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Optimal control with accelerated convergence: Combining the Krotov and quasi-Newton methods
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One of the most popular methods for solving numerical optimal control problems is the Krotov method,
adapted for quantum control by Tannor and coworkers. The Krotov method has the following three appealing
properties: (1) monotonic increase of the objective with iteration number, (2) no requirement for a line search,
leading to a significant savings over gradient (first-order) methods, and (3) macrosteps at each iteration, resulting
in significantly faster growth of the objective at early iterations than in gradient methods where small steps are
required. The principal drawback of the Krotov method is slow convergence at later iterations, which is particularly
problematic when high fidelity is desired. We show here that, near convergence, the Krotov method degenerates
to a first-order gradient method. We then present a variation on the Krotov method that has all the advantages of
the original Krotov method but with significantly enhanced convergence (second-order or quasi-Newton) as the
optimal solution is approached. We illustrate the method by controlling the three-dimensional dynamics of the
valence electron in the Na atom.
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I. INTRODUCTION

The field of quantum control has developed rapidly since
the 1980s. The key aspects of the theory were formulated by
Tannor, Rice, Kosloff, Shapiro, Brumer, and Rabitz [1–5], and
the first experimental demonstrations were performed a decade
later [6–8]. Today, with the advances in technology, one can
shape the amplitude, phase, and polarization of femtosecond
laser pulses. Recently, the production of attosecond laser
pulses has also been demonstrated [9], which opens the door
to the possibility of controlling fast electronic processes.

One of the main theoretical tools in quantum control is
optimal control theory (OCT). OCT provides a variational
framework for calculating the optimal shaped laser pulse to
maximize a desired physical objective. Its application to quan-
tum mechanics was first formulated in the late 1980s [5,10].
In rare instances, the equations for the optimal control field
that emerge from OCT can be solved analytically. However, in
the vast majority of cases, a numerical treatment is required.
Invariably, these numerical treatments are iterative—one starts
from an initial guess for the control and improves on it by
repeating some procedure over and over.

The standard optimization approaches are either gradient
methods [11], which use first-derivative information, or New-
ton and quasi-Newton methods, which use second-derivative
information. A somewhat unconventional approach is the
Krotov method [12], adapted for quantum control by Tannor
et al. [13,14]. A decade later, Sklarz and Tannor [15] adapted
the nonlinear Krotov method [16] for quantum control, where,
for example, the system equation of motion is nonlinear. The
Krotov algorithm has been used with great success in many
works for applications ranging from cooling [17] to quantum
communication [18] and quantum computation [19,20]. A
related algorithm was introduced by Zhu and Rabitz [21], and
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an illuminating comparison of the algorithms was carried out
by Maday and Turinici [22]. The Krotov method has several
distinct advantages over gradient and quasi-Newton methods:
(1) monotonic increase of the objective with iteration number,
(2) no requirement for a line search, leading to a significant
savings over gradient (first-order) methods, and (3) macrosteps
at each iteration, resulting in significantly faster growth of the
objective at early iterations than in gradient methods where
small steps are required. On the other hand, at high iteration
numbers, the method tends to become inefficient and it is hard
to achieve high fidelities. With the Newton and quasi-Newton
methods, one can achieve high fidelities; however, because of
its line-search procedure, it is nonmonotonic and restricted
to microsteps, i.e., a significant number of iterations are
usually needed to get a reasonable outcome. (The simple
gradient search suffers from both shortcomings: low fidelity
together with nonmonotonicity and microsteps. However, it
is a relatively simple procedure that can be useful in certain
cases.)

In this paper, we analyze the source of the inefficiency
of the Krotov method at later iterations, and show that it
is due to the degeneration of the method to a first-order
gradient method as convergence is approached. We then
present a variation of the Krotov algorithm that combines
the benefits of the original Krotov method with that of
Newton’s method—monotonicity and macrosteps, along with
significantly improved convergence at high iteration numbers.

The remainder of this paper is organized as follows.
Section II is devoted to methodology. We first formulate
OCT using continuous functions (Sec. II A); from now on, we
will call this the “function language.” We use this formalism
to show the degeneration of the Krotov algorithm to a
gradient method as convergence is approached (Sec. II B).
We then proceed to describe the Newton and quasi-Newton
methods, focusing on a particular algorithm known as the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, after
its inventors applied [23–26]. To explain this algorithm, we
first reformulate OCT in a vector space (the “vector language,”
Sec. II C). We then continue by explaining Newton’s method in

053426-11050-2947/2011/83(5)/053426(10) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.053426


REUVEN EITAN, MICHAEL MUNDT, AND DAVID J. TANNOR PHYSICAL REVIEW A 83, 053426 (2011)

general and its approximation, the BFGS method, in particular
(Sec. II D). Finally we present our algorithm, which we call
Krotov–BFGS (or K–BFGS, Sec. II E). For each method, after
presenting the working equations of the method, we provide
a step-by-step description of the algorithm. Section III is
devoted to numerical examples. Section IV is a summary and
conclusion.

II. METHODOLOGY

A. General formalism for OCT: Necessary
condition for optimal control

Consider a system defined by the complex state function
ψ(r,t). The controllable parameters of the system are repre-
sented by the function ξ (t). The state function ψ evolves under
an equation of motion of the general form

ψ̇(r,t) = f [ψ,ξ ](r,t). (1)

In Dirac notation, Eq. (1) is written as |ψ̇(t)〉 = |f [ψ,ξ ](t)〉.
We will frequently use Dirac notation in the rest of the paper,
and we will generally omit writing the dependence on t except
in integrals over t .

