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Mode competition in superradiant scattering of matter waves
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Superradiant Rayleigh scattering in a Bose gas released from an optical lattice is analyzed with incident light
pumping at the Bragg angle for resonant light diffraction. We show that competition between superradiance
scattering into the Bragg mode and into end-fire modes clearly leads to suppression of the latter at even relatively
low lattice depths. A quantum light-matter interaction model is proposed for qualitatively explaining this result.
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I. INTRODUCTION

The coherent nature of Bose-Einstein condensates has led
to new and rapid developments in atom optics and studies
on coherent interaction between light and matter waves, with
the demonstration of efficient matter wave interferometers,
Bragg diffraction, wave mixing, and matter wave amplifiers.
Superradiant scattering was for the first time analyzed using a
Bose-Einstein condensate (BEC) in a seminal experiment by
Ketterle et al. [1]. In this experiment the initial matter grating,
formed due to Rayleigh scattering of a pumping beam by
an elongated Bose-Einstein condensate and subsequent recoil
into a moving matter wave, was self-amplified by resonant
light diffraction in a phenomenon called amplification of
matter waves. Absorption of pumping photons and preferential
scattering into so-called end-fire modes along the BEC’s
long axis led to the observation of patterns of coherently
recoiling atoms. Amplification of matter waves was further
characterized with the use of an initial matter wave seed formed
via Bragg diffraction of a Bose condensate, and its coherence
nature was demonstrated [2,3].

For an elongated BEC, superradiant Rayleigh scattering
light is emitted along the long axis because the gain for
superradiance is maximum in this direction. However, different
superradiant modes can be obtained when a matter wave seed
with nonzero momentum is created before pumping, since light
can then be resonantly diffracted in a different direction [4]. No
precise analysis of competition between different superradiant
scattering modes has been carried out yet. Such analysis
would be useful for calibrating precisely superradiance gains
and initial Rayleigh scattering rates if one wanted to use
quantitatively superradiance for the analysis of coherence in
Bose gases [5,6]. Analyzing superradiance with uncommon
configurations is also important, because combining early
stage superradiance described with quantum theory and long
time-scale superradiance, which is well captured within a
semiclassical theory taking into account propagation effects,
is currently a topic of high interest [7,8].

We present in this paper an experimental analysis of mode
competition in superradiance scattering. Rather than relying
on an initial matter wave seed formed via Bragg diffraction
of a BEC [2–4], our superradiance experiment is performed
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after initial adiabatic loading of a BEC along its long axis
inside a one-dimensional optical lattice [9]. The choice of
contrapropagating optical beams (wave vector ±�kL) for the
optical lattice loading leads to the formation of a matter
grating with period d = π/kL, so that three waves are mostly
populated after release from the optical lattice (see Fig. 1). In
the superfluid regime, the one-particle wave function of the
system just after lattice switch off is indeed

ψ(�r) ≈ φ0(�r)[w̃(0) + w̃(−2�kL)e2ikLx + w̃(2�kL)e−2ikLx],

where w̃ designates the Fourier transform of the Wannier
function w(x) whose width has been neglected compared to
the width of φ0(�r) the profile of the Bose gas loaded in the
optical lattice [10]. The two recoiling waves with amplitudes
proportional to w̃(−2�kL) = w̃(2�kL) are only lightly populated
and one, for example, with momentum −2h̄�kL, can be used
as the seed wave in a superradiance experiment. The angle
and frequency of a pump pulse for superradiance has to be
chosen at the corresponding Bragg angle for optical diffraction,
which is the condition for amplification of this seed wave [4].
Indeed, with the absorption of a pump photon by an atom
and emission into the resonantly diffracted mode, with total
momentum change −2h̄�kL, the amplitude of the matter wave
with momentum −2h̄�kL as well as the diffraction efficiency
are further increased (see Fig. 1). Besides this superradiance
light scattering into the Bragg mode (here named SRB), the
usual superradiance light scattering into end-fire modes along
the long axis (here named SR0) can occur as well. We study
in the following the mode competition between SRB and SR0.
It is shown that SRB is clearly enhanced at even relatively
low lattice depths whereas SR0 is suppressed. Those results
are used for attempting to calibrate the superradiance gains
obtained in quantum theory of superradiance [11].

