fixed points in the Poincaré
map. The closer to the bifurcation point the scattering length
is, the lower the energy is where this takes place. This can
be seen especially in Fig. 5. Further increasing of the energy
leads to regions of chaotic oscillations, while the elliptic fixed
point moves outward to larger values of q1.

In the picture with a frozen Gaussian, the solitons dissolve
at energy Emf = γy in agreement with Refs. [4,10]. If this
were always true, it would imply that in an experiment with
realistic parameters (e.g., a condensate with 10 000 particles
at γy = 2000 and a = 0.1), the solitons must be cooled down
to temperatures of about T = 0.15µK because the energy gap
between the ground state and the threshold Emf = γy is very
small (for a more detailed discussion, see Sec. IV A). However,
a dynamic stabilization of the solitons at energies Emf > γy

is possible, as will be discussed for an ansatz with a single
Gaussian in Sec. II D and for coupled Gaussians in Sec. IV B.

D. Three-dimensional dynamics

In the frozen Gaussian approximation, any excitation
energy of the soliton must be completely deposited in the
(qx,qz) motion, which causes the soliton to dissolve at the low
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FIG. 5. (Color online) PSOSs for the dynamics of the two-
dimensional potential V2D,h in Eq. (16) in the rotated coordinates
defined in Eq. (17), with trap frequency γy = 2000 and (a) a = 0.1,
Emf = 1999.5; (b) a = 0.08, Emf = 1995; (c) a = 0.08, Emf = 1999.
In (a), the motion is completely regular. In (b), lowering the scattering
length toward the bifurcation point causes chaotic dynamics to appear.
In (c), increasing the mean-field energy close to Emf = γy at constant
scattering length enlarges the chaotic regions in the Poincaré map.

threshold Emf = γy . In this section we demonstrate that for the
fully three-dimensional dynamics with the ansatz [Eq. (2)], a
large amount of excitation energy can be stored in the qy

motion dominated by the one-dimensional harmonic trap.
An example trajectory for trap frequency γy = 2000,

scattering length a = 0.1, and mean-field energy Emf = 3000,
far above the threshold at γy , is presented in Fig. 6. In Figs. 6(a)
and 6(b), the expectation values

qσ =
√

〈σ 2〉
2

= 1

8Ai
σ

, σ = x,y,z (19)

are drawn as functions of time. The slow oscillations in qx(t)
and qz(t) generate the Lissajous-type motion of the quasi-two-
dimensional soliton visualized in Fig. 6(c). The fast oscillation
in qy(t) results primarily from the external harmonic trap.
The calculations with a single Gaussian thus indicate that a
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FIG. 6. (Color online) Three-dimensional trajectory of a soliton
at trap frequency γy = 2000, scattering length a = 0.1, and mean-
field energy Emf = 3000, far above the threshold Emf = γy , where
dissolving is possible. (a,b) Time dependence of the expectation
values qσ (t), where σ = x,y,z. (c) Lissajous-type motion of the
projection in the (qx,qz) plane.

rather highly excited soliton may be dynamically stabilized
and does not dissolve in contrast to the calculations with a
frozen Gaussian [4,10]. However, it must be clarified (see
Sec. IV B) whether the dynamic stabilization is also possible
with coupled Gaussians.

III. ANSATZ WITH COUPLED GAUSSIANS

Though the ansatz made in Sec. II offers a descriptive
analysis of the soliton, comparison with calculations where the
GPE is solved numerically on a grid show that the results for
the ground state hold only qualitatively. As will be shown, the
results for the dynamics of the soliton are qualitatively different
as well. To gain quantitatively correct results, the ansatz for
the trial function has to be modified. As shown in Refs. [6,7],
the condensate wave function can be well described by a
superposition of Gaussians. We therefore apply the TDVP to
coupled Gaussian wave packets [11–14]. The ground state will
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be determined by the ITE, with norm conservation embedded
in the TDVP as a constraint.

