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Photoelectron spectra in an autoionization system interacting with a neighboring atom
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Photoelectron ionization spectra of an autoionization system with one discrete level interacting with a neighbor
two-level atom are discussed. The formula for long-time ionization spectra is derived. According to this formula,
the spectra can be composed of up to eight peaks. Moreover, the Fano-like zeros for weak optical pumping are
identified in these spectra. The conditional ionization spectra depending on the state of the neighbor atom exhibit
oscillations at the Rabi frequency. Dynamical spectral zeros occurring once per the Rabi period are revealed in
these spectra.
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I. INTRODUCTION

The problem of ionization of an atom with discrete
autoionizing levels has been addressed many times under
various conditions since the pioneering work by Fano [1]
appeared. In his contribution, Fano explained the existence of
unpopulated frequencies in the continuum of ionized states
by diagonalizing the appropriate Hamiltonian. This effect
occurs as a consequence of destructive interference of two
quantum ionization paths. This phenomenon occurring at
specific frequencies (or for given ionization states) is spoken
of as the presence of “Fano zeros.” Moreover, there might
occur a strong narrowing of spectral peaks in the vicinity of
such frequencies by virtue of strong interference. This effect
is sometimes referred to as the “confluence of bound-free
coherences” [2]. These effects can be degraded to a certain
extent by, for example, spontaneous emission of radiation
[3–5], a finite pump laser bandwidth [6], and collisions [5]. In
general, there exist n Fano zeros in an autoionization system
with n discrete autoionizing levels [1,7]. Generalizations
including several mutually noninteracting continua have also
been given [1,8]. The presence of autoionizing levels also
influences ionization dynamics under strong laser pumping [9].
Experimental observation of Fano spectral zeros has been
reported, for example, in [10]. The existence of discrete
levels in autoionization systems can lead to transparency for
ultrashort pulses [11] or slowing-down of propagating light
[12]. The dynamics of ionization can even be influenced by
Zeno or anti-Zeno effects [13]. A generalization to low-light
quantum optical fields including Fock coherent or squeezed
states has also been given [14,15] and it revealed additional
interferences in photoelectron ionization spectra stemming
from the discrete energies of quantized optical fields. The
ionization quantum-path interference effects studied play an
important role in spectroscopy in explaining asymmetric
spectral profiles [16]. Similar quantum interference effects
can be found in many other fields of physics, using both
mass particles and photons. Among others, semiconductor het-
erostructures or photonic wave guides can be mentioned [17].
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An extended list of references dealing with autoionization can
be found in [5,7], and [18].

In this work we continue the investigation of the influence
of a neighbor atom on an ionization system and its long-time
photoelectron ionization spectra. The influence is assumed
to have the form of energy transfer caused, for example, by
dipole-dipole interaction. Compared to [19], we additionally
assume one discrete bound (autoionizing) state present in the
ionization system. Similarly to [19], the neighbor atom is
modeled as a two-level system that undergoes Rabi oscillations
in a stationary optical field. These oscillations significantly in-
fluence conditional photoelectron spectra of the autoionization
system. In these spectra, so-called dynamical zeros occurring
once per Rabi period [19] have been found. Frequencies in
photoelectron ionization spectra corresponding to both Fano-
like zeros (for weak optical pumping) and dynamical zeros
are studied using both analytical and numerical approaches.
Molecular condensates [20] as well as systems of quantum
dots or other semiconductor heterostructures [17] are suitable
candidates for verification of the results obtained.

The paper is organized as follows. Section II reports the
model Hamiltonian, solution of the corresponding Schrödinger
equation, and formulas for photoelectron ionization spectra.
These spectra in their long-time limit are discussed in Sec. III.
The frequencies of Fano-like zeros in the spectra are analyzed
in Sec. IV using the method of canonical transformation.
Section V is devoted to dynamical zeros. Conclusions are
drawn in Sec. VI. Formulas giving the frequencies of poles
of the Lorentzian curves constituting the photoelectron ion-
ization spectra are given in Appendix A. A method for the
determination of frequencies of Fano as well as dynamical
zeros is developed in Appendix B.

II. QUANTUM MODEL AND ITS PHOTOELECTRON
IONIZATION SPECTRA

The considered ionization system (atom, molecule), with
one autoionizing level, is assumed to interact with a neighbor
two-level atom (molecule) by dipole-dipole interaction (for
the scheme, see Fig. 1). Both the ionization system and the
neighbor atom are under the influence of a stationary optical
field. The Hamiltonian Ĥa−i of ionization system b with
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FIG. 1. Scheme of autoionization system b interacting with
the two-level atom a. State |1〉a means an excited state of
atom a with energy Ea , |1〉b stands for an excited bound
state of autoionization system b with energy Eb, and |E) is a free
state inside the continuum at atom b with energy E. µa , µb, and µ

denote the dipole moments between the ground states |0〉a and |0〉b and
the corresponding excited states, αL stands for the pumping ampli-
tude, V describes the Coulomb configurational coupling between
state |1〉b and state |E), and J [Jab] refers to the dipole-dipole
interaction between state|1〉a and state |E) [|1〉b]. Double arrows
indicate that two electrons at atoms a and b participate in the
interaction (energy transfer).

one autoionizing level can be written in the form (h̄ = 1 is
assumed [21])

Ĥa−i = Eb|1〉bb〈1| +
∫

dEE|E)(E|

+
∫

dE(V |E) b〈1| + H.c.)