Given the equation of motion, one would like to maximize
the value of some target at time T [27]. The target could be
a specific state (“state-to-state transfer”), an observable, or
something else. One can generally write the objective in the
form

J = 〈ψ(T )|P |ψ(T )〉, (2)

where P is some projection operator. For generality, we will
simply write J [ψ(T )].

Once the mathematical form of the objective functional
is defined, maximizing the target corresponds to maximizing
the objective under the constraint of Eq. (1). This is done by
adding to the objective the equation of motion using a Lagrange
multiplier function χ (sometimes referred to as the “dual” or
“adjoint” function), and defining a new functional J̄ as

J̄ = J − 2Re
∫ T

0
〈χ (t)|ψ̇(t) − f [ψ,ξ ](t)〉dt. (3)

It is sometimes useful to add other costs on the controls [28]:

Jc =
∫ T

0
λ(t)g[ξ ](t) dt. (4)

There are two purposes that Jc can serve. These two purposes
correspond to two different meanings for λ: (a) If the purpose
of Jc is to be an additional constraint, i.e., ξ fulfills some
equation, then λ should be treated as a Lagrange multiplier.
In this case, the maxima of J̄ still equal the maxima of J ,
since adding Jc is to add zero. (b) However, if the purpose
of Jc is to be a penalty function, which means the system
has some freedom to deviate from an equation for ξ but is
penalized for doing so, then λ is a fixed predetermined function
that determines the penalty for deviation. For this option, Jc

has to be nonpositive for maximization (and non-negative for
minimization). However, in this case, the maxima of J̄ will
differ in general from the maxima of J . Nevertheless one can
still keep Jc small enough relative to J so that the maxima of J̄

will be approximately the maxima of J [29]. For the remainder
of this paper we assume that

g[ξ ](t) = (ξ (t) − ζ (t))2, (5)

and therefore

Jc = −
∫ T

0
λ(t)(ξ (t) − ζ (t))2dt, (6)

where ζ is the “reference control,” and λ(t) > 0.
Combining everything together, we obtain

J̄ = J + J1 + J2 + J3, (7a)
where

J1 = −2Re
∫ T

0
〈χ (t)|ψ̇(t)〉dt, (7b)

J2 = 2Re
∫ T

0
〈χ (t)|f [ψ,ξ ](t)〉dt, (7c)

J3 =
∫ T

0
λ(t)g[ξ ](t) dt = −

∫ T

0
λ(t)(ξ (t) − ζ (t))2dt. (7d)

The condition for an optimal control is that J̄ be maxi-
mized, i.e., ∇J̄ = 0 or, more specifically, δJ̄

δξ
= δJ̄

δξ∗ = δJ̄
δ|ψ〉 =

δJ̄
δ〈ψ | = 0. Using the maximization condition δJ̄

δ〈ψ | = 0 [30], one
gets an equation of motion for the Lagrange multiplier χ and
its value at the final time T (see Appendix A):

|χ̇〉 = − δJ2

δ〈ψ | , (8a)

|χ (T )〉 = δJ

δ〈ψ(T )| . (8b)

By taking χ to fulfill Eqs. (8a) and (8b), one can address the
δJ̄
δξ

part of the gradient of J̄ alone (since all the other parts are
zero), and one obtains

δJ̄

δξ
= 2Re

〈
χ

∣∣∣∣δf [ψ,ξ ]

δξ

〉
+ λ

δg[ξ ]

δξ

= 2Re

〈
χ

∣∣∣∣δf [ψ,ξ ]

δξ

〉
− 2λ (ξ − ζ ) , (9)

where we emphasize that both the left-hand side (LHS) and
the right-hand side (RHS) are functions of time. J̄ is then
maximized by ξ = ξ0 that gives δJ̄

δξ
= 0 [31].

There are a few methods for finding (or at least approaching)
the ξ0 that fulfills δJ̄

δξ
= 0. Except for a few specific cases

where a full analytical solution is possible, all methods use
Eqs. (7a)–(9) in an iterative, self-consistent manner. In this
paper, we present three such methods. On the one hand,
there are methods that do not use a line-search approach.
The premier example is the Krotov method, which as we
will see immediately below has the advantage of monotonic
convergence of J̄ as a function of the iterations. On the other
hand, there are line-search methods—Newton’s method and, in
particular, the BFGS (and its limited memory version, LBFGS)
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method. These methods use second-order information to
approach ξ0 but, due to their line-search, lack monotonic
convergence with iteration number. Finally, we present our
combined version of the two, the Krotov–BFGS (K–BFGS)
method, which preserves both the advantages of second-order
information with monotonicity in the iterations.

B. The Krotov method

The main feature of the Krotov method (in fact, Krotov
originally derived his method to fulfill this feature) is the
monotonicity of J̄ as a function of the iterations (i.e.,
J̄ (k) � J̄ (k−1), for the kth iteration). We consider systems that
evolve under linear equations of motion [i.e., f in Eq. (1)
depends linearly on ψ and ξ ]. The Krotov method achieves
monotonicity by updating the control in the kth iteration as
(see Appendix B)

ξ (k) = ζ (k) + 1

λ
Re

〈
χ (k−1)

∣∣∣∣δf [ψ (k),ξ ]

δξ

〉
≡ y[ψ (k),χ (k−1)].