II. EXPERIMENT

Our experiment (see Fig. 1) is carried out with a BEC of
2.5 × 105 87Rb atoms in the F = 2,mF = 2 state [12,13].
Obtained after trapping of cold atoms in a quadrupole-
Ioffe-configuration trap (QUIC) trap (longitudinal trapping
frequency ωx = 20 Hz and radial trapping frequency ωr =
200 Hz) and further radio-frequency evaporative cooling, our
BEC is cigar-shaped, with 70 µm length and 7 µm width.

The BEC is loaded along its long axis in an optical
lattice formed with a retroreflected laser beam (λL = 852 nm),
focused on the BEC to a waist of 110 µm. For the system to
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FIG. 1. (Color online) Top: Scheme of the superradiance exper-
iment. A pump beam (SR) is sent at θ = 24◦ with respect to the
long axis of a BEC after its loading in a one-dimensional optical
lattice. This beam (λS = 780 nm) can be superradiantly scattered
into three modes: a Bragg mode (SRB) symmetric of the incident
beam with respect to the x axis and two end-fire modes along
the x axis (SR0). Bottom: Momentum representation of the Bose
gas during the superradiance process. Absorption of photons by the
condensate at rest (momentum �0) followed by emission at 24◦ into
the Bragg mode leads to amplification of the matter wave (SRB)
with momentum −2h̄�kL. One superradiant mode (�kSR0) recoiled at
ϕ = θ/2 with respect to the x axis is also shown. It corresponds to
absorption of one pump photon and subsequent emission into the
right scattered end-fire mode shown in the top picture. The dotted
circle stands for the energy conservation for atoms initially at rest
during the Rayleigh scattering process.

remain in the superfluid state, we load the atoms with a 40 ms
exponential rising of the optical lattice depth up to a desired
value V0 lower than 15Er , Er = h̄2k2

L/2m being the recoil
energy of a rubidium atom. We then keep the optical lattice
switched on for 50 ms before sudden release of the combined
optical and magnetic traps.

Just after release, a 30 µs light pulse, detuned from the
D2 transition (λS = 780 nm) by 1.45 GHz with respect to
the excited F ′ = 3 state, is sent onto the matter wave grating,
with polarization along the z axis. The chosen angle θ ≈ 24◦
between the incident light direction and the long axis of the
condensate satisfies the condition cos θ = λs/λL. As shown
in Fig. 1, the pump pulse can be resonantly diffracted by
the matter wave grating at 24◦ symmetrically with respect
to the long axis of the BEC. Eventually, absorption imaging is
performed after 30 ms time of flight along the z axis.

III. MODE COMPETITION BETWEEN SRB AND SR0

Given the choice of angle, scattered light amplification at
24◦ and simultaneous matter wave amplification (SRB) can
occur in the presence of the density grating resulting from the
optical lattice. The usual Rayleigh scattering superradiance
(SR0) with scattering into end-fire modes can also be observed
for low lattice depths. We study here competition between
those two processes.

(a)

ϕ

ϕ

(b)

(c) (d)

(e) (f)

FIG. 2. (Color online) 30 ms time-of-flight absorption images.
(a) Multiple matter wave interference patterns after atoms were
released from an optical lattice potential with a potential depth
of 14.4Er . (b) SR0 after a laser pump pulse is sent on the BEC.
(c) SRB when a pump pulse is sent on a Bose gas previously loaded
in an optical lattice at 4.5Er depth. (d) SR0 and SRB with the same
pump pulse and at 2.7Er optical lattice depth. (e) SRB after previous
loading in an optical lattice at 14.4Er optical depth. (f) SR0 and SRB
for at 1.8Er lattice depth and higher pump intensity (see text). The
dynamic range is divided by a factor of 2 for this last image. The
superradiance driving pulses are 30 µs long.