+ [µbαL exp(−iELt)|1〉bb〈0| + H.c.]

+
∫

dE[µαL exp(−iELt)|E) b〈0| + H.c.]. (1)

In Eq. (1), the symbol Eb means the excitation energy from
the ground state |0〉b into the excited bound state |1〉b of atom
b. The continuum of autoionization system b is formed by
the states |E) with their energies E. The coupling constant
V describes the Coulomb configuration interaction between
state |1〉b and state |E) inside the continuum. The dipole
moments µb and µ characterize the optical excitation of the
corresponding states; αL means an optical-field amplitude
oscillating at frequency EL. H.c. stands for the Hermitian
conjugated term.

A neighbor two-level atom a interacting with the optical
field through the dipole moment µa is described by the Jaynes-
Cummings Hamiltonian Ĥt−a:

Ĥt−a = Ea|1〉aa〈1| + [µaαL exp(−iELt)|1〉aa〈0| + H.c.].

(2)

The energy Ea of the excited bound state |1〉a of atom a is
measured relative to the energy of the ground state |0〉a . The
ground states of atoms a and b are assumed to have the same
energy, which is chosen to be 0.

The energy transfer [20] caused by the dipole-dipole
interaction between the two-level atom a and the autoionizing
system b is characterized by the Hamiltonian Ĥ e

trans:

Ĥ e
trans = [Jab|1〉bb〈0||0〉aa〈1| + H.c.]

+
∫

dE[J |E) b〈0||0〉aa〈1| + H.c.]. (3)

In this interaction, one electron looses its energy when
returning from the excited state into the ground state, whereas
the other one absorbs this energy and moves from the ground
state into its own excited state. The constants Jab and J

quantify the strength of this interaction.
A general quantum state of two electrons in atoms a and b

can be written in the following form appropriate to the rotating
frame:

|ψ〉(t) = c00(t)|0〉a|0〉b + c10(t)|1〉a|0〉b
+ c01(t)|0〉a|1〉b + c11(t)|1〉a|1〉b
+

∫
dEd0(E,t)|0〉a|E)

+
∫

dEd1(E,t)|1〉a|E). (4)

The time-dependent coefficients c00, c10, c01, c11, d0(E), and
d1(E) characterize state |ψ〉 at an arbitrary time.

The Schrödinger equation with the Hamiltonian Ĥa−i +
Ĥt−a + Ĥ e

trans can be written as a system of differential
equations for the coefficients of decomposition written in
Eq. (4):

i
d

dt

[
ce(t)

d(E,t)

]
=

[
Ae Be

∫
dE

Be† K(E)

] [
ce(t)

d(E,t)

]
. (5)

The symbol † denotes the Hermitian conjugation. The vectors
ce and d and the matrices Ae, Be, and K introduced in Eq. (6)
can be derived in the form

ce(t) =

⎡
⎢⎢⎢⎣

c00(t)

c10(t)

c01(t)

c11(t)

⎤
⎥⎥⎥⎦ , d(E,t) =

[
d0(E,t)

d1(E,t)

]
, (6)

Ae =

⎡
⎢⎢⎢⎣

0 µ∗
aα

∗
L µ∗

bα
∗
L 0

µaαL �Ea J ∗
ab µ∗

bα
∗
L

µbαL Jab �Eb µ∗
aα

∗
L

0 µbαL µaαL �Ea + �Eb

⎤
⎥⎥⎥⎦ , (7)

Be =

⎡
⎢⎢⎢⎣

µ∗α∗
L 0

J ∗ µ∗α∗
L

V ∗ 0

0 V ∗

⎤
⎥⎥⎥⎦ , (8)

K(E) =
[

E − EL µ∗
aα

∗
L

µaαL E − EL + �Ea

]
; (9)
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�Ea = Ea − EL and �Eb = Eb − EL. As the electrons
remain inside the system during the evolution, the norm of
state |ψ〉 is preserved:

1∑
j,k=0

|cjk(t)|2 +
1∑

j=0

∫
dE|dj (E,t)|2 = 1. (10)

The system of differential equations (6) can be solved
using the Laplace-transform method (for details, see [19]).
The coefficients d0(E,t) and d1(E,t) of the solution then
give the amplitude photoelectron ionization spectra of atom
b conditioned by the presence of atom a in the ground and
excited states, respectively. It can be shown that, in the solution,
there exist two prominent frequencies ξ1 and ξ2 characterizing
oscillations of the neighbor atom a:

ξ1,2 = EL − �Ea ± δξ

2
,

(11)
δξ =

√
(�Ea)2 + 4|µaαL|2.