(10)

Notice that in the Krotov method, the ψ of the kth iteration,
ψ (k), is used to update the kth guess of the control, ξ (k), while
also depending on it via Eq. (1). This differs from gradient
search approaches that use only information from the previous
iteration(s). The function ζ is some reference control that in
principle can be chosen differently from iteration to iteration.
Choosing ζ (k) as fixed for all iterations (i.e, ζ (k) = ζ (k−1) = ζ )
requires that J3 be chosen as in Eq. (6) if monotonicity is
to be preserved. However, if one allows ζ to change from one
iteration to the next, and takes ζ (k) = ξ (k−1), then monotonicity
is achieved even if J3 = 0 (a proof is given in Appendix C).
Nevertheless, even in this case, the function λ in Eq. (10) is
still needed as a calibration for the steps of the iterations (see,
in Ref. [15]).

Experience shows that the Krotov method is inefficient
as convergence is approached, i.e., one cannot reach high
fidelities with the Krotov method in a reasonable number
of iterations, while with second-order methods like Newton’s
method, one can reach high fidelities. In this section we give
a theoretical analysis of the Krotov method that sheds light on
this phenomenon.

Taylor expanding the ψ (k) equation of motion [RHS of
Eq. (1)] around ψ (k−1), we obtain

|f [ψ (k),ξ ]〉 = |f [ψ (k−1),ξ ]〉 +
∣∣∣∣δf [ψ,ξ ]

δψ
�ψ

〉
, (11)

where �ψ = ψ (k) − ψ (k−1). (Since we assume linear depen-
dence of f on ψ , higher-order elements vanish.) Varying
Eq. (11) with respect to the control gives∣∣∣∣δf [ψ (k),ξ ]

δξ

〉
=

∣∣∣∣δf [ψ (k−1),ξ ]

δξ

〉
+

∣∣∣∣δ2f [ψ,ξ ]

δξδψ
�ψ

〉
. (12)

Inserting Eq. (12) into Eq. (10) gives

ξ (k) = ζ (k) + 1

λ

(
ξ

(k)
1 + ξ

(k)
2

)
, (13a)

where

ξ
(k)
1 = Re

〈
χ (k−1)

∣∣∣∣δf [ψ (k−1),ξ ]

δξ

〉
, (13b)

ξ
(k)
2 = Re

〈
χ (k−1)

∣∣∣∣δ2f [ψ,ξ ]

δξδψ
�ψ

〉
. (13c)

According to Eqs. (9) and (5), δJ̄ (k−1)

δξ
is given by

δJ̄ (k−1)

δξ
= 2Re

〈
χ (k−1)

∣∣∣∣δf [ψ (k−1),ξ ]

δξ

〉
− 2λ(ξ (k−1) − ζ (k−1))

= 2
{
ξ

(k)
1 − λ(ξ (k−1) − ζ (k−1))

}
. (14)

Combining Eqs. (14) and (13a) gives

ξ (k) = ζ (k) + 1

2λ

δJ̄ (k−1)

δξ
+ ξ (k−1) − ζ (k−1) + 1

λ
ξ

(k)
2

= ζ̃ (k) + α
δJ̄ (k−1)

δξ
+ 2αξ

(k)
2 , (15)

where ζ̃ (k) = ζ (k) + ξ (k−1) − ζ (k−1), and α = 1
2λ

. We find that
the update rule is composed of two elements: the “simple”
first-order gradient element [the first two terms on the RHS of
Eq. (15)] and a correction term that depends on the change in ψ

between iterations [the third term on the RHS of Eq. (15)]. We
show in Appendix D that, near convergence, this third term
goes to zero and therefore the Krotov method degenerates
to a first-order gradient method. The main disadvantage of
first-order gradient methods is that in many cases the first-
order information is not enough to reach high fidelities in a
reasonable number of iterations, since the neighborhood of a
maximum is almost flat. (A consequence of this is that one
gets a strong dependence on the value of λ, which can cause
numerical instabilities.)

We conclude this section by giving the algorithmic steps of
the Krotov method, as follows, at iteration k:

(i) Using χ (k−1) from the previous iteration and ψ (k) from
the present iteration, an improved control ξ (k) is calculated
via Eq. (10). This improved control is used to propagate ψ (k)

according to Eq. (1). (Since ξ (k) depends on ψ (k), we solve the
equations self-consistently using what is known as an implicit
scheme. One can also use an explicit scheme, however, it is
known to be less stable.)

(ii) At time T , Eqs. (7a)–(7d) are used to calculate J̄ (k).
(iii) Using Eq. (8b), one gets the final condition of the

Lagrange multiplier, χ (k)(T ).
(iv) Using Eq. (8a), χ (k) is propagated and calculated for all

times.
The procedure described above is repeated until conver-

gence. At iteration 0 in step (i), one guesses a control ξ (0) and
uses it to propagate ψ (0) up to time T with Eq. (1). A schematic
diagram of the algorithm is given in Fig. 1.

C. Translation of the optimal control formalism
to vector language

The formalism of Newton’s method (and its approximation,
BFGS) is most easily presented using discrete vectors rather
then continuous functions. Therefore, we start by reformulat-
ing OCT in this “vector language.” For the sake of generality,
we write the formalism for a general vector space. However,
at the end we “translate” the results to Dirac notation.
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FIG. 1. Schematic diagram of the Krotov algorithm.

Following Sec. II A, we consider a complex state vector, �v,
where

�v = (v1,v2, . . . ,vn) , (16)

and where each of the components here are functions of the
Hilbert space. The j th vector component obeys the following
update rule:

vj = fj [�v,�ξ ], (17)

where �ξ is the control vector,

�ξ = (ξ1,ξ2, . . . ,ξn) . (18)

Although this formalism is general, for our purposes the
components of the vectors play the role of a discrete version of
the continuous time dependence of the functions in Sec. II A
(one could look at them as a numeric time grid).