In this section we elaborate the theory and derive the
formulas for the computations with coupled Gaussians. Results
for the stationary states and the dynamics of the solitons are
presented in Sec. IV.

A. TDVP for GWPs

In this paper the TDVP provides the basis for solution of the
time-dependent GPE. Its application to GWPs was originally
introduced by Heller [15,16] for the description of atomic and
molecular quantum dynamics and later applied to BECs [6,7].
For the convenience of the reader, we briefly recapitulate this
method here.

The quantity

I = ||iφ − Hχ (t)||2 != min (20)

is to be minimized with respect to φ. Then we set φ ≡ χ̇ .
The wave function shall be parameterized by the variational
parameters z(t). The variation of I in Eq. (20) carries over to
the variation of z and ż and results in

δI = 〈δχ̇ | χ̇〉 + 〈χ̇ | δχ̇〉 − 〈iδχ̇ | Hχ〉 − 〈Hχ | iδχ̇〉
=
〈
∂χ

∂ z
δ ż

∣∣∣∣χ̇ + iHχ

〉
+
〈
χ̇ + iHχ

∣∣∣∣∂χ

∂ z
δ ż
〉
, (21)

where the wave function χ is constant. Because the variational
parameters are complex quantities, both brackets in Eq. (21)
have to vanish separately. This yields〈

∂χ

∂ z

∣∣∣∣∂χ

∂ z
ż
〉

= −i

〈
∂χ

∂ z

∣∣∣∣Hχ

〉
, (22)

which can be written briefly as

K · ż = −ih, (23)

where K is a positive-definite Hermitian matrix. The linear
system [Eq. (23)] has to be solved for every time step to
integrate the equations of motion ż = f (z).

We now choose a linear superposition of N Gaussians as
the trial function

χ = � =
N∑

k=1

g
(
zk,x

) =
N∑

k=1

ei(xAk x+γ k) ≡
N∑

k=1

gk, (24)

where Ak = Ak,r + iAk,i are complex diagonal matrices of
dimension 3 × 3, and γ k = γ k,r + iγ k,i denotes the relative
phases and the amplitude of the Gaussians, respectively. The
Gaussians are fixed at the origin. The time evolution can
be considered as the motion in an effective time-dependent
harmonic potential:

Veff (x) = v0 + 1
2 xV2x. (25)

The dynamics of the GWPs are now determined by the
TDVP, which variationally fits the effective time-dependent
harmonic-potential coefficients v0,V2 to the underlying

potential. Splitting the Hamiltonian H = T + V and operating
on the trial wave function [Eq. (24)] yields

i�̇ − T � =
N∑

k=1

[−γ̇ k + 2iTrAk︸ ︷︷ ︸
vk

0

+ x (−Ȧk − 4(Ak)2)︸ ︷︷ ︸
1
2 V k

2

x
]
g(zk,x). (26)

The parameters vk
0 are scalars, and the matrices V k

2 are diagonal
matrices. The equations of motion then read

γ̇ k = 2iTrAk − vk
0, (27a)

Ȧk = −4(Ak)2 − 1
2V k

2 . (27b)

The coefficients vk
0 and V k

2 have to be calculated from the
TDVP: 〈

∂g(zk,x)

∂ zk

∣∣∣∣i�̇ − H�

〉
= 0, (28)

〈
x2

αg(zl ,x)

∣∣∣∣∣
N∑

k=1

(
vk

0 + 1

2
xV k

2 x
)

g(zk,x)

〉
= 0. (29)

By combining the coefficients vk
0 and V k

2 in a complex vector
v, the set of equations in Eq. (29) can be written as

Kv = r. (30)

The positive-definite Hermitian matrix K includes, in contrast
to Eq. (23), the kinetic operator. Eq. (30) must be solved for
every time step, and the resulting vector v must then be inserted
in Eq. (27).