The solution for coefficients d(E,t) can be derived as follows
[19]:

d(E,t) = dξ1 (E,t) + dξ2 (E,t), (12)

dξj (E,t) = iKjBe†PeUe
k(E,t)Pe−1ce(0), j = 1,2. (13)

The elements of the diagonal evolution matrices Ue
k, k = 1,2,

in Eq. (13) are given as

[
Ue

k

]
j l

(E,t) = iδjl

E − �Me,j − ξk

[exp[i(ξk − E)t]

− exp(−i�Me,j t)], (14)

δjk being the Kronecker symbol. The symbols �Me,j denote
eigenvalues of the evolution matrix Me, Me = Ae − iπBeBe†.
The eigenvectors of matrix Me then form the columns of
matrix Pe introduced in Eq. (13). The matrices Kk occurring in
Eq. (13) take the form

Kk = (−1)k

δξ

[
Ea + ξk −µ∗

aα
∗
L

−µaαL EL + ξk

]
. (15)

The vector ce(0) in Eq. (13) gives the initial conditions. We
assume here that electrons in both the two-level atom a and
the autoionizing system b are initially in their ground states,
that is, ce(0) = (1,0,0,0).

In deriving the long-time photoelectron ionization spectra,
the long-time form of the evolution matrices Ue

k defined in
Eq. (14) is needed:

[
Ue,lt

k

]
j l

(E,t) = iδjl exp[i(ξk − E)t]

E − �Me,j − ξk

. (16)

We note that formula (16) is valid for times t obeying t � 1/

|Im{�Me,j }| for j = 1, . . . ,4; Im indicates the imaginary part.
The long-time form of evolution matrices Ue,lt

1 and Ue,lt
2

shows that oscillations at the Rabi frequency δξ = ξ1 − ξ2

occur in the intensity photoelectron ionization spectra I lt
j ,

I lt
j (E) ≡ |d lt

j (E)|2. A detailed analysis has shown [19] that

the long-time intensity spectra I lt
0 and I lt

1 can be expressed in
a specific form:

I lt
0 (E,t) = I st

0 (E) + I osc(E) cos[δξ t + ϕ(E)],
(17)

I lt
1 (E,t) = I st

1 (E) − I osc(E) cos[δξ t + ϕ(E)].

The intensities I st
0 and I st

1 denote the steady-state parts of the
corresponding spectra, whereas the intensity I osc describes the
magnitude of harmonic oscillations between spectrum I lt

0 and
spectrum I lt

1 . The symbol ϕ stands for a spectrally dependent
phase. These temporal oscillations at the Rabi frequency in the
conditional long-time photoelectron ionization spectra can be
observed using time-resolved spectroscopy of photo-ionized
electrons [21]. If the temporal resolution is not sufficient, only
the steady-state parts I st

0 (E) and I st
1 (E) are experimentally

available. We note that the Rabi oscillations can alternatively
be observed in the long-time behavior of the two-level atom
a provided that a suitable basis in the continuum of ionized
states of atom b is chosen and a conditional measurement into
its basis functions is considered.

The form of long-time spectra I lt
0 and I lt

1 as written in
Eq. (18) guarantees that the overall long-time photoelectron
ionization spectrum I lt(E) = I lt

0 (E,t) + I lt
1 (E,t) is time inde-

pendent;

I lt(E) = I st
0 (E) + I st

1 (E). (18)

In the long-time photoelectron ionization spectra, there
may occur frequencies that cannot be populated. If a given
frequency EF cannot be excited for arbitrary times, we have a
Fano zero obeying the following equation:

I lt(EF ) = 0. (19)

According to Eq. (18) a Fano zero at frequency EF is present
only if I st

0 (EF ) = 0 and I st
1 (EF ) = 0.

It may also happen that the long-time spectral components
I st

0 , I st
1 , and I osc fulfill one or both of the following equations

for specific frequencies ED:

I st
j (ED) = I osc(ED), j = 0,1. (20)

This means that the long-time photoelectron ionization spec-
trum I lt

0 (E,tD) [or I lt
1 (E,tD)] reaches zero at suitable time

instants tD . Such a frequency ED corresponds to a dynamical
zero that periodically occurs with the Rabi period 2π/δξ [19].
We note that dynamical zeros occur because of the interaction
of the autoionization system b with the two-level atom a. The
frequencies of dynamical zeros depend, in general, on the
state of the two-level atom a. However, if the two-level atom
a is resonantly pumped, these frequencies in the long-time
photoelectron spectra I lt

0 and I lt
1 coincide. We note that a Fano

zero also obeys the conditions in Eq. (20) defining a dynamical
zero.

III. PHOTOELECTRON IONIZATION SPECTRA

The long-time photoelectron ionization spectra of the Fano
model as well as the ionization system interacting with a
neighbor atom studied in [19] are useful in the analysis of
spectra belonging to the autoionization system interacting with
a neighbor. This is why we refer to them in the discussion
below.
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The general form of amplitude photoelectron ionization
spectra d(E,t) of the interacting autoionization system is
composed of eight Lorentzian curves, as Eqs. (12), (13), and
(16) show. These curves are located at different frequencies Er

in the complex plane E. The complex frequencies Er differ in
the magnitudes of their complex parts and so they lead to peaks
of different widths on the real axis E. In more detail, there
exist two groups of four of the frequencies Er (see Appendix
A). The frequencies Er in the second group are just those in
the first group shifted by the Rabi frequency δξ . However,
as numerical results have revealed, only four frequencies Er

(two pairs) are important for the determination of shapes of the
photoelectron ionization spectra I lt in two regimes discussed
here and assuming resonant pumping of atom a.