Different absorption images are shown in Fig. 2, corre-
sponding to pump pulses of 30 µs and intensity 95 mW/cm2

from Figs. 2(b)– 2(e). In Fig. 2(b), the SR0 recoiling pattern is
shown when the pump is shined directly onto the BEC without
initial loading in the optical lattice. Essentially one forward
mode can be observed, corresponding to a recoil at θ/2 = 12◦
with momentum kSR0 = 2kS cos(θ/2). It corresponds to the
absorption of one photon from the pump with emission
into an end-fire mode. Interestingly, the recoiling pattern
does not show the doublets seen when pumping at 90◦ and
corresponding to the presence of both end-fire modes. They
can actually be seen at higher pump intensities, suggesting
that one end-fire mode is preferentially amplified. In Fig. 2(c),
when sending the same pump pulse but with initial loading of
the BEC inside the optical lattice, a very strong amplification
of the −2h̄�kL order is observed, while the 0 and +2h̄�kL

orders are depleted. This is the confirmation of SRB. As a
result of mode competition, SR0 is suppressed in the presence
of the optical lattice, leaving only SRB. We find that SR0
is completely suppressed when the lattice depths are higher
than 4.5Er , as it appears in Fig. 3, where we compare the
number of atoms in the first SR0 and SRB scattering orders. A
corresponding absorption image at 2.7Er , where both SR0 and
SRB are present, is shown in Fig. 2(d). In Fig. 2(e), complete
suppression of SR0 is confirmed and strong amplification of
higher-order modes appears as well for a 14.4Er lattice depth.
The upper part of the mode at rest seems to be more affected
by the amplification process, which might be due to stronger
localization of the Bragg diffracted beam on the top part of
the BEC. In Fig. 2(f), a picture taken for similar pump pulse
duration but higher intensity, 160 mW/cm2, illustrates also
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FIG. 3. Comparison of the numbers NSR0 of atoms scattered in
the forward SR0 mode (see text) and NSRB in the SRB mode, for
different lattice depths. The dotted line is a corresponding simulation
of superradiance scattering.

the mode competition between SRB and SR0. In the presence
of the optical lattice grating, SRB shows a nearly 2.6◦ half
maximum resonance gain width around θ , while far from this
position, SR0 is no more suppressed at low lattice depths and
shows only little dependence on the angle.

Another interesting factor is the detuning of the pump beam.
Whatever the lattice depth is, SR0 is not observed in the case of
a blue detuning because of a propagation effect of the end-fire
modes inside the matter medium, generating an optical-dipole
potential that is dependent on the sign of the detuning [14].
In the presence of the lattice, SRB is as strong for red or blue
detuning, which shows that this propagation effect is much
weaker or absent in this case. This result could be due to
the fact that light travels the condensate on a much shorter
distance and then leaves it in a much shorter time than when
the superradiant light propagates along the long axis of the
BEC. Analysis of this result is still under consideration.

For simulating our data, it is important to be explicit on how
the number of atoms NSR0 and NSRB are measured in Fig. 3,
since a small overlap occurs between SR0 and SRB modes
in time-of-flight absorption imaging. Actually, in the areas
delimited by the white rectangles in Fig. 2(f), we calculate the
spatially integrated numbers of atoms N1 and N2 that are given
by

N1 = aNSRB + bNSR0,

N2 = a′NSR0 + b′NSRB,

with a′ + b = 1 and a + b′ = 1. From this, we compute

NSRB = [a′N1 − (1 − a′)N2]/(a + a′ − 1),

NSR0 = [aN2 − (1 − a)N1)/(a + a′ − 1].

With our choice of areas of integration, slightly different values
of a′ and a of ∼0.2–0.3 are obtained from time-of-flight
measurements at 0Er and more than 8Er , respectively. For
the particular choice of the areas of integration where a ≈
a′, (NSRB − NSR0)/(NSRB + NSR0) is directly proportional to
(N1 − N2)/(N1 + N2).

