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Subwavelength optical lattices induced by position-dependent dark states
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A method for the generation of subwavelength optical lattices based on multilevel dark states is proposed.
The dark state is formed by a suitable combination of standing wave light fields, leading to position-dependent
populations of the ground states. An additional field coupling dispersively to one of the ground states translates
this position dependence into a subwavelength optical potential. We provide two semiclassical approaches to
understand the involved physics, and demonstrate that they lead to identical results in a certain meaningful limit.
Then we apply a Monte Carlo simulation technique to study the full quantum dynamics of the subwavelength
trapping. Finally, we discuss the relevant time scales for the trapping, optimum conditions, and possible
implementations.

DOI: 10.1103/PhysRevA.83.053412 PACS number(s): 37.10.Gh, 37.10.Jk

I. INTRODUCTION

Light fields are versatile tools for generating optical poten-
tials for the trapping of atoms [1]. In particular, standing wave
fields can induce periodic potentials, which is an important
method to trap or cool neutral atoms [2,3]. Early experiments
have already revealed the possibility of localizing particles to
less than one wavelength of the applied trapping field [4–6].
However, a priori, the spatial period of the trapping potential
of a standing wave field is limited to half the wavelength
of the applied wavelength. Due to potential applications
such as nanolithography [7], control and enhancement of
interactions between the trapped particles, the generation
of scatterers for soft x rays, and many others, there has
been continuous effort to reduce this periodicity. Gupta and
co-workers considered the atomic distribution after traversing
an optical field generated by counterpropagating, orthogonally
linearly polarized traveling waves [8]. Each magnetic sublevel
experiences a light shift. These sublevels are coupled by
the multiphoton Raman transition, which provides avoided
potential crossing and generates high frequency distribution.
Berman and co-workers proposed several high-resolution
schemes using coherent transient techniques [9], interference
between groups of fields on an optical transition [10] or a
Raman transition [11]. Both amplitude and phase gratings can
be produced, as well as optical lattices [12]. These techniques
are further extended to Fourier-synthesize arbitrary periodic
potentials [13,14]. Two-dimensional subwavelength structures
have also been realized using radio-frequency dressing [15].
The dressed lattice comprises unit cells whose localized
adiabatic eigenstates are spatially varying superpositions of
the bare spin states.

In this paper we propose a method for the generation of
subwavelength optical lattices. Similar to standard trapping
techniques [1], our scheme employs the dispersive coupling
of a standing-wave light field S0 to an optical transition
|g1〉 ↔ |e0〉 for the generation of a light shift potential,
see Fig. 1. In addition, we induce a spatial modulation of
the population in the ground state |g1〉. This modulation is

achieved via the formation of a position-dependent multilevel
dark state in an N × � level structure [18] and induced by
the application of multiple phase-shifted standing wave light
fields. The spatial variation of the effective light shift potential
is then determined by the position dependence of S0 and of the
population in the state |g1〉. We find that a suitable choice of the
standing wave light fields allows us to generate subwavelength
trapping potentials. We first provide an intuitive picture for
the involved physics based on two semiclassical approaches,
which agree in the relevant limiting parameter range. Then,
we apply Monte Carlo simulations to study the quantum
dynamics of our system, and show that subwavelength trapping
potentials are achieved, in agreement with our analytical
results.

II. MOTIVATION

Before we turn to the full quantum mechanical simulation
in Sec. III, here, we introduce our model system and provide
two heuristic approaches which allow us to understand the
origin of the subwavelength optical lattice in a simple way. The
two models are based on two main assumptions, essentially
allowing for a semiclassical treatment: (1) the atoms are
sufficiently slow such that they follow the perturbed dark state
adiabatically; and (2) the spatial extent of the wave packet is
small compared to the optical wavelength.