In the numerical integration of the equations of motion
[Eqs. (27a) and (27b)] (e.g., with a standard algorithm like
Runge-Kutta), the quadratic term can lead to numerical
overflow [15]. It is therefore reasonable to split up the matrices
Ak into two matrices C and B according to Ak = Bk(Ck)−1.
For the case of diagonal matrices Ak , Ck and Bk are diagonal
too. Hence, the splitting can be done component by component.
This leads to

Ċk = 4Bk; Ḃk = − 1
2CkV k

2 , (31)

where C(0) = 1, and B(0) = A(0) are taken as initial values.

B. Constraints in the TDVP

The most important reason for the introduction of con-
straints is conservation of the norm in the ITE (cf. Sec. III D).
Apart from that, inequality constraints can be used to avoid
matrix singularities that arise from overcrowding the basis set
[17]. In principle, m constraints can be introduced, combined
in the m-dimensional vector f . The constraints are embedded
then by a set of Lagrangian multipliers λ ∈ Rm:

L = I + λM̄ ˙̄z, (32)

where M̄ = ∂ f
∂ z̄ is a real m × 2np matrix. To find the minimum

of I ,

∂L

∂ω
= 0 with ω ≡

⎛
⎜⎝ żr

żi

λ

⎞
⎟⎠ = ( ˙̄z

) ∈ R2np+m (33)
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has to be calculated, which yields the system of equations⎛
⎝ K̄ M̄T

M̄ 0

⎞
⎠( ˙̄z

λ

)
=
(

h̄

0

)
, (34)

where

K̄ =
(

Kr −Ki

Ki Kr

)
, h̄ =

(
hi

−hr

)
.

In the special case of Gaussian wave packets, the equa-
tions of motion [split into real and imaginary parts
and with the variational parameters combined to z̄ =
(γ 1,r . . . γ N,r ,A1,r . . . AN,r ,γ 1,i . . . γ N,i ,A1,i . . . AN,i)] can be
written in the form

˙̄z = Ũ v̄ + d̃, (35)

where Ũ consists of the terms linear in v, and the constant
terms are absorbed in the vector d̃. The constraints combined
in f = (f1, . . . ,fn) yield

ḟ = ∂ f
∂ z̄

Ũ v̄ + ∂ f
∂ z̄

d̃ ≡ Ū v̄ + d̄ = 0. (36)

The set of linear equations [Eq. (34)] then reads⎛
⎝ K̄ ŪT

Ū 0

⎞
⎠( v̄

λ

)
=
(

r̄

−d̄

)
, (37)

where

K̄ =
(

Kr −Ki

Ki Kr

)
, r̄ =

(
r i

rr

)
. (38)

Solving this system of linear equations and inserting the
resulting vector in Eq. (27) enables one to integrate the
equations of motion.

C. Energy functional

To obtain the mean-field energy of a soliton, the time-
dependent variational parameters of the GWPs are used to
evaluate the integrals in the energy functional. The energy
functional for N coupled Gaussians reads

Emf = 〈�| − � |�〉 + 〈�| Vt |�〉
+ 1

2 (〈�| Vc |�〉 + 〈�| Vd |�〉). (39)

With σ = x,y,z, the integrals in Eq. (39) yield

〈�| − � |�〉 =
∑
l,k

〈gl| − �|gk〉

=
∑
l,k

{[
−2i

∑
σ

(
Ak

σ +
(
Ak

σ

)2
Al

σ
∗ − Ak

σ

)]
〈gl|gk〉

}
, (40)

〈�| Vt |�〉 = −1

2
i
∑
l,k,σ

γ 2
σ

Al
σ

∗ − Ak
σ

〈gl|gk〉, (41)

〈�| Vc |�〉 = 8πa
∑
l,k,i,j

[(∏
σ

√
iπ

Ak
σ + Ai

σ − Al
σ

∗ − A
j
σ

∗

)

×ei(γ k+γ i−γ l∗−γ j ∗)
]
, (42)