To demonstrate the main features found in the photoelectron
ionization spectra, we first consider the comparable “ioniza-
tion” interactions at atoms a and b (V ≈ J , Jab). The regime
with V � J , Jab appropriate for molecular condensates is
analyzed subsequently.

Analyzing the long-time photoelectron ionization spectra,
we first consider a weak direct ionization (qa,qb � 1; for
definition of parameters, see the caption to Fig. 2). Upon

(a)

(b)

FIG. 2. Long-time photoelectron ionization spectra I lt for
(a) qa = qb = 100 and (b) qa = qb = 1 for different values of
pumping parameter 	: 	 = 0.1 (solid curve), 	 = 1 (solid
curve with asterisks), and 	 = 2 (solid curve with triangles).
γa = γb = 1, Ea = Eb = EL = 1, Jab = 0; qa = µa/(πµJ ∗), γa =
π |J |2, qb = µb/(πµV ∗), γb = π |V |2, 	 = √

4π�(Q + i)µαL, � =
γa + γb, and Q = (γaqa + γbqb)/�. Spectra are normalized such that∫

dEI lt(E) = 1.

assuming equally strong indirect ionization paths through
states |1〉a and |1〉b (qa = qb), typical symmetric two-peak
photoelectron ionization spectra are observed [see Fig. 2(a)].
We note that one should keep in mind that the ionization
process through state |1〉a is not typical, since energy transfer
without real transfer of electrons occurs. The greater the
pumping parameter 	 is, the larger is the distance between two
peaks that form an Autler-Townes doublet already discussed
in the literature on autoionization processes (see, e.g., [8] and
references therein). These conclusions can be drawn from the
positions of eight frequencies Er in the complex plane E

discussed above. Their real parts are plotted in Fig. 3(a) as
a function of the pumping parameter 	. They create pairs
with equal imaginary parts and mutual frequency difference
equal to the Rabi frequency δξ . Values of the imaginary parts
of frequencies Er indicate that only two pairs participate
considerably in forming the long-time photoelectron spectra
I lt. Moreover, the frequencies Er of these two pairs nearly
coincide [see Fig. 3(a)]. This explains why the photoelectron
ionization spectra I lt are composed of only two peaks. We note
that a two-peak structure is preserved even in the limit of weak
optical pumping. The Fano-like zero at frequency E = EL can
even be revealed for 	 → 0; see Sec. IV. This distinguishes
the spectral profiles of the autoionization system compared to
the Fano model (see Fig. 2(a) in [19]), having one central peak
for weak optical pumping. Similarly to the Fano model, the
peaks broaden with increasing pumping parameter 	.

If the strength of a direct ionization path is comparable
to those of two indirect ionization paths, the structure of
long-time photoelectron ionization spectra is much richer [see
Fig. 2(b)]. We can identify two sharp, nearly symmetrically
positioned peaks in Fig. 2(b), with the mutual distance
roughly given by the Rabi frequency δξ . Contrary to the two
symmetrically positioned peaks observed for large values of
qa , qb in Fig. 2(a), the widths of these peaks practically do not
depend on the pumping parameter 	. Two additional, much
broader peaks have been observed in the ionization spectra
in Fig. 2(b) for larger values of pumping parameter 	. The
first peak can be found in the area around EL; the second one
occurs roughly one Rabi frequency δξ on the left-hand side of
the first peak. If the pumping parameter 	 increases, the widths
of both peaks and the distance between the peaks constituting
the Autler-Townes doublet increases. Moreover, analysis of
the behavior of eight complex frequencies Er has shown that
only two frequency pairs are located near the real axis of
complex frequency E and thus build the spectrum I lt [see
Fig. 3(b)]. This explains why the peaks are mutually shifted
by roughly one Rabi frequency. We note that the behavior
of the second two peaks resembles that found for the two
peaks in the long-time photoelectron spectrum of the ionization
system interacting with a neighbor in [19] (compare Fig. 3(b)
in [19]).

If indirect ionization including atom a prevails over the two
remaining ionization channels, the long-time photoelectron
ionization spectra are composed of two symmetrically posi-
tioned peaks. Moreover, the probability of ionization of the
state with frequency Ea is practically zero [see Fig. 4(a)]. The
greater the pumping parameter 	 is, the larger is the distance
between two peaks and the peaks are broader. This behavior
is qualitatively similar to that found for two side peaks in the
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(a)

(b)

FIG. 3. Real parts of eight complex frequencies Er , Er =
�Me,j + ξk for j = 1, . . . ,4 and k = 1,2, indicating the positions
of poles in spectra I lt for (a) qa = qb = 100 and (b) qa = qb = 1 as
they depend on pumping parameter 	. Roots are divided into four
pairs (plotted by different styles of curves) with equal imaginary
parts and mutual frequency difference δξ . Two pairs (solid curves
with triangles and circles) have small imaginary parts and are thus
visible in the spectra I lt shown in Fig. 2. Values of other parameters
are given in the caption to Fig. 2.

spectra of the ionization system interacting with a neighbor
investigated in [19] (compare Fig. 2(b) in [19]). However,
states with frequencies in the middle of the spectrum are only
weakly occupied due to the interference with the additional
ionization path coming through autoionizing state |1〉b.