Interpretation of the data is carried out using the quantum
model of Refs. [1,11,15] adjusted to take into account
the seeding. The matter wave field is given by �(�r,t) =∑

�q φ�q(�r)ei �q·�r ĉ�q(t), limited to the first scattering orders ĉ0,
ĉ�kSR0

, ĉ2�kL
, and ĉ−2�kL

, the annihilation mode operators of atoms
with corresponding momenta and profiles φ�q(�r). The form
of the initial wave function implies φ�q(�r) = φ�0(�r). The time
evolution of the mode operators is given by [11]

˙̂c�kSR0
= −iω�kSR0

ĉ�kSR0
+ G�kSR0

2
N0ĉ�kSR0

+ f̂
†
�kSR0

,

(1)
˙̂c±2�kL

= −iω2�kL
ĉ±2�kL

∓ G−2�kL

2
N0

(
ĉ±2�kL

+ ĉ
†
∓2�kL

)
.

In this expression, G�kSR0
and G−2�kL

are the SR0 and SRB gains.
ω�kSR0

and ω2�kL
are the recoil frequencies of the quasimodes.

The operator f̂
†
�kSR0

represents the initial scattering into mode

h̄�kSR0 due to the interaction of the Bose gas with the vacuum.
N0 is the number of atoms in the condensate at rest. The
superradiance gains are of the form

G�q = 2π

c

∫
d�k |g(�k)|2 |ρ�q[�k,t]|2 δ[|�k| − |�kS |]. (2)

They depend on the integral

ρ�q[�k,t] =
∫

d�r|φ0(�r,t)|2 exp[−i(�k − �kS + �q) · �r], (3)

centered at �kS − �q, and on

g(�k) = |�0µ|
2|δ|

(
ckS

2h̄ε0(2π )3

)1/2

|�k × �z|, (4)

the atomic coupling coefficient between pump and scattered
light, with µ and �0 referring, respectively, to the dipole
moment of the transition involved and its Rabi frequency. The
SRB gain is related to G�kSR0

, the gain for the SR0 process, by
the relation [15]

GSRB = G−2�kL
= G�kSR0

/
√

cos2 θ + (L/W )2 sin2 θ
(5)

≈ 0.22G�kSR0
,

with L and W the length and width of the Bose gas after
its loading inside the optical lattice. In the superfluid phase,
the Bose gas conserves its aspect ratio [10] as long as the
radial confinement by the lattice laser remains negligible, so
this relationship between superradiance gains is assumed to be
independent of the lattice depth. The absolute gain for SR0 is
given by

G�kSR0
= 3
|�0|2

8k2
Sδ

2W 2
, (6)

with 
 the excited-state spontaneous emission rate, so that

G�kSR0
= G0

/(∫ d/2

−d/2
dx w4(x)

)2/5

, (7)

with G0 the gain at 0 lattice depth, and
∫ d/2
−d/2 dx w4(x)

characterizing simply the compression along the x axis due
to the optical lattice. An exact correction is considered in our
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FIG. 4. (Color online) Computed time evolution of the number
of atoms in the −h̄2kL mode or SRB mode (solid blue line), in the
SR0 mode (dot-dashed red line), and in the 2h̄kL mode (dashed green
line). Conditions are the ones of Fig. 3, with a 3Er optical lattice
depth.

calculation,1 though the harmonic oscillator approximation
result

∫
dxw4(x) = √

π/2(V0/Er )1/4, already good for V0 >

3Er , implies G�kSR0
varies only as (V0/Er )−1/10 with the lattice

depth [10].
In Eq. (1), ĉ†0ĉ0 and ĉ0ĉ0 were replaced by N0, the number of

atoms in the condensate at rest, which depends on time because
of depletion during the superradiant process. We assume the
operators ĉq are well approximated by c numbers of the form
cq = √

Nqe
iϕq , when the atom number Nq of atoms in mode

q becomes large, Nq � 1, which is valid any time for the
±2h̄�kL modes if V0 > 0.2Er . The initial conditions are then
taken as c±2kL

(0) = √
N±2kL

(0) = w̃(−2�kL)
√

Nt , with Nt the
total number of atoms. The operator standing for the interaction
with vacuum was neglected in the dynamical equation of the
±2�kL operators for this same reason.