〈�| Vd |�〉 = 4π

3

∑
i,j,k,l

[(∏
σ

√
iπ

Ak
σ + Ai

σ − Al
σ

∗ − A
j
σ

∗

)

× [
κ̃x κ̃yRD

(
κ̃2

x ,κ̃2
y ,1
)− 1

]
ei(γ k+γ i−γ l∗−γ j ∗)

]
, (43)

with the abbreviations

κ̃x =
√√√√(Ai

x + Ak
x − A

j
x

∗ − Al
x
∗)(

Ai
z − A

j
z

∗) (
Ak

z − Al
z
∗)(

Ai
x − A

j
x

∗) (
Ak

x − Al
x
∗) (

Ai
z + Ak

z − A
j
z

∗ − Al
z
∗)

and

κ̃y =
√√√√(Ai

y + Ak
y − A

j
y

∗ − Al
y
∗)(

Ai
z − A

j
z

∗) (
Ak

z − Al
z
∗)(

Ai
y − A

j
y

∗) (
Ak

y − Al
y
∗) (

Ai
z + Ak

z − A
j
z

∗ − Al
z
∗) .

The additional integrals in the TDVP—〈σ 2V (x)〉, 〈σ 4V (x)〉,
and 〈α2β2V (x)〉—are obtained easily from the integrals in the
energy functional.

D. ITE

In principle, the ground state of the system of coupled
Gaussians could be obtained by a nonlinear root search in
the equations of motion. Since 4N complex initial values are
required, it is difficult to find the fixed points in this way
for a large number of Gaussians N . The ITE represents an
alternative for determination of the ground state.

In the linear Schrödinger equation, the transformation t →
τ = it leads to an exponential damping of the excited states
and converges to the ground state for τ → ∞. The method
can be applied to the nonlinear GPE as well. In imaginary
time the norm is not conserved anymore. This is crucial in the
nonlinear GPE because decay of the norm indicates particle
losses. To avoid norm decay, we implement norm conservation
as a constraint

f =
∑
k,l

〈gl|gk〉︸ ︷︷ ︸
fkl

!= 1 (44)

in the TDVP, as elaborated above. Supposing a general
complex rotation of the time τ = ei�t , with ξ = ξ r + iξ i =
−e−i�, the equations of motion can be written in the general
form

˙̄z = Ũ v̄ + d̃, (45)

with

Ũ =

⎛
⎜⎜⎜⎝

(ξ r )N×N (0)3N×N (−ξ i)N×N (0)3N×N

(0)N×3N (ξ r )3N×3N (0)N×3N (−ξ i)3N×3N

(ξ i)N×N (0)3N×N (ξ r )N×N (0)3N×N

(0)N×3N

(
ξ i
)

3N×3N
(0)N×3N (ξ r )3N×3N

⎞
⎟⎟⎟⎠,
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d̃ = ξ r

⎛
⎜⎜⎜⎝

2TrAk,i

4(Ak,r )2 − 4(Ak,i)2

−2TrAk,r

8Ak,rAk,i

⎞
⎟⎟⎟⎠+ ξ i

⎛
⎜⎜⎜⎝

2TrAk,r

−8Ak,rAk,i

2TrAk,i

4(Ak,r )2 − 4(Ak,i)2

⎞
⎟⎟⎟⎠,

v̄ =

⎛
⎜⎜⎜⎝

vr
0

1
2 V r

2

vi
0

1
2 V i

2

⎞
⎟⎟⎟⎠,

where the abbreviated notation in Ũ can be understood as
follows: Every entry (λ)a×b is an a × b submatrix Ũ ′. If
λ = 0, all elements of Ũ ′ = 0; otherwise Ũ ′ = λ · 1. The
vectors vr