When the autoionization exploiting state |1〉b is domi-
nant, Autler-Townes splitting of the photoelectron ionization
spectrum [22] naturally occurs, as documented in Fig. 4(b).
Even a weak indirect ionization based on the presence of
neighbor atom a is sufficient to split the ionization peak
typical of smaller values of the pumping parameter 	 into
two symmetrically positioned side peaks. Symmetric two-peak
photoelectron ionization spectra are thus observed indepen-
dently of the value of pumping parameter 	. The greater the
pumping parameter 	 is, the more distant and broader are the
peaks.

In molecular condensates, the dipole-dipole interac-
tion between neighbor molecules has typical energies of
1–10 eV, whereas energies of electron volts characterize the
Coulomb configuration interaction. The ratio γa/γb thus equals
10−4–10−6 in this case. As the dipole-dipole interaction is
weak (γa 	 1), we are in the regime of qa � 1 assuming

(a)

(b)

FIG. 4. Long-time photoelectron ionization spectra I lt for (a)
qa = 100, qb = 1 and (b) qa = 1, qb = 100 for different values of
pumping parameter 	: 	 = 0.1 (solid curve), 	 = 1 (solid curve
with asterisks), and 	 = 2 (solid curve with triangles). γa = γb = 1,
Ea = Eb = EL = 1, and Jab = 0.

comparable values of the dipole moments µa and µ. The
role of state |1〉a in forming the photoelectron ionization
spectra is important provided that the optical pumping dipole
and dipole-dipole interactions have comparable strengths.
This occurs only for weaker optical pumping. The needed
pumping amplitudes αL are thus lower by two or three orders
of magnitude compared to those used in typical ionization
experiments. An example of the dependence of the long-time
photoelectron ionization spectra on the pumping parameter 	

is shown in Fig. 5. Figure 5(a) shows that the presence of
molecule a leads to splitting of the spectral profile into two
narrow peaks for smaller values of the pumping parameter
	. The widths of these peaks broaden, their mutual distance
increases, and their central frequencies shift toward lower
frequencies as the values of the pumping parameter 	 increase.
However, the peaks are gradually absorbed into an asymmetric
spectral profile found for larger values of pumping parameter
	 [see Fig. 5(b)] and typical for the Fano model with one
autoionization level in molecule b. The role of molecule a

in the formation of ionization spectra is thus negligible for
sufficiently large values of the pumping parameter 	. In
contrast, the interaction with molecule a substantially modifies
the spectral profiles for smaller values of pumping parameter
	, as comparison of curves in Fig. 5 and those in Fig. 3(a)
in [19] clearly reveals.
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)b()a(

FIG. 5. Long-time photoelectron ionization spectra I lt for (a)
	 = 0.5 × 10−2 (solid curve), 	 = 3 × 10−2 (solid curve with aster-
isks), 	 = 5 × 10−2 (solid curve with triangles) and (b) 	 = 1; qa =
100, γa = 1 × 10−4, qb = γb = 1, Ea = Eb = EL = 1, and Jab = 0.

Ionization spectra discussed up to now characterize the
stationary long-time limit. Upon using the formulas given in
Sec. II, temporal aspects of the formation of photoelectron
ionization spectra can also be addressed. As the time t

increases, the initially flat photoelectron ionization spectrum
is gradually “focused” into its long-time shape. Naturally, the
creation of sharper features in the long-time spectrum requires
longer times, as illustrated in Fig. 6.

IV. FANO AND FANO-LIKE ZEROS IN LONG-TIME
PHOTOELECTRON IONIZATION SPECTRA

Fano (Fano-like) and dynamical zeros are among the most
important features of the long-time photoelectron ionization
spectra. The form of these spectra built from up to eight
Lorentzian curves [see Eqs. (12), (13), and (16)] allows us
to draw general conclusions about the number of Fano and
dynamical zeros (see Appendix B). It also allows us to develop
a numerical method for finding frequencies of these zeros.
According to this analysis, no more than three Fano zeros can
exist.

Our investigations have revealed only one Fano zero
(present for arbitrarily strong pumping) under specific

FIG. 6. Photoelectron ionization spectra I at different times t

[I (t) = I0(t) + I1(t)]: t = 1 (solid curve with diamonds), t = 5 (solid
curve with triangles), t = 10 (solid curve with asterisks), and t → ∞
(solid curve). Spectrum I is determined as I (E,t) = |d0(E,t)|2 +
|d1(E,t)|2; qa = qb = γa = γb = 1, Ea = Eb = EL = 1, Jab = 0,
and 	 = 4.

conditions. In the limit of weak optical pumping, two Fano-like
zeros have been identified.

As for the Fano zero, its frequency EF as well as the
conditions for its observation can be revealed using a suitable
canonical transformation [23]. From the physical point of
view, this Fano zero may occur only provided that completely
destructive interference between two ionization paths for atom
b occurs as discovered in [1]. In our model, we have two
additional ionization paths containing the energy transfer from
the excited state |1〉a of atom a. In more detail, the first path
contains direct energy transfer (J ) into state |EF ), whereas
the second additional path includes energy transfer between
states |1〉a and |1〉b (Jab) and the Coulomb configurational
interaction (V ). These two additional ionization paths can
also cancel each other under suitable conditions. A detailed
analysis [23] has shown that state |EF ) in the continuum is
completely decoupled from both state |0〉b and state |1〉a only
provided that [23]

µb/µ = Jab/J. (21)

The frequency EF of the observed Fano zero is then given as
EF = Eb − γbqb.