For SR0 at early times, we consider simply the mean
number of scattered atoms in mode kSR0 related to the operator
f̂

†
�kSR0

and neglect fluctuations. As long as depletion of the
condensate is not large, i.e., N0(0) − N0(t) < 0.1N0(0), this
number is given by NkSR0 (t) = exp(GkSR0N0t) − 1 [15]. At later
times, when NkSR0 ∼ 10 � 1 typically obtained for t > 10 µs
for V0 < 5Er , f̂

†
�kSR0

can be neglected in Eq. (1) and ĉkSR0

replaced by a c number. For too high lattice depths, depletion
of the condensate could become non-negligible during the first
stage, but we checked that this is actually not the case in our
model considering our experimental conditions.

The depletion of the 0 order leads to mode competition,
each scattered photon corresponding to a scattered atom from
the condensate. Without initial lattice grating, maximum gain
is obtained along the long axis of the BEC. As the lattice depth
is increased, the seeding of the −2h̄�kL order, proportional
to w̃(−2�kL), increases and favors matter wave amplification
because the exponential growth of the −2h̄�kL order reduces
drastically the gain for superradiance along other modes.

Numerical computations of scattering are given in Fig. 3
and show a qualitative agreement with the experiment when

1The calculation of the effective coupling constant is performed
following the results of Ref. [20]. Given the experimental uncertain-
ties of our data, the integral of the Wannier function can be safely
evaluated without taking into account interactions.
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FIG. 5. (Color online) Comparison of the number NSR0 of atoms
scattered in the forward SR0 mode (see text) and NSRB in the SRB
mode, for different lattice depths and different intensities. The lines
are a simulation of superradiance scattering for three intensities,
taking into account an additional loss rate γ ∼ 30/2π kHz of atoms
in the mode at rest.

we assume G0 = 2.9+0.4
−0.2 s−1, which is of the order of our

estimated theoretical value G0 ≈ 3.0 s−1. The corresponding
calculated time evolutions of the number of atoms in the
different modes are shown in Fig. 4 for a 3Er lattice depth.
Since short superradiance pump pulses are used, our model
neglects Doppler dephasing during the superradiance process,
as it appears in Eq. (1) with a unique recoiling frequency ω2�kL

.
The considered pump pulse durations were, however, long and
weak enough for backward scattering to remain negligible in
the SR0 process (cf. Fig. 2). Spatial effects should probably be
included to reproduce the asymmetry of the superradiant gain
G�kSR0

observed experimentally2 and to explain the asymmetric
depletion of the mode at rest while amplification of the SRB
mode occurs.

To get a more precise understanding of the effect of quantum
fluctuations, we studied mode competitions for different
pumping intensities, i.e., different initial Rayleigh scattering
rates and different superradiance gains. Figure 5 shows a
study of the sensitivity of mode competition with the choice
of pumping intensity, i.e., 60, 95, and 160 mW/cm2. As is
apparent in the data, the position of the threshold does not vary
much with the choice of pumping intensity. At intermediate
values of the optical lattice depth, a higher proportion of
atoms scattered in the SR0 mode remains for lower pump
intensities.

Such results are not well captured by our simple model.
Indeed, our model predicts that the variability of the position
of the threshold should be very high. To somewhat fit the

2An explanation for this asymmetry, based on the semi-classical
theory of Ref. [21], has been recently published Ref. [22].
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FIG. 6. Total number of atoms in different quasimodes NModes left
after pumping (sum of all the quasimode populations), for different
pumping intensities.

experimental results, we added a loss rate on the number of
atoms in the condensate at rest, proportional to the pump in-
tensity and equal to γ ∼ 30/2π kHz at 95 mW/cm2 intensity,
the loss effect being neglected for the other quasimodes in
comparison to their growth rates. The new choice of gain
G0 ≈ 5.4 s−1 at 95 mW/cm2 intensity in Fig. 5 is, however, far
from the theoretical value. Consequently, a model including
a linear loss rate, though giving a better qualitative account
of the behavior of competition in superradiance scattering, is
insufficient in explaining accurately our results.