For any two vectors in the space, �w and �̃w, we define a
notation for the inner product of their kth and lth components,
wk and w̃l , respectively, as

wkw̃l =
∫ −∞

−∞
wk(r)w̃l(r) dr. (19)

We now can reformulate Eqs. (7) with the help of a Lagrange
multiplier vector, �u = (u1,u2, . . . ,un) as

J̄ = J + J1 + J2 + J3, (20)

where

J = J [vn], (21a)
i.e., the objective functional J depends only on vn, and

J1 = −2Re

⎛⎝u∗
nvn +

n−1∑
j=1

u∗
j vj

⎞⎠ , (21b)

J2 = 2Re
n−1∑
j=1

u∗
j fj [�v,�ξ ], (21c)

J3 =
n−1∑
j=1

λjgj [�ξ ] = −
n−1∑
j=1

λj (ξj − ζj )2, (21d)

where �ζ is a reference control vector, and the discussion of
J3 in Sec. II A is also relevant here. Using the maximization
condition δJ̄

δv∗
j

= 0, one gets the analog of Eqs. (8),

uj = − δJ2

δv∗
j

,j �= n, (22a)

un = δJ

δv∗
n

. (22b)

Equations (22a) and (22b) lead to an equation for the
gradient of J̄ [the analog of Eq. (9)],

δJ̄

δξs

= 2Re
n−1∑
j=1

u∗
j

δfj [�v,�ξ ]

δξs

+
n−1∑
j=1

λj

δgj [�ξ ]

δξs

= 2Re
n−1∑
j=1

u∗
j

δfj [�v,�ξ ]

δξs

− 2λs (ξs − ζs) . (23)

With this “vector formalism of OCT” in hand, we can now
explain Newton’s method and its BFGS approximation.

D. Newton’s method and the BFGS method

Newton’s method uses a line-search approach to minimize
a function F (i.e., a search along the gradient of the function
to find a minimum). The method minimizes a function, F :
Cn → R (for maximization one can minimize −F), if its
gradient, �∇F , and its Hessian matrix A (or its inverse A−1) are
known (where Aij = δ2F

δxiδxj
, �x = (x1,x1, . . . ,xn) ∈ Cn). The

actual implementation of the method is iterative, moving along
a path until minimization has been achieved. The kth iteration
step for �x (�x(k)) is given by

�x(k+1) = �x(k) − A−1(�x(k)) �∇F(�x(k)). (24)

Unfortunately, in many cases, the Hessian A is unknown
or unfeasible to calculate on a computer. The BFGS method
[23–26] approximates the Hessian matrix of the kth iteration,
A ≈ B(k), using the known quantities �x(k−1), �x(k), �∇F(�x(k−1)),
�∇F(�x(k)), and B(k−1) (usually B(0) is taken as the unit matrix).
These kinds of methods are referred to as “quasi-Newton”
methods. For the kth iteration, we can therefore rewrite Eq. (24)
as

B(k)(�x(k+1) − �x(k)) = −�∇F(�x(k)), (25)

where �x(k+1) is yet unknown. Solving the equation

B(k) �p(k) = −�∇F(�x(k)) (26)

gives a vector �p(k). IfF were truly quadratic, then �x(k+1) would
be completely determined by Eq. (26); however, because in
general the function is not quadratic, one performs a line-
search,

�x(k+1) = �x(k) + α(k) �p(k), (27)

to minimize F (sometimes another condition, e.g., on the
gradient, is added). α(k) is a scalar that one should change until
the minimum is found. After finding the minimum, one updates
the Hessian approximation for the next iteration according to
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the formula [23–26]

B(k+1) = B(k) + �y(k)(�y(k))T

(�y(k))T �s(k)
− B(k)�s(k)(B(k)�s(k))T

(�s(k))T B(k)�s(k)
, (28)

where �y(k) = �∇F(�x(k+1)) − �∇F(�x(k)), and �s(k) = α(k) �p(k). The
process is continued until convergence.

The disadvantage of the method—the need to perform
a line-search—is apparent from Eq. (27) and causes the
method to lack monotonicity with respect to iteration number.
Although the dimension of the vector space is n, since
B is symmetric, only 1

2n(n + 1) data points need to be
stored. Nevertheless, in some systems, even this is too large.
The limited-memory BFGS (LBFGS) method [32,33] uses a
smaller amount of space to store the BFGS approximation to
the Hessian.

Translation of this notation to Dirac notation is
straightforward: �x corresponds to �v which corresponds to
|ψ〉 = (|ψ1〉,|ψ2〉, . . . ,|ψn〉), and similarly, �u corresponds to
|χ〉 = (|χ1〉,|χ2〉, . . . ,|χn〉). Therefore, after the translation,
the steps in iteration k are as follows:

(i) Propagate |ψ (k)〉 using the �ξ (k) calculated [via Eq. (17)]
at the previous iteration.

(ii) At time T , use Eqs. (20)–(21d) to calculate J̄ (k).
(iii) Use Eq. (22b) to get the final condition on the Lagrange

multiplier |χ (k)
n 〉.

(iv) Use Eq. (22a) to calculate |χ (k)
j 〉 for all j ’s, and use

Eq. (23) to calculate ∇J̄ (k).
(v) Calculate �p(k) via Eq. (26).
(vi) Guess (smartly) a value for α(k).

(vii) Update �ξ (k) via Eq. (27) to �̃ξ (k+1).

(viii) Propagate |ψ̃ (k+1)〉 with �̃ξ (k+1) via Eq. (17).
(ix) At time T , use Eqs. (20)–(21d) to calculate J̃ (k+1).
(x) Check: if J̃ (k+1) is not at the minima, guess (smartly)

a new α(k) and go back to step (vii); else continue to
step (xi).