Our general model system is an N × � type system, which
consists of the ground states {|g1〉, . . . ,|gN+1〉} and the excited
states {|e1〉, . . . ,|eN 〉}, as shown in Fig. 1. The dipole allowed
transitions in this setup are driven by resonant coupling fields
with Rabi frequencies Rn and Sn (n = 1, . . . ,N), respectively.
In addition, the driving field S0 couples the leftmost ground
state |g1〉 of the N × � system off-resonantly to the excited
state |e0〉. This field is far detuned by � = ωatom − ωlaser,
and thereby introduces a light shift potential to the model.
A physical realization of the schemes in Fig. 1 is discussed in
Sec. V. For each position-dependent Rabi frequency �(z) with
� ∈ {Si,Ri}, we denote the maximum value as �(0). Focusing
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FIG. 1. (Color online) Examples for the level N × � structures
considered. (a) 1 × � setup, (b) 2 × � scheme, and (c) general N ×
� system. Note that in all cases, an off-resonant field S0 is added to
provide a light shift potential.

on a one-dimensional problem in the z direction, the coherent
part of the Hamiltonian can thus be written as

HS = h̄�|e0〉〈e0|

+ h̄

[
N∑

n=0

Sn(z)|en〉〈gn+1| +
N∑

n=1

Rn(z)|en〉〈gn| + H.c.

]
.

(1)

The incoherent part will only become relevant in Sec. III. Next
we describe two semiclassical approaches for the evaluation
of the light shift potential that are based on the Hamiltonian in
Eq. (1).

A. Dark state potential approach

The first method follows the idea that the effective light
shift potential is the product of the population in state |g1〉 and
the light shift induced by the field S0. The N × � system alone
is known to form a dark state given by [16–18]

|DN×�〉 =
∑N+1

n=1 (−1)n+1 ∏n−1
k=1 Rk

∏N
j=n Sj |gn〉√∑N+1

n=1

∏n−1
k=1 |Rk|2

∏N
j=n |Sj |2

, (2)

where we take the convention
∏0

k=1 = ∏N
j=N+1 = 1. To

simplify the expressions, we introduce the normalization factor

N =
⎛
⎝

√√√√N+1∑
n=1

n−1∏
k=1

|Rk|2
N∏

j=n

|Sj |2
⎞
⎠

−1

. (3)

If we assume that the detuning of S0 is much larger than
the corresponding Rabi frequency, � � |S(0)

0 |, this field will
introduce a light shift potential, but will only perturb the dark
state slightly. In this limit, the total light shift UN experienced
by the atom can be approximated by the light shift that

S0 would induce in a two-level setting, weighted with the
population in |g1〉 evaluated from the unperturbed dark state,

UN
∼= −|S0(z)|2

�
|〈g1|DN×�〉|2. (4)

From Eq. (2), we find

UN
∼= −|S0(z)|2

�
N

N∏
j=1

|Sj (z)|2. (5)

Note that this result can also be obtained from diagonalizing
the system Hamiltonian of Eq. (1) and expanding the eigen-
value λN of the dark state to first order in |S(0)

0 |/�.

B. Dipole force approach

The two semiclassical conditions also allow one to calculate
the potential from the dipole forces exerted on the atom by the
coupling of the light fields on the different dipole transitions
[19]. If an electric field with Cartesian components Ei couples
to an atom described by the density operator �(�r), the mean
force experienced by the atom is given by

〈F(r)〉 =
3∑

i=1

Tr{d̂i�(r)}∇Ei(r), (6)

where d̂i are the components of the electric-dipole moment
operator. If the atoms are slow enough, it is justified to evaluate
� in the steady state, since the internal degrees of freedom
adiabatically follow the change in the experienced field. If we
write

d · E RWA= −h̄

N∑
n=0

(Sn |en〉〈gn+1| + H.c.)

− h̄

N∑
n=1

(Rn |en〉〈gn| + H.c.), (7)

the conservative part of the force can be written as

〈F(r)〉cons = −2h̄
N∑

n=0

∂Sn (r)Re[〈|en〉〈gn+1|〉 Sn(r)]

− 2h̄
N∑

n=1

∂Rn(r)Re[〈|en〉〈gn|〉Rn(r)] , (8)

where mean values 〈· · ·〉 are evaluated via the steady-state
density operator of the internal states for an atom at r. We
assumed that all Rabi frequencies are real-valued, which is
justified if all fields are standing waves. Running fields with
constant amplitude but position-dependent phase contribute to
the dissipative force that we neglect here. Furthermore, we
introduced the following definitions for the Rabi frequencies
� ∈ {Si,Ri},

∂�(r) = 1

�(r)
∇�(r). (9)

By integrating the result for the mean force from

〈F(r)〉cons = −∇UN (r) , (10)
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the potential UN can be obtained. In Appendixes A and B
we show that the dipole force approach and Eq. (5) yield
equivalent results for a dispersive coupling of S0 (|S(0)

0 |/� 	
1). To this end, we determine the quantum state of the
laser-driven atom up to first order in the small parameter
|S(0)

0 |/� in Appendix A. Based on these results, in Appendix B,
we demonstrate that the two semiclassical approaches give
identical results in leading order of |S(0)

0 |/�.