0 = (v1,r
0 , . . . ,v

N,r
0 )T , vi

0 = (v1,i
0 , . . . ,v

N,i
0 )T , V r

2 =
(V 1,r

2 , . . . ,V
N,r

2 )T , and V i
2 = (V 1,i

2 , . . . ,V
N,i

2 )T contain the
real and imaginary parts of the coefficients of the effective
potential. The entries in d̃ are vectors with the index k running
from 1 to k. One special case is the real-time evolution ξ r = 1,
ξ i = 0; the other special case is the ITE ξ r = 0, ξ i = 1. The
gradient vector F̄ T = ∂f/∂z̄ in Eq. (36) is given by

∂f

∂γ k,r
= −2

N∑
l=1

Imfkl, (46a)

∂f

∂A
k,r
σ

= −
N∑

l=1

Im
fkl

akl
σ

, (46b)

∂f

∂γ k,i
= −2

N∑
l=1

Refkl, (46c)

∂f

∂A
k,i
σ

= −
N∑

l=1

Re
fkl

akl
σ

, (46d)

with which one obtains Ū = F̄ T · Ũ and d̄ = F̄ T · d̃.
With this method the norm is conserved during the

numerical integration for rather long periods of time. However,
for very long periods a small drift in the norm is present
because of the numerical error of the integration. The ITE
of a system of ten coupled Gaussians is shown in Fig. 7.

If the relative accuracy of the integrator is chosen to be low,
the mean-field energy does not decay monotonously, but for
long periods it converges to the same value as an integration
with a high relative accuracy; thus, a low accuracy can be
chosen for the sake of time. The ITE is very robust with respect
to the initial choice of the wave function. This also holds for
large numbers of Gaussians coupled, where the nonlinear root
search often fails. However, only the stable ground state is
accessible with this method.

IV. RESULTS WITH COUPLED GAUSSIANS

By applying the variational ansatz with coupled Gaussians
to the wave functions of dipolar condensates, we are now
able to obtain quantitatively correct ranges of the parameters
where stable quasi-two-dimensional solitons can exist. For
an experimental realization of solitons with chromium atoms,
realistic trap frequencies are typically a few hundred hertz for
condensates with about 10 000–20 000 particles. These values
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Emf = 1989.02
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FIG. 7. (Color online) ITE of ten coupled Gaussians. The param-
eters used are γy = 2000, a = 0.1. Plotted are, from upper to lower
panels, the real part of the width parameters, the imaginary part of the
width parameters, real and imaginary parts of γ , and the mean-field
energy. The mean-field energy converges to the ground state of the
system as described in the text. For comparison, the mean-field energy
in a fast calculation with low integration accuracy is shown as well.

roughly correspond to an interval of 2000 � γy � 20 000. We
therefore focus our calculations on two values for the scaled
trap frequency, viz., γy = 2000 and γy = 20 000.

A. Stationary ground state

In Figs. 8 and 9 the results for the ground state of the
soliton are shown at trap frequencies γy = 2000 and γy =
20 000, respectively. In Figs. 8(a) and 9(a), the mean-field
energy as a function of the scattering length is plotted for
up to 6 coupled Gaussians. For comparison, the calculation
using a nonlinear root search for one Gaussian, as discussed in
Sec. II B, is displayed as well. The mean-field energy and the
chemical potential [see Figs. 8(b) and 9(b)] converge with an
increasing number of Gaussians N . The detailed convergence
properties of the calculations with an increasing number of
Gaussians are illustrated in Fig. 10, where calculations for up
to 12 Gaussians are shown at constant scattering length a =
0.1. The ground-state energy converges fast with the number
of Gaussians, and the corrections above a number of about
five Gaussians can be neglected. The small energy differences
between the variational and the grid calculations in Fig. 9(a)
may be due to the finite grid size, which is limited by an
acceptable computation time.