(xi) Accept �ξ (k+1) = �̃ξ (k+1), and update the Hessian approx-
imation B(k+1) via Eq. (28).

As in the Krotov algorithm, at iteration 0 in step (i), one
guesses a control �ξ (0) and uses it to propagate |ψ (0)〉 up to time
T via Eq. (17). When performing the algorithm in practice,
note that every time one reaches step (xi) one can skip steps
(i) and (ii) by setting |ψ (k+1)〉 = |ψ̃ (k+1)〉 and J̄ (k+1) = J̃ (k+1).
The procedure described above is repeated until convergence.
Figure 2 presents a schematic diagram of the algorithm.

E. Combining the Krotov and the BFGS methods (K–BFGS)

1. The form of Krotov in vector language

Before combining the Krotov and BFGS methods, we need
to reformulate the Krotov update rule [Eq. (10)] in vector
language:

ξ (k)
s = ζ (k)

s − 1

λs

Re
n−1∑
j=1

u
∗(k−1)
j

δfj [�v(k),�ξ ]

δξs

(29)

= ζ (k)
s − 1

λs

Re

(
u∗(k−1)

s

δfs[�v(k),�ξ ]

δξs

)
, (30)

where Eq. (30) follows from the fact that δfj

δξs
= δfs

δξs
δjs .

FIG. 2. A schematic diagram of the kth iteration in the BFGS
algorithm.

2. Combining Krotov and BFGS

As mentioned above (Sec. II A), the only restriction for
J3 (if taken as a penalty) is that it has to be nonpositive
(for maximization) [34]. The Hessian matrix A of a function
near its maxima is non-negative, and if one uses the BFGS
approximation of the Hessian B, it will be non-negative
everywhere. Hence we do not have to restrict ourselves to
the usual form of the penalty function—we can also write
Eq. (21d) as

J3 = −λ

n∑
k,j=1

Bkj (ξk − ζk) (ξj − ζj ), (31)

where λ > 0. In the function language of Sec. II A, this is
similar to claiming that J3 [Eq. (7d)] can take the form of a
quadratic integral, i.e., J3 = ∫ T

0

∫ T

0 λ(t,t ′)g[ξ ](t,t ′)dtdt ′. This
generalized form for J3 allows us to incorporate second-order
information such as δ2J̄

δξkδξj
into the Krotov algorithm.

Using Eqs. (21a)–(21c) for J , J1, and J2, and Eq. (31) for
J3, Eq. (20) becomes

J̄ = J [vn] − 2Re

⎧⎨⎩
n−1∑
j=1

(u∗
j vj − u∗

j fj [�v,�ξ ]) − u∗
nvn

⎫⎬⎭
−λ

n∑
k,j=1

Bkj (ξk − ζk)(ξj − ζj ). (32)

The gradient of J̄ [Eq. (23)] is given by

δJ̄

δξs

= 2Re

(
u∗

s

fs[�v,�ξ ]

δξs

)
− 2λ

n∑
j=1

Bsj (ξj − ζj ). (33)

From the maximization condition δJ̄
δξs

= 0, we get

n∑
j=1

Bsj (ξj − ζj ) = 1

λ
Re

(
u∗

s

fs[�v,�ξ ]

δξs

)
. (34)
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Our goal now is to get an expression for ξ (k)
s , s = 1, . . . ,n,

i.e., the value of the control of each time point s at the kth
iteration. To do this, we rewrite Eq. (34) as

ξs = ζs + 1

Bss

⎧⎨⎩1

λ
Re

(
u∗

s

fs[�v,�ξ ]

δξs

)
−

n∑
j=1,j �=s

Bsj (ξj − ζj )

⎫⎬⎭ ,

(35)

where we have isolated the sth term from the sum. By analogy,
with the usual Krotov procedure, we replace �v → �v(k), �u →
�u(k−1), and �ξ → �ξ (k) [see Eq. (30)]. But, in addition, we replace
B → B(k−1), exactly as in the usual BFGS method, since B is
an estimation of the Hessian based on the previous iteration.
This leads to the following update rule for the kth iteration:

ξ (k)
s = ζ (k)

s + 1

B
(k−1)
ss

{
1

λ
Re

(
u∗(k−1)

s

fs[�v(k),�ξ ]

δξs

)

−
n∑

j=1,j �=s

B
(k−1)
sj

(
ξ

(k)
j − ζ

(k)
j

)⎫⎬⎭ . (36)

However, this update rule raises a problem: the sth component
of the updated control depends on later time elements that are
as yet unknown (i.e., ξ (k)

s depends on ξ
(k)
j ’s for j > s, which

are unknown) through the second term in the parentheses of
the RHS of Eq. (36).