C. Subwavelength potentials

In this section, we discuss possible choices for the laser
field configuration leading to subwavelength structures in the
potential UN . These are essentially equivalent for the choices
leading to subwavelength lithography [18]. For this, the Rabi
frequencies Sn(z)(0 � n � N ) can be chosen with appropriate
relative phases given by

Sn(z) = S(0)
n sin

[
kz + nπ

N + 1
+ φ0

]
, (11)

where φ0 is a common phase and k is the effective wave number
for all the Sn(z) fields. Note that all standing light waves can
have the same wave number k along the trapping axis even if
their frequencies are different [18]. This can be achieved if the
incident angle of the two plane waves comprising one standing
wave is adjusted appropriately with respect to the trapping axis.
Moreover, we have shown that a wave-number mismatch cor-
responding to frequency differences that are small compared
to the mean transition frequency is tolerable [18]. Sinusoidal
subwavelength structures in the potential UN require that
the normalization constant N in Eq. (5) is approximately
independent of z. This can be achieved by taking all Rn fields
to be constant and larger than the corresponding S(0)

n , and
RN � S

(0)
N . Then in the normalization factor

∏N
k=1 |Rk|2 is

by far the largest term because all the other terms contain
|SN |2. An important special case is the 1 × � system, where
the choice of R1(z) = S

(0)
1 sin[kz + π + φ0] does also lead to

a position-independent normalization constant N . With these
conditions, the potential forms a subwavelength optical lattice
with lattice spacing λ/[2(N + 1)], where λ = 2π/k is the
effective wavelength.

III. QUANTUM MONTE CARLO SIMULATION

We now turn to a calculation of the full quantum dynamics
of our model system using a Monte Carlo wave-function
method [20]. We take into account the quantum motion of
the atom so that we are no longer limited by the semiclassical
conditions given in Sec. II. The coherent part of the Hamilto-
nian can be written as

HQ = h̄�|e0〉〈e0| + h̄

[
N∑

n=0

Sn(Z)|en〉〈gn+1|

+
N∑

n=1

Rn(Z)|en〉〈gn| + H.c.

]
+ P 2

2M
, (12)

where M is the mass of the atom chosen as 200h̄k2/
, and P

and Z are the atomic momentum and position operators.

There are two types of relaxations in this system: sponta-
neous emission and dephasing. The operator Cij corresponds
to the spontaneous emission from |ei〉 to |gj 〉. Since only the
atomic motion along the z axis is of interest, we take the trace
over the other two dimensions and obtain

C
ij

k′,q = [
ijNq(k′)]1/2exp(−ik′Z)(ε∗
q · σ−

ij ), (13)

where 
ij is the spontaneous emission rate, ε∗
q(q = 0, ± 1)

are the π and circular polarization directions, σ−
ij is the

corresponding atomic lowering operator, and Nq(k′) is the
normalized probability density for spontaneously emitting a
photon with linear momentum h̄k′ and angular momentum h̄q

along the z axis.
To simplify the numerical analysis, we assume for the

momentum kicks imposed by the light-matter interaction that
all dipole allowed transitions are degenerate, and that only
discrete momentum kicks 0, ± h̄k occur. Correct diffusion
rates can nevertheless be obtained by using optimized discrete
jump probabilities [20].

The other relaxation type is dephasing, which reduces the
coherences but does not change the populations. It can be
represented by an operator

Ci =
√

γph

2
[1 − 2|φi〉〈φi |]. (14)

where |φi〉 is any of the 2N + 2 levels, and we take the identity∑
i |φi〉〈φi | = 1.
The non-Hermitian relaxation Hamiltonian is obtained by

adding up all the relaxation channels

HR = − ih̄

2

⎛
⎝ ∑

i,j,k′,q

C
ij†
k′,qC

ij

k′,q +
∑

i

C
†
i Ci

⎞
⎠

= − ih̄

2

[

01|e0〉〈e0| +

N∑
n=1

(
nn + 
nn+1)|en〉〈en| + γph

2

]
.

(15)

The last term is a constant and can be ignored because it only
induces an irrelevant overall phase shift.