Two Fano-like zeros can be revealed in the limit of weak
optical pumping, that is, when µaαL, µbαL, and µαL are
much lower than V and J . In this limit, the probability of
having states |1〉a|1〉b and |1〉a|E) describing two excited or
ionized electrons is negligibly low compared to the other
probabilities. A simplified scheme of states as shown in Fig. 7
can then be considered. This simplified model is suitable for
the application of a canonical transformation [1] that gives
two Fano-like zeros. This transformation “incorporates” states
|0〉a|1〉b and |1〉a|0〉b into states |E) of the continuum.

In this simplified scheme, we consider the Hamiltonian
Ĥ oneexc

ab , which quantifies the energy of states with one excited
or ionized electron:

Ĥ oneexc
ab = Ea|1〉aa〈1| + Eb|1〉bb〈1| +

∫
dE E|E)(E|

+ [Jab|1〉bb〈0||0〉aa〈1| + H.c.]

+
∫

dE [J |E) b〈0||0〉aa〈1| + H.c.]

+
∫

dE [V |E) b〈1||0〉aa〈0| + H.c.] . (22)

µαL

V

J

Jab

µbαL

Ea Eb

E

µaαL

|0 a|0 b

|1 a|0 b
|0 a|1 b

|0 a|E)

FIG. 7. Scheme of autoionization system b interacting with two-
level atom a valid for negligible probabilities of states with two
excited or ionized electrons. State |0〉a|0〉b is the ground state; state
|0〉a|1〉b or |1〉a|0〉b contains an excited electron at atom b or a,
respectively; and state |E)|0〉a involves an ionized electron at atom b.
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We need to find eigenstates of the Hamiltonian Ĥ oneexc
ab

and the corresponding dipole moments for the transitions
from the ground state |0〉a|0〉b into the states arising from the
diagonalization. We note that the spectral long-time behavior
of the system with Hamiltonian Ĥ oneexc

ab , Eq. (22), has been
analyzed in [24] from the point of view of dc-field coupling of
two autoionizing levels.

Eigenstates |E)) of the Hamiltonian Ĥ oneexc
ab can be ex-

pressed as a linear superposition of states |1〉a|0〉b, |0〉a|1〉b,
and |0〉a|E):

|E)) = a(E)|1〉a|0〉b + b(E)|1〉b|0〉a
+

∫
dE′β(E,E′)|E′)|0〉a, (23)

where a(E), b(E), and β(E,E′) are the coefficients of the
superposition. They obey the following system of linear
algebraic equations stemming from the stationary Schrödinger
equation:

Eaa(E) + J ∗
abb(E) +

∫
dE′J ∗(E′)β(E,E′) = Ea(E),

Jaba(E) + Ebb(E) +
∫

dE′V ∗(E′)β(E,E′) = Eb(E),

J (E′)a(E) + V (E′)b(E) + E′β(E,E′) = Eβ(E,E′).
(24)

The third Eq. (24) can be solved in the following form:

β(E,E′) = V (E′)b(E) + J (E′)a(E)

E − E′ + iε

+ F (E)δ(E − E′), (25)

where ε > 0 (ε → 0 is assumed) and δ means the Dirac
δ function. The coefficient F (E) is determined from the
normalization of state |E). Substitution of the solution in
Eq. (25) into the first two Eqs. (24) gives the set of coupled
equations for the coefficients a(E) and b(E):

[
Ẽa − iγa − E J̃ ∗

ab − iπJ ∗(E)V (E)

J̃ab − iπJ (E)V ∗(E) Ẽb − iγb − E

]

×
[

a(E)

b(E)

]
= −

[
J ∗(E)F (E)

V ∗(E)F (E)

]
. (26)

The damping constants γa and γb are given as γa = π |J (E0)|2
and γb = π |V (E0)|2 and the frequency E0 lies in the center
of the ionization spectrum. The renormalized frequencies Ẽa

and Ẽb and the coupling constant J̃ab are determined along the
expressions:

Ẽa(E) = Ea + P
∫

dE′ |J (E′)|2
E − E′ ,

Ẽb(E) = Eb + P
∫

dE′ |V (E′)|2
E − E′ , (27)

J̃ab(E) = Jab + P
∫

dE′ J (E′)V ∗(E′)
E − E′ ;

P denotes the principal value. The solution of the two linear
algebraic equations (26) can be found, for example, by finding

the inverse matrix of the system. The normalization con-
dition |a(E)|2 + |b(E)|2 + ∫

dE′|β(E,E′)|2 = 1 is fulfilled
provided that we choose F (E) = 1. The coefficients a(E),
b(E), and β(E,E′) can then be derived in their final form:

a(E) = (E − Ẽb)J ∗(E) + J̃ ∗
abV

∗(E)

D(E)
,

b(E) = (E − Ẽa)V ∗(E) + J̃abJ
∗(E)

D(E)
, (28)

β(E,E′) = V (E′)b(E) + J (E′)a(E)

E − E′ + iε
+ δ(E − E′).