The solution is based on the idea that, to paraphrase George
Orwell’s words, “he who knows the past controls the future”
[35]. We set ξj = 0 for all j > s, which reduces Eq. (36) to

ξ (k)
s = ζ (k)

s + 1

B
(k−1)
ss

{
1

λ
Re

(
u∗(k−1)

s

fs[�v(k),�ξ ]

δξs

)

−
s−1∑
j=1

B
(k−1)
sj

(
ξ

(k)
j − ζ

(k)
j

)⎫⎬⎭ . (37)

Now all of the elements on the RHS of the equation are known.
As s increases, we use the past information [all ξ

(k)
j where j <

s, according to Eq. (37)] to determine the present (ξ (k)
s ) in such

a way that the maximization condition of Eq. (34) is obtained.
Equation (37) is the central result of this paper. It gives an
update rule for the control that combines the monotonicity of
the Krotov method with the second-order information of the
BFGS method. We call the combined method Krotov–BFGS
or K–BFGS. In Dirac notation, the K–BFGS update rule takes
the form

ξ (k)
s = ζ (k)

s + 1

B
(k−1)
ss

(
1

λ
Re

〈
χ (k−1)

s

∣∣∣∣fs[ψ (k),�ξ ]

δξs

〉

−
s−1∑
j=1

B
(k−1)
sj (ξ (k)

j − ζ
(k)
j )

⎞⎠ . (38)

Finally, we want to avoid the line-search of Eq. (27)
while preserving monotonicity. Therefore, we fix �s(k) = �p(k),
skipping the line-search of Eq. (27). However, the BFGS
update equation for the approximate Hessian [Eq. (28)] is
retained.

FIG. 3. A schematic diagram of the kth iteration in the K–BFGS
algorithm.

As before, we conclude by giving the algorithm steps at
iteration k as follows:

(i) Using |χ (k−1)〉 and the Hessian B(k−1) from the previous
iteration, and |ψ (k)〉 of the present iteration, the improved
control ξ (k) is calculated using Eq. (36). The new control is
then used to propagate |ψ (k)〉 according to Eq. (17).

(ii) At time T , Eqs. (20)–(21d) are used to calculate J̄ (k).
(iii) Eq. (22b) is used to get the final condition of the

Lagrange multiplier |χ (k)
n 〉.

(iv) Eq. (22a) is used to calculate |χ (k)
j 〉 for all j ’s, and

Eq. (23) is used to calculate ∇J̄ (k).
(v) Calculation of �p(k) is done via Eq. (26) and set �s(k) =

�p(k).
(vi) The Hessian approximation B(k+1) is updated via

Eq. (28).
The procedure described above is repeated until conver-

gence. [As in the Krotov and BFGS algorithms above, at
iteration 0 in step (i), one guesses a control ξ (0) and uses it
to propagate ψ (0) up to time T with Eq. (17).] The algorithm is
given in a schematic diagram in Fig. 3. Note that the K–BFGS
algorithm, like the original Krotov algorithm, avoids the need
for a line search. As such it has a significantly simpler structure
than the BFGS algorithm shown is Sec. II D.

III. RESULTS

We consider the Na atom, treating its single valence electron
fully quantum mechanically, and its core electrons as an
external pseudopotential. This results in a linear Schrödinger
equation of motion. We take the control to be an x-polarized
electric field εx(t) [we are using the dipole approximation, i.e.,
ε(x,t) = −µ̂xεx(t), where µ̂x is the x element of the dipole
operator]. The initial state |ψ(0)〉 is taken as the ground state
of sodium.

We choose as the target a state |φ〉 that is the sum of two
Gaussians, i.e.,

φ(x,y,z) = A(e−αx (x−xα )2−αy (y−yα )2−αz(z−zα )2

+ e−βx (x−xβ )2−βy (y−yβ )2−βz(z−zβ )2
), (39)

where {αj }, {βj }, xα , xβ , etc. are constants and A is a
normalization factor. We would like to achieve this target up
to a global phase. Then, the objective functional J can be
rewritten with the help of a projection operator Pφ as

J = 〈ψ(T )|Pφ|ψ(T )〉 = 〈ψ(T )|φ〉〈φ|ψ(T )〉. (40)
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FIG. 4. (Color online) The objective J vs iteration number for
the double-Gaussian target in the sodium atom. αx = αy = αz =
1

18 , xα = −xβ = 5, yα = yβ = zα = zβ = 0, and T = 10 fs.

J3 was chosen to be zero. Figure 4 shows that J is a monotonic
function of the iteration number for the Krotov and K–BFGS
algorithms (remember that J and not just J̄ is monotonic, see
Appendix C). On the other hand, high fidelities are achieved
only with the LBFGS and K–BFGS algorithms. Only the K–
BFGS algorithm is monotonic and has high fidelity.

IV. CONCLUSIONS

We started by showing that the low fidelity in the Krotov
algorithm arises from its degeneration to a simple gradient
search as the algorithm reaches convergence. By rewriting the
Krotov update equation for the control such that it includes
the Hessian information given by Eq. (32) (actually the BFGS
approximation to the Hessian), we established a variation on
the Krotov algorithm that is both monotonic in the iteration
number and achieves high fidelities. Although the inclusion
of the Hessian raises a difficulty [the dependence of a control
component on the future unknown control components, see
Eq. (36)], we established a procedure that fulfills the necessary
condition for monotonic convergence with Eq. (37). We also
provided a detailed description of the K–BFGS algorithm
steps.

Regarding the numerical costs, the CPU time for K–BFGS
is essentially identical to that of the usual Krotov method, and
a factor of m more efficient then the usual BFGS method,
where m is the average number of line searches per iteration.
The K–BFGS method, as in the usual BFGS method, requires
storing the matrix B, the approximate Hessian. The dimension
of B is ∼N2, where N is the number of steps. In the usual
BFGS approach, this memory requirement can be avoided
using the limited-memory BFGS (LBFGS) method. A natural
extension of the present work would be to construct a limited-
memory K–BFGS (LK–BFGS) method, but this is a somewhat
specialized task.