In general, the wave function in momentum space can be
written as

|φ(t)〉 =
∑

n

N∑
j=0

[αj+1,n(t)|gj+1,nh̄k〉 + βj,n(t)|ej ,nh̄k〉].
(16)

Following the Monte Carlo procedure, we calculate the jump
probabilities for all channels at the beginning of each tiny
time step and pick a random number in the range of (0,1).
If the random number is larger than the summation of all
the probabilities, there is no jump in that time step. So we
let the wave function evolve linearly under the action of the
non-Hermitian Hamiltonian HQ + HR . If the random number
falls into certain jump region (range equal to its probability),
we say that jump occurs and project the corresponding operator
to the wave function. In either case we need to normalize the
wave function at the end of this time step. Then another time
step begins.

We run the evolution interrupted by random jumps many
times. Each run gives us a different trajectory of the wave
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function. Finally an average over many statistical realizations
returns the desired momentum space wave function. The
wave function in the position space is then found by Fourier
transformation of this momentum distribution.

IV. RESULTS

In all calculations, we assume all 
ij as equal to the
frequency unit 
, and the dephasing rates are chosen as 10−3
.
As our first example, we consider the four-level 1 × � system
as shown in Fig. 1(a). The Sn fields are chosen as

S0(z) = S
(0)
0 cos(kz), S1(z) = S

(0)
1 sin(kz), (17)

whereas for R1(z) we consider two choices:

(a) R1(z) = S
(0)
1 cos(kz), (18a)

(b) R1(z) ≡ R
(0)
1 � S

(0)
1 . (18b)

In both cases, the normalization constantN is (approximately)
constant.

We start from the initial wave function φ(0) = |g2,0〉 so
that the atom has to interact with both S1 and S0 to reach
the additional level and form the coherence. Therefore the
subwavelength population pattern appears right from the
beginning of the evolution, as shown in Fig. 2.

At the initial moment, the atom has zero momentum and its
spatial wave function is uniform across space. Switching on the
fields, the atom feels the dipole force and starts to move toward
places with lower potential energy. For the fields we choose,
the lowest points are located at kz = π/4 and 3π/4 in a period
of π . With time, more and more population is accumulated
around these positions. At the same time, part of the initial
potential energy is converted to kinetic energy, characterized
by p2. The time scale of this first stage is the time required
for the atom to move from the top to the bottom of a potential
well. The distance to cross is λ/8, and the potential depth is
Udep = max(UN ). In a rough estimation of linear acceleration,
we find the time scale

tdis ≈ λ

8

√
2M

Udep
. (19)

At the end of this stage, the population that moved to the
potential minimum begins to climb the other side of the
potential well. As a result, the kinetic energy decreases and
the population peak gets lower.

Another important factor for the evolution is heating due
to scattering or spontaneous emission. Spontaneous emissions
can be caused by several mechanisms in our system. The main
reason is the residual population in the excited levels arising
from a perturbation of the dark state by dephasing and the
trapping field S0. The atom constantly tries to evolve back into
the dark state, which leads to the excited state population and
light scattering. Another possible reason is the nonadiabatic
population transfer when the dark state cannot follow the
atom’s rapid movement, but our numerical results indicate
that for our parameters, this contribution is mostly avoided.
The momentum kicks from these processes add additional
kinetic energy to the system, such that p2 constantly increases.
With higher kinetic energy, the atom becomes less trapped. So

(a)

(b)

FIG. 2. (Color online) Quantum Monte Carlo results for the
position distribution at different times. The parameters are � = 5,
S0 = 2cos(kz), S1 = sin(kz), and R1 = cos(kz). The results are
averaged over 2400 trajectories. In (a), the initial state is |φ(0)〉 =
|g1,0〉. At short times like 
t = 10, there is only one peak in a
period of π because only S0 is involved in the dispersive coupling.
In (b), the initial state is |φ(0)〉 = |g2,0〉. At 
t = 10 there are two
peaks because both S0 and S1 are required for the dispersive coupling
from the initial state. As expected, at later times, the influence of the
initial state diminishes.

eventually the lattice structure in the position wave function
will be washed out.