D(E) in Eq. (28) stands for the determinant of the matrix in
Eq. (26), which is given as

D(E) = (E − Ẽa)(E − Ẽb) + iγa(E − Ẽb)

+ iγb(E − Ẽa) − |J̃ab|2 + 2iRe{t(E)}. (29)

In Eq. (29), t(E) = πJ̃ ∗
abJ (E)V ∗(E). The function t(E) is

nonzero only if the energy transfer between excited state |1〉a
and excited state |1〉b occurs.

The optical-field interaction between the ground state
|0〉a|0〉b and states with one excited or ionized electron as
described by the Hamiltonian Ĥ oneexc

ab is governed by the
Hamiltonian Ĥ

opt
ab :

Ĥ
opt
ab = [µaαL exp(−iELt)|1〉aa〈0||0〉bb〈0| + H.c.]

+ [µbαL exp(−iELt)|1〉bb〈0||0〉aa〈0| + H.c.]

+
∫

dE [µαL exp(−iELt)|E) b〈0||0〉aa〈0| + H.c.].

(30)

The Hamiltonian Ĥ
opt
ab transformed into the basis |0〉a|0〉b and

|E) reads

Ĥ
opt
ab =

∫
dE[µ̄(E)αL exp(−iELt)|E) a〈0|b〈0| + H.c.].

(31)

The dipole moment µ̄ in the transformed basis is given by the
formula

µ̄(E) = µaa
∗(E) + µbb

∗(E) +
∫

dE′µ(E′)β∗(E,E′).

(32)

This formula can be recast in the following form:

µ̄(E) =
[

1 + (qa + i)[γa(E − Ẽb) + t∗]

D∗(E)

+ (qb + i)[γb(E − Ẽa) + t]

D∗(E)

]
µ(E). (33)

We recall that the parameters qa and qb are defined in the
caption to Fig. 2.

The frequencies EF giving the positions of Fano-like zeros
can be easily identified using the condition µ̄(EF ) = 0 in
Eq. (33). This leads to the quadratic equation

[E − Ẽb]2 + [−Ẽa + Ẽb + qaγa + qbγb][E − Ẽb]

+ [qat
∗ + qb(t − γbẼa + γbẼb) − |J̃ab|2] = 0. (34)
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The solution of quadratic equation (34) reveals the frequencies
EF of at most two Fano zeros:

[EF ]1,2 = Ẽa + Ẽb − qaγa − qbγb

2
±

√
D

2
. (35)

They occur for a non-negative discriminant D:

D = (Ẽa − Ẽb)2 + (qaγa + qbγb)2 − 2(Ẽa − Ẽb)

× (qaγa − qbγb) + 4|J̃ab|2 − 4qat
∗ − 4qbt. (36)

We note that the frequencies EF of two Fano zeros written in
Eq. (36) coincide with those revealed in [7] for a double Fano
system provided that J̃ab = 0.

V. DYNAMICAL ZEROS IN LONG-TIME
PHOTOELECTRON IONIZATION SPECTRA

The analysis reported in Appendix B reveals that up to
15 dynamical zeros can exist. Their frequencies ED can be
determined using the recipe described in Appendix B. We
should note that the frequencies ED of two of the dynamical
zeros coincide with the frequencies EF of the Fano-like zeros
discussed in Sec. IV in the limit of weak optical pumping. If we
plot the normalized frequencies (ED − Eb)/� of dynamical
zeros as functions of the pumping parameter 	, we arrive
at graphs similar in shape to those appearing in the model
of an ionization system interacting with a neighbor (see
Fig. 6 in [19]). Graphs obtained for the analyzed model

(a)

(b)

FIG. 8. Normalized frequencies (ED − Eb)/� of dynamical ze-
ros as they depend on the pumping parameter 	 for resonant pumping
of atom a: (a) qa = qb = 100, (b) qa = qb = 1. γa = γb = 1, Ea =
Eb = EL = 1, and Jab = 0.

FIG. 9. Normalized frequencies (ED − Eb)/� of dynamical ze-
ros as they depend on the pumping parameter 	 for resonant pumping
of atom a: values of parameters are reported in the caption to Fig. 5.

are, in general, more complex. However, the creation and
annihilation of dynamical zeros in pairs represent their most
typical feature. As an example, graphs corresponding to the
values of parameters defined in the caption to Fig. 2 are
shown in Fig. 8. They demonstrate that the “creation” and
“annihilation” of dynamical zeros occur in pairs. However,
dynamical zeros can emerge in even greater numbers. This
is documented in Fig. 9, where five dynamical zeros occur
with frequency ED = Eb for 	 = 0 for values of parameters
typical for molecular condensates. Similarly to the long-time
photoelectron ionization spectra of the ionization system
interacting with a neighbor [19], splitting of the normalized
frequencies (ED − Eb)/� appropriate to spectra I lt

0 and I lt
1

is observed for nonresonant pumping of the two-level atom
a (Ea �= EL). The symmetry 	 ↔ −	 mentioned in [19] is
also preserved in the analyzed autoionization system.