For processes such as quantum computing, where extremely
high fidelities are necessary, as well as for other processes
where one seeks high fidelities, the K–BFGS method appears
to be a promising alternative to the existing algorithms.
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APPENDIX A: DERIVING THE EULER–LAGRANGE
EQUATIONS FOR QUANTUM OPTIMAL CONTROL

We give here the derivation of Eqs. (8a) and (8b). The
variation of J̄ [Eq. (7)] with respect to ψ∗ is given by

δJ̄

δ〈ψ | = δJ

δ〈ψ | + δJ1

δ〈ψ | + δJ2

δ〈ψ | + δJ3

δ〈ψ | . (A1)

Note that δJ3
δ〈ψ | = 0 since J3 is independent of 〈ψ |. Furthermore

J depends only on 〈ψ(T )| so that

δJ

δ〈ψ | = δJ

δ〈ψ(T )| . (A2)

Integrating J1 of Eq. (7b) by parts gives

J1 =−2Re

(
〈χ (T )|ψ(T )〉 − 〈χ (0)|ψ(0)〉−

∫ T

0
〈χ̇ (t)|ψ(t)〉dt

)
(A3)

Therefore (since the initial condition ψ(0) is fixed),

δJ1

δ〈ψ | = |χ̇〉 − |χ (T )〉. (A4)

Inserting Eqs. (A2) and (A4) into Eq. (A5) gives

δJ̄

δ〈ψ | = δJ

δ〈ψ(T )| − |χ (T )〉 + |χ̇〉 + δJ2

δ〈ψ | . (A5)

Using the necessary condition δJ̄
〈ψ | = 0, we get Eqs. (8a)

and (8b):

|χ̇〉 = − δJ2

δ〈ψ | ,

|χ (T )〉 = δJ

δ〈ψ(T )| .

In a similar way one can derive Eqs. (22a) and (22b).

APPENDIX B: DERIVING THE KROTOV UPDATE RULE
FOR THE CONTROL FIELD

We give here a short derivation for the Krotov update rule
for linear equations of motion [Eq. (10)]. For a more complete
treatment, including nonlinear equations of motion, one should
refer to Ref. [15].
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In the Krotov method, one needs to defines an auxiliary
function as follows:

L[ψ,ξ ; φ] = G[ψ(T )] −
∫ T

0
R[ψ,ξ ](t)dt − φ[ψ(0),0],

(B1a)
where

G[ψ(T )] = J [ψ(T )] + φ[ψ(T ),T ], (B1b)

R[ψ,ξ ] = Re

{
∂φ

∂ψ
f [ψ,ξ ] − λg[ξ ] + ∂φ

∂t

}
, (B1c)

and φ is a scalar function that depends on ψ , which one is
free to choose as desired. In Ref. [15], it is shown that L = J ,
which means that one should maximize G and minimize R.
The Krotov algorithm achieves this by an iterative method. At
the kth iteration, one maximizes R with respect to the control
ξ , while at the same time maximizing G and minimizing R

with respect to ψ , i.e.,

ξ (k) = arg max
ξ

R[ψ (k),ξ ], (B2a)

R[ψ (k),ξ (k)] = arg min
ψ

R[ψ,ξ (k)], (B2b)

G[ψ (k)] = arg max
ψ

G[ψ]. (B2c)

For linear equations of motion, φ = 〈χ |ψ〉, and Eq. (B1c)
becomes

R[ψ,ξ ] = Re {〈χ |f [ψ,ξ ]〉 − λg[ξ ] + 〈χ̇ |ψ〉} . (B3)

Using the necessary conditions δR
δψ

= 0 and δG
δψ

= 0, one

obtains Eqs. (8a) and (8b) for χ (k), to be used in the next
iteration. Using the minimization condition δR

δξ
= 0 for R, with

g given by Eq. (5), one gets Eq. (10) as follows:

ξ (k) = ζ (k) − 1

λ

{
Re

〈
χ (k−1)

∣∣∣∣δf [ψ (k),ξ ]

δξ

〉}
. (B4)

APPENDIX C: SUFFICIENT CONDITIONS FOR J
AS WELL AS J̄ TO INCREASE MONOTONICALLY

We prove here the following claim: for the Krotov method
(as presented in Sec. II B), if in the update rule for the control
[Eq. (10)] one takes ζ (k) = ξ (k−1), then J (not only J̄ ) is
monotonic with iteration number.

For the proof, we can take J3 to be as in Eq. (6), and rewrite
Eq. (2) as

J̄ = J + J1 + J2 + J3 ≡ J ′ −
∫ T

0
λ(t)[ξ (t) − ζ (t)]2 dt,

(C1)

where λ(t) > 0. However, according to Eq. (1), J1 + J2 = 0;
therefore we can rewrite Eq. (C1) as

J̄ = J −
∫ T

0
λ(t)[ξ (t) − ζ (t)]2 dt. (C2)

If ξ is updated according to the Krotov update rule [Eq. (10)],
then for the kth iteration we know that

J̄ (k) � J̄ (k−1). (C3)

By inserting Eq. (C2) into Eq. (C3), we get

J (k) −
∫ T

0
λ(t)[ξ (k)(t) − ζ (t)]2dt � J (k−1)

−
∫ T

0
λ(t)[ξ (k−1)(t) − ζ (t)]2 dt. (C4)

However, ζ can be chosen arbitrarily, so we can choose ζ =
ξ (k−1), and we get

J (k) − J (k−1) �
∫ T

0
λ(t)[ξ (k)(t) − ξ (k−1)(t)]2dt � 0. (C5)

Therefore we get

J (k) � J (k−1), (C6)

which concludes the proof.
Following these same steps, one can prove the above claim

also for the K–BFGS update rule [Eq. (37)], where J3 is written
as in Eq. (31).