To determine the time scale for this washing out, we
consider the point at which kinetic energy exceeds the potential
depth. For this, we evaluate the heating rate, which depends
on the population of the excited levels. We have derived
this population to the leading order in |S(0)

0 |/�, as shown in
Appendix A. If the atoms are uniformly distributed in space,
the population of the excited levels averaged over a period are

ρ̄e0e0 � S2
0S

2
1

8�2R2
1

, (20a)

ρ̄e1e1 � 5S4
0S2

1

128�2R4
1

. (20b)

The true values for the excited state population should
be bigger because the atoms are attracted to regions with
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higher values for S2
0 (z)S2

1 (z). Since each emission gives a recoil
energy of 2h̄ωr = 2(h̄2k2/2M), the heating rate is

2h̄ωr

(
ρ̄e0e0 + 2ρ̄e1e1

)
, (21)

where the factor 2 in front of ρ̄e1e1 accounts for the two decay
channels of level |e1〉. This rate is smaller than the value we
observed in the simulation. Based exclusively on the recoil
heating in Eq. (21), the time scale of washing out can be
estimated as

twash = Udep

2h̄ωr

(
ρ̄e0e0 + 2ρ̄e1e1

) . (22)

There are cooling mechanisms to balance this heating
effect. For the chosen standing waves with the fixed polar-
ization, Doppler cooling and the blue sideband cooling (if
using a negative �) occur. For the considered parameters,
however, they are not efficient enough to keep the atoms in
the shallow potential wells in the steady state. To form a
stable optical lattice, external cooling mechanisms would be
required. But, if the parameters are chosen carefully, twash can
be sufficiently large such that it does not pose restrictions to
typical experimental setups.

Subwavelength lattice potentials can be observed over a
large range of parameters, with different properties. A general
goal is to achieve high population peaks and long trapping
time. When the potential depth is large, the atom is tightly
bound to the minima of the potential curve. This leads to high
and narrow population peaks as shown in Fig. 3. However, in
this case, the heating rate is also relatively high, so the peaks
are washed out quickly.

(a)

(b)

FIG. 3. (Color online) Quantum Monte Carlo results for the
position distribution at different times. The parameters are � = 50,
S0 = 20cos(kz), S1 = 10sin(kz), and R1 = 10cos(kz). All results are
averaged over 240 trajectories. Thus, the Rabi frequencies and the
detuning are 10 times of those in Fig. 2. (a) shows the position
distribution. Since the potential depth is 10 times larger than in
Fig. 2, the population peaks are narrower and higher. (b) shows the
corresponding kinetic energy. In comparison to Fig. 2, the heating
rate is increased by about 6 times.

(a)

(b)

FIG. 4. (Color online) Quantum Monte Carlo results for the
position distribution at different times. Parameters are � = 20,
S0 = 2cos(kz), S1 = sin(kz), and R1 = cos(kz). Results are averaged
over 2400 trajectories. The Rabi frequencies are as in Fig. 2, but
the detuning is larger. Thus, the potential depth is shallower, and
the spontaneous emissions is significantly decreased. As a result, we
find smooth and equally distributed position peaks in (a), and a low
heating rate in (b).

For larger detunings, the potential depth is smaller due to the
inverse relation, but the heating rate decreases further because
of the 1/�2 dependence. So large detunings are favorable for
extended trapping time. With increasing �, the population
peaks become broader and lower and they persist longer, as
shown in Fig. 4.

Another way to reduce the spontaneous emission and thus
heating due to scattering is to choose R

(0)
1 � S

(0)
1 . Although the

potential wells are then very shallow, the spontaneous emission
rate is reduced such that the atoms are trapped for a long time.
In fact we observed oscillations in the peak height and p2 in
Fig. 5, which can be interpreted as oscillations of the atom
within the potential wells.

To demonstrate that our method also works for higher N , we
next consider the six-level 2 × � system as shown in Fig. 1(b).
By choosing the phases of the standing waves as

S0(z) = S
(0)
0 sin(kz), (23a)

S1(z) = S
(0)
1 sin(kz + π/3), (23b)

S2(z) = S
(0)
2 sin(kz + 2π/3), (23c)

R1(z) = R
(0)
1 , R2(z) = R

(0)
2 , (23d)

we find three potential wells within a period of π , as shown in
Fig. 6(a). The numerical simulation shows three corresponding
population peaks in Fig. 6(b), thus demonstrating subwave-
length features of size λ/2(N + 1). Again we observe the
peak-height oscillation due to the atomic oscillation inside
the potential wells.
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(a)

(b)

FIG. 5. (Color online) Quantum Monte Carlo results for the
position distribution at different times. Parameters are � = 20,
S0 = 2cos(kz), S1 = sin(kz), and R1 = 3. Curves are averaged over
2400 trajectories. In (a), we find that the amplitudes of the population
peaks oscillate with time. Overall, the trapping time is longer.
(b) shows that the heating rate is very small, and the kinetic energy
exhibits an oscillatory behavior.