VI. CONCLUSIONS

The long-time photoelectron ionization spectra of an
autoionization system interacting with a neighbor two-level
atom have been investigated in several distinct regimes. They
typically consist of several peaks with central positions and
spectral widths depending on the pumping strength. As a
consequence of the interference of several ionization paths,
zeros occur in the long-time photoelectron ionization spectral
profiles. Whereas only one genuine Fano zero has been found
under special conditions, two Fano-like zeros observed only
for weak optical pumping have been identified for a general
system by constructing a suitable canonical transformation.
The long-time photoelectron ionization spectra conditioned
by the state of the neighbor two-level atom exhibit permanent
Rabi oscillations. Spectral dynamical zeros observed once
in the Rabi period have been revealed in these spectra.
The frequencies of these dynamical zeros, depending on the
strength of the optical pumping as well as the projected state
of the neighbor two-level atom, have been analyzed.
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APPENDIX A: DETERMINATION OF POLES
OF THE LORENTZIAN CURVES GIVING

PHOTOELECTRON SPECTRA

The complex frequencies Er giving poles of the Lorentzian
curves composing photoelectron ionization spectra are deter-
mined as the sum of eigenvalues �Me,j of the matrix Me (j =
1, . . . ,4) and frequencies ξk (k = 1,2) giving Rabi oscillations
of the two-level atom a, Er = �Me,j + ξk . Whereas the fre-
quencies ξk are written in Eq. (11), the eigenvalues �Me,j can
be derived from roots of the fourth-order polynomial written
in the shifted frequency �̃Me ; �Me = �̃Me − iπ |µαL|2:

[�̃Me ]4 + α3[�̃Me ]3 + α2[�̃Me ]2 + α1�̃Me + α0 = 0. (A1)

The coefficients αj introduced in Eq. (A1) can be derived from
the elements of matrix Me:

α0 = (�Ea + Eb)
[ − EbMaM

c
a + (−�Ea + iγa)MbM

c
b

+ (
MaM

c
bjab + Mc

aMbj
c
ab

)]|αL|2 + [
MaM

c
a |µa|2

+ M2
bMc2

b − (
Maµ

∗
a + Mc

aµa

)
MbM

c
b

]|αL|4,
α1 = (−�Ea + iγa)(�Ea + Eb)Eb + [

(�Ea − iγa)|µa|2
+ (�Ea + 2Eb)MaM

c
a + (2�Ea − iγa + 2Eb)

× MbM
c
b

]|αL|2 + (�Ea + Eb)jabj
c
ab

− [
(µa + Ma)Mc

bjab + (
µ∗

a + Mc
a

)
Mbj

c
ab

]|αL|2,
α2 = �Ea(�Ea − iγa) + (3�Ea − 2iγa)Eb + E2

b

− [
MaM

c
a + |µa|2 + 2MbM

c
b

]|αL|2 − jabj
c
ab,

α3 = −2�Ea − 2Eb + iγa. (A2)

In Eq. (A2), Eb = �Eb − iγb + iπ |µαL|2, Ma =
µa − iπµJ ∗, Mc

a = µ∗
a − iπµ∗J , Mb = µb − iπµV ∗,

Mc
b = µ∗

b − iπµ∗V , jab = Jab − iπJV ∗, and jc
ab =

J ∗
ab − iπJ ∗V . Roots of the polynomial in Eq. (A1) can

be found analytically, in principle, which might be useful in
special cases.

APPENDIX B: DETERMINATION OF FANO
AND DYNAMICAL ZEROS

The specific form of the long-time solution for the photo-
electron spectra written in Eqs. (12), (13), and (16) allows us

to reformulate the condition in Eq. (19) for the frequencies EF

of Fano zeros. They can be found as a common solution of the
following four equations:

4∑
j=1

Akl
j

E − �Me,j − ξl

= 0; k = 0,1, l = 1,2. (B1)

The coefficients Akl
j can be derived from the solution in

Eq. (13) as follows:

Akl
j = [KlBe†Pe]kj [Pe−1c(0)]j . (B2)

Equations (B2) can be recast in the form of the third-order
polynomialspkl(E),

pkl(E) =
3∑

j=0

αkl
j Ej = 0, (B3)

with the coefficients defined as

αkl
0 = −

4∑
j=1

Akl
j

4∏
m=1,m�=j

(�Me,m + ξl),

αkl
1 =

4∑
j=1

Akl
j

4∑
m=1,m�=j

(�Me,m + ξl)
4∑

n=1,n�=j,m

(�Me,n + ξl),

αkl
2 = −

4∑
j=1

Akl
j

4∑
m=1,m�=j

(�Me,m + ξl), αkl
3 =

4∑
j=1

Akl
j .

(B4)

A Fano zero is identified only provided that its frequency EF

is found simultaneously among three roots of the polynomials
pkl for all k = 0,1 and l = 1,2. Moreover, the corresponding
root has to be real. In general, no more than three Fano zeros
can be found.

The third-order polynomials pkl introduced in Eq. (B3) are
also useful in expressing the conditions |dξ1

k (E,t)| = |dξ2
k (E,t)|

[equivalent to those written in Eq. (20)] for the occurrence of
dynamical zeros in the spectra I lt

k , k = 0,1:

|pk1(E)|
4∏

j=1

|E − �Me,j − ξ2|

= |pk2(E)|
4∏

j=1

|E − �Me,j − ξ1|, k = 0,1. (B5)

Equation (B5) represents a 15th-order polynomial that can
have complex coefficients. If the root of this polyno-
mial is real, it gives the frequency ED of a dynami-
cal zero. In principle, up to 15 dynamical zeros might
exist.
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