APPENDIX D: THE DEGENERATION OF THE KROTOV
METHOD TO A FIRST-ORDER GRADIENT METHOD

NEAR CONVERGENCE

We prove here that the Krotov method degenerates to a first-
order gradient method near convergence. Our starting point is
Eq. (15). If we assume that the reference field is the same at
all iterations, ζ (k) = ζ (k−1) = ζ , we obtain

ξ (k) = ξ (k−1) + α
δJ̄ (k−1)

δξ
+ 2αRe〈χ (k−1)|µ|ψ (k) − ψ (k−1)〉.

(D1)

Moreover, µ = δ2f

δξδψ
is independent of ξ and ψ , since f is

linear in both.
The strategy of our proof will be to start from t = 0

and show that as δJ̄
δξ

→ 0 the Krotov and first-order gradient
methods give the same field at all future values of t . According
to Eq. (D1), the updated control ξ (k) at time t = 0 is given by

ξ (k)(0) = ξ (k−1)(0) + α
δJ̄ (k−1)

δξ (0)

+ 2αRe〈χ (k−1)(0)|µ|ψ(0) − ψ(0)〉
= ξ (k−1)(0) + α

δJ̄ (k−1)

δξ (0)
, (D2)
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where ψ (k)(0) = ψ (k−1)(0) = ψ(0) is the initial condition of ψ . For small enough �t , Eq. (1) can be rewritten as

|ψ(t + �t)〉 ≈ |ψ(t)〉 + |f [ψ(t),ξ (t)]〉�t. (D3)

Therefore, near convergence, ψ (k) at �t is given by

|ψ (k)(�t)〉 = |ψ(0)〉 + |f [ψ(0),ξ (k)(0)]〉�t

Eq. (D2)= |ψ(0)〉 +
∣∣∣∣f [

ψ(0),ξ (k−1)(0) + α
δJ̄ (k−1)

δξ (0)

]〉
�t

δJ̄ (k−1)

δξ (0) →0−−−−−→ |ψ (k−1)(�t)〉. (D4)

Hence the updated control ξ (k) at �t is given by [Eq. (D1)]

ξ (k)(�t) = ξ (k−1)(�t) + α
δJ̄ (k−1)

δξ (�t)
+ 2αRe〈χ (k−1)(�t)|µ|ψ (k)(�t) − ψ (k−1)(�t)〉

Eq. (D4)= ξ (k−1)(�t) + α
δJ̄ (k−1)

δξ (�t)
+ 2αRe〈χ (k−1)(�t)|µ|ψ (k−1)(�t) − ψ (k−1)(�t)〉

= ξ (k−1)(�t)+α
δJ̄ (k−1)

δξ (�t)
. (D5)

Using the above, near convergence, ψ (k) at 2�t is given by

|ψ (k)(2�t)〉 = |ψ (k)(�t)〉+|f [ψ (k)(�t),ξ (k)(�t)]〉�t

Eqs. (D4) & (D5)= |ψ (k−1)(�t)〉 +
∣∣∣∣f [

ψ (k−1)(�t),ξ (k−1)(�t) + α
δJ̄ (k−1)

δξ (�t)

]〉
�t

δJ̄ (k−1)

δξ (�t) →0−−−−−→ |ψ (k−1)(2�t)〉, (D6)

and therefore ξ (k) at 2�t is given by

ξ (k)(2�t) = ξ (k−1)(2�t) + α
δJ̄ (k−1)

δξ (2�t)
+ 2αRe〈χ (k−1)(2�t)|µ|ψ (k)(2�t) − ψ (k−1)(2�t)〉

Eq. (D6)= ξ (k−1)(2�t) + α
δJ̄ (k−1)

δξ (2�t)
+ 2αRe〈χ (k−1)(2�t)|µ|ψ (k−1)(2�t) − ψ (k−1)(2�t)〉

= ξ (k−1)(2�t) + α
δJ̄ (k−1)

δξ (2�t)
, (D7)

and so on until final time T .
From Eqs. (D2), (D5), and (D7), we see that near convergence, as δJ̄

δξ
→ 0, the Krotov method degenerates to a first-order

gradient method.

[1] D. J. Tannor and S. A. Rice, J. Chem. Phys. 83, 5013 (1985).
[2] D. J. Tannor, R. Kosloff, and S. A. Rice, J. Chem. Phys. 85, 5805

(1986).
[3] M. Shapiro and P. Brumer, J. Chem. Phys. 84, 4103 (1986).
[4] P. Brumer and M. Shapiro, Chem. Phys. Lett. 126, 541

(1986).
[5] A. P. Peirce, M. A. Dahleh, and H. Rabitz, Phys. Rev. A 37, 4950

(1988).
[6] A. Assion et al., Science 282, 919 (1998).
[7] T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, Nature (London)

397, 233 (1999).
[8] R. Bartels et al., Nature (London) 406, 164 (2000).
[9] P. Corkum, Nature (London) 403, 845 (2000).

[10] R. Kosloff, S. A. Rice, P. Gaspard, S. Tersigni, and D. J. Tannor,
Chem. Phys. 139, 201 (1989).

[11] D. J. Tannor and Y. Jin, in Mode Selective Chemistry, edited by
B. Pullman, J. Jortner, and R. D. Levine (Kluwer, Dordrecht,
1991), pp. 333–345.

[12] V. F. Krotov and I. N. Fel’dman, Eng. Cybernetics 17, 123
(1983).

[13] D. J. Tannor, V. Kazakov, and V. Orlov, in Time-Dependent
Quantum Molecular Dynamics, edited by J. Broeckhove and
L. Lathouwers (Plenum Press, New York, 1992), pp. 347–360.
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