V. PHYSICAL REALIZATION

Here we discuss the realization of our scheme for the gen-
eration of subwavelength lattices in atomic systems. In a first
step, we discuss the realization of the 1 × � setup in Fig. 1(a)
via the D1 and D2 lines in 87Rb [21]. The � substructure can
be realized via the 2S1/2(F = 1) ↔ 2P1/2(F = 1) transition
if circular and orthogonal polarization vectors are chosen
for the fields R1 and S1, see Fig. 7. A dispersive field S0

with σ+ polarization could couple the ground state |g1〉 to
the 2P3/2(F = 0), mF = 0 state. In addition, one has to take
into account that S0 will also couple |g2〉 to states within
the 2P3/2(F = 1,2,3) manifolds, see Fig. 7. This coupling
is unwanted and can be minimized if the splitting between
the ground states |g1〉 and |g2〉 is large enough such that
|� + δg| � |�|. In practice, this condition can be achieved
via the application of an external magnetic field. Note that the
2P3/2(F = 0), mF = 0 state remains energetically lower than
the 2P3/2(F = 1,2,3) manifolds in the presence of a magnetic
field [21]. Furthermore, the field S0 will couple dispersively
to the transition |g1〉 ↔ |e1〉 with detuning δ12. This coupling
gives rise to an additional force that has to be small compared
to the wanted contribution arising from the resonant field R1.
However, this is indeed the case since the detuning δ12 is
extremely large (of the order of 7 THz) in the considered
example. In order to verify these considerations, we performed
numerical calculations based on the dipole force approach
in Sec. II B and for the parameters of Fig. 4. The result is
shown in Fig. 7(b), where the solid black line denotes the light
shift potential including the unwanted couplings induced by
S0 [dashed lines in Fig. 1(a)]. This solid line was obtained by
averaging the resulting potential in time over a period that is

FIG. 6. (Color online) Quantum Monte Carlo results for the
position distribution at different times for a 2 × � 6-level setup.
Parameters are � = 30, S0 = 10sin(kz), S1 = 5sin(kz + π/3), S2 =
5sin(kz + 2π/3), R1 = 5, and R2 = 15. The results are averaged over
1200 trajectories. (a) Theoretical expectation for the the light-induced
potential from our analytical results for the 6-level system. Compared
to the 4-level system, a higher subwavelength resolution is achieved.
(b) The corresponding population distribution obtained from the
Monte Carlo simulation. Again, the peak heights oscillate with time.

larger than 1/δg but much smaller than 1/
. The potential
clearly exhibits two potential minima within an interval λ/2,
and therefore the desired subwavelength structure. The dashed
red line in Fig. 7(b) denotes the expected light shift according
to Eq. (5). Note that the deviations between the solid and the
dashed line are caused primarily by higher order terms in 1/�

that were excluded in the simple model leading to Eq. (5).
On the other hand, the influence of the unwanted couplings
induced by S0 is negligible.

Next we discuss an alternative way for the realization of
the 1 × � system that does not employ the polarization of the
fields. This approach requires that the frequencies of the
various transitions are sufficiently distinct such that they
can be addressed individually. Dipole transitions with unique
frequencies can be found in atomic systems where a magnetic
field induces different Zeeman shifts in two angular momen-
tum multiplets, see Fig. 7. Alternatively, one could employ the
F = 1 and F = 2 manifolds of the 2S1/2 state for the ground
states of the � substructure, and |g1〉 is represented by the
2P1/2, F = 1 manifold. This setup exhibits a larger frequency
difference δg and would allow one to increase |�| and the
Rabi frequency S0 of the dispersive field, and therefore the
depth of the trapping potential. The addressing of transitions
via their frequency bears the disadvantage that R1 will couple
dispersively to the transition that is resonantly driven by S1 and
vice versa. This coupling gives rise to additional forces that
have to be small compared to the wanted contribution arising
from the resonantly driven transition. We have performed
proof-of-principle numerical simulations in the system shown
in Fig. 7(a) that include the unwanted coupling of R1 (S1)
to the transition |g2〉 ↔ |e1〉 (|g1〉 ↔ |e1〉). If the resulting
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FIG. 7. (Color online) (a) Potential realization of the 4-level 1 ×
�-system in Fig. 1(a