In the experiment, it is actually found that NModes, the
total number of atoms populating the different quasimodes,
decreases dramatically during pumping; and this drop seems
to depend on the pulse time duration, intensity, and frequency
detuning δ. In Fig. 2, this total number after pumping appears
quite smaller than in the optical lattice. In order to get a better
picture, the average number of such atoms versus pumping
intensity is plotted in Fig. 6. Its decrease is important, as much
as 70% from 60 to 160 mW/cm2. One reason for the 70%
decrease of NModes seems to correspond to a loss of coherence
of the system occurring during the application of the pump
pulse. Noncooperative Rayleigh scattering itself could cause
only a limited ∼12% drop of coherent atoms at 160 mW/cm2

pump pulse intensity. Collisions occurring when the atoms
recoil is probably another source of decoherence. Obviously
in the experiment, coherence of the sample is affected by
the superradiance pulse, but the measure of the degree of
coherence is difficult because collisions, mainly in the form
of s-wave scattering, are also present during the time of

flight expansion. They form a strong background even without
superradiance pumping, and in that sense, absolute number
measurements are difficult.

A smaller decrease of 30%, from 60 to 160 mW/cm2, also
affects the total number of detected atoms in the ground F = 2
state, calculated after integration over the whole imaging
window, i.e., including the incoherent background of atoms.
This second loss could be related to pumping to the F = 1
state, which we have not checked in the present experiment.
Though it is neglected in our model, residual excitation to
the P3/2 state can result in spontaneous decay of atoms
into the S1/2,F = 1 state, with branching ratio 1/2 from
the F ′ = 2 excited state and 5/6 from the F ′ = 1 state. In
our Rayleigh scattering experiment with the quantization axis
determined by the Bias magnetic field along the BEC long axis,
the main transition involved is F = 2,mF = 2 → F ′ = 3,

mF ′ = 3 with σ+ light involved. Nevertheless, Raman tran-
sitions are not completely canceled out and can lead to a loss
of F = 2 ground-state atoms of about 3–4% at 160 mW/cm2

intensity after 30 µs, calculated while neglecting cooperative
scattering. Once considering cooperative scattering, the effects
may be important and may have to be reconsidered in our
model at high intensities.

IV. CONCLUSION

In conclusion, mode competition in superradiant scattering
from a Bose gas initially loaded in an optical lattice was
studied. Superradiance with light scattering along end-fire
modes was suppressed even at very low lattice depths because
of the presence of the seeding of another superradiance mode
by the optical lattice. Such results should provide a way to
calibrate gains, thresholds, or losses observed in superradiance
scattering. A simple model was developed to account for this
mode competition. Not surprisingly, we found this model to
be insufficient for characterizing completely our experiment.
We believe the present work will trigger new and interesting
discussions. At the least, spatial effects, better analysis of
decoherence processes or excitations, and higher orders should
all probably be included in the model [16–19]. A full quantum
theory taking into account spatial propagation of the optical
fields may be necessary [7,8].

ACKNOWLEDGMENTS

This work received support from the National Fundamental
Research Program of China, Grant No. 2011CB921501 and
the National Natural Science Foundation of China, Grants No.
61027016, No. 61078026, No. 10874008, and No. 10934010.

[1] S. Inouye, A. P. Chikkatur, D. Stamper-Kurn, J. Stenger, D. E.
Pritchard, and W. Ketterle, Science 285, 571 (1999).

[2] S. Inouye, T. Pfau, S. Gupta, A. P. Chikkatur, A. Görlitz,
D. E. Pritchard, and W. Ketterle, Nature (London) 402, 641
(1999).

[3] M. Kozuma, Y. Suzuki, Y. Torii, T. Sugiura, T. Kuga, E. Hagley,
and L. Deng, Science 286, 2309 (1999).
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