In the calculations with a single Gaussian, a stable and
an unstable state are created in a tangent bifurcation at
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FIG. 8. (Color online) (a) Mean-field energy as a function of the
scattering length of the ground state of a soliton at trap frequency γy =
2000, obtained by the ITE with different numbers of Gaussians. For
comparison, the result for a single Gaussian obtained by a nonlinear
root search and the results obtained by numerical grid calculations are
plotted as well. (b) The chemical potential for the same parameters as
in (a). (c) The temperature for different particle numbers belonging to
the difference between upper-limit Emf = γy and ground-state energy.

a scattering length a = acr. By using coupled Gaussians,
the critical scattering length where the condensate collapses
is shifted to higher values, e.g., from aN=1

cr = 0.0734 to
aN=6

cr = 0.0820 at trap frequency γy = 2000, and from aN=1
cr =

0.1197 to aN=6
cr = 0.1246 at trap frequency γy = 20 000. The

ITE can provide only the stable ground state but no unstable
states, which are certainly also involved in the bifurcation. For
dipolar condensates in an axisymmetric trap, a complicated
bifurcation scenario has been revealed [5,7], and it will be an
interesting future task to study bifurcations of the soliton states
in more detail.

Corrections to the calculations with a single Gaussian de-
crease with growing scattering lengths. This can be understood
when looking at the spatial size of the soliton [cf. Fig. 2(c)]. For
large expansion of the condensate, the nonlinear interaction
terms in the GPE are small, and thus the mean-field energy
is dominated by the ground-state energy of the harmonic
trap in the y direction. Above a certain threshold value for
the scattering length, the soliton is no longer bound but
dissolves. The thresholds at, e.g., a = 0.137 for γy = 2000 and
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FIG. 9. (Color online) Same as Fig. 8, but for trap frequency
γy = 20 000. Compared to the results for γy = 2000, the range of the
scattering length is smaller but the temperature is higher.

a = 0.157 for γy = 20 000 obtained with a single Gaussian
(see Fig. 2) are only very slightly shifted to higher values
when using coupled Gaussians.

The extended variational approach allows us to compute for
each trap frequency accurate lower and upper critical values
of the scattering length, i.e., a range where stable solitons in
dipolar BECs can exist. However, in an experiment, thermal
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FIG. 10. (Color online) Mean-field energy for trap frequency
γy = 2000 and fixed scattering length a = 0.1. The mean-field energy
converges fast with an increasing number of Gaussians.
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RÜDIGER EICHLER, JÖRG MAIN, AND GÜNTER WUNNER PHYSICAL REVIEW A 83, 053604 (2011)

excitations of the soliton may cause the soliton to dissolve,
and therefore it is also necessary to determine an energy or
temperature limit for the existence of stable solitons. As a
dissolving condensate without any interaction must have at
least the zero-point energy Emf = γy of the harmonic trap in
the y direction, the difference between this threshold and the
mean-field energy of the ground state

�E = γy − E
g

mf ≈ 3NkBT

2Ed

(47)

can be taken as a very conservative estimation of the temper-
ature at which the soliton should survive thermal excitations.
In Figs. 8(c) and 9(c), that temperature is plotted as a function
of the scattering length for two condensates with N = 10 000
and N = 20 000 particles. With this conservative estimate, a
soliton at, e.g., trap frequency γy = 2000 and scattering length
a = 0.1 must be cooled down to about T = 0.15µK . However,
solitons may exist at much higher temperatures when they are
dynamically stabilized, as discussed in Sec. II D for the ansatz
with a single Gaussian. We now extend that discussion to the
ansatz with coupled Gaussians.

B. Dynamics with coupled Gaussians

The ansatz with a single Gaussian used to describe the
dynamics of the solitons in Sec. II D and, especially, the
further simplification with a frozen Gaussian in Sec. II C
are basically mathematical model systems, and the results
obtained with these models have to be seen from an academic
point of view. For a realistic description it is necessary to
investigate the dynamics of the solitons with the extended
ansatz [Eq. (24)] of coupled Gaussians, which was shown
in Sec. IV A to significantly improve the results for the
ground state. Of special interest is to search for the existence
of dynamically stabilized solitons at energies above the
threshold Emf = γy . To this end, the equations of motion
[Eqs. (27a) and (27b)] are integrated with the initial wave
function chosen appropriately to yield the desired mean-field
energy.

The condensate wave function [Eq. (24)] with N coupled
Gaussians is parameterized by 8N real time–dependent varia-
tional parameters. For visualization of the wave function, we
use the reduced set of parameters

qσ =
√

1
2 〈�|σ 2|�〉, σ = x,y,z, (48)

which are related to the extension of the soliton in the
three spatial dimensions and can be directly compared with
the results for a single Gaussian using the coordinates in
Eq. (19).

For energies close to the ground-state energy, periodic
oscillations can be found. The parameters of the turning points
of the periodic oscillations show a rather complicated behavior
when the mean-field energy is increased. The different periodic
oscillations vanish in multiple bifurcations close to the ground-
state energy. Above Emf = γy , no periodic oscillations were
found. However, increasing the energy above Emf = γy yields
oscillations of the soliton that do not destroy it. Applying
a frozen Gaussian approximation yields stable oscillations
only slightly above this limit. But allowing oscillations in all
spatial directions stabilizes the condensate and gives rise to
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FIG. 11. (Color online) Dynamics with two coupled Gaussians
for trap frequency γy = 2000, scattering length a = 0.1, and mean-
field energy Emf = 2100. In (a) the parameters qx and qz, and in
(b) the parameter qy , in the trap direction are shown as functions of
time. (c) Projection of the trajectory in the (qx,qz) plane. The soliton
does not dissolve, although the mean-field energy is quite far above
the threshold Emf = γy .

an oscillating soliton, as shown in Fig. 11 for a trajectory
at trap frequency γy = 2000, scattering length a = 0.1, and
mean-field energy Emf = 2100.

The excitation energy of the dynamically stabilized nondis-
solving soliton in Fig. 11 is �E = Emf − E

g

mf = 111.0,
which for a condensate with 10 000 particles corresponds
to a temperature of about T = 1.5 µK. For the system with
γy = 2000 and a = 0.1, stable oscillations can be found up
to Emf = 2400. This is about 40 times the energy difference
in Eq. (47) and yields, as an estimation of the temperature,
T = 5.5 µK for N = 10 000 particles. Calculations with a
higher number of coupled Gaussians and with various initial
conditions show that the oscillating soliton is stable. The
choice of the initial wave function is not crucial for the stability
of the condensate.
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V. CONCLUSION AND OUTLOOK

We investigated anisotropic quasi-two-dimensional solitons
in dipolar Bose-Einstein condensates with the time-dependent
variational principle by using the descriptive ansatz of both
a single Gaussian wave function and coupled Gaussians to
calculate the ground state of the system. The lower limit
of the energy obtained with a superposition of Gaussians
is in full agreement with numerical grid calculations. For
a given trap frequency γy , we are able to give boundaries
for the scattering length where stable solitons can exist. The
energy gap between the mean-field energy of the ground state
and the threshold energy where the soliton can dissolve is

typically quite small. However, investigations of the dynamics
of dipolar BECs have revealed the existence of dynamically
stabilized nondissolving solitons at energies far above the
threshold Emf = γy , and they open up the possibility of
creating solitons at experimentally accessible temperatures [1].
This discovery may thus stimulate experiments on solitons in
dipolar Bose-Einstein condensates.
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Rev. A 82, 023611 (2010).

[8] B. C. Carlson and J. L. Gustafson, SIAM J. Math. Anal. 25, 288
(1994).

[9] B. C. Carlson, Numer. Algorithms 10, 13 (1995).
[10] R. Nath, P. Pedri, and L. Santos, Phys. Rev. Lett. 102, 050401

(2009).
[11] A. D. McLachlan, Mol. Phys. 8, 39 (1964).
[12] E. J. Heller, J. Chem. Phys. 62, 1544 (1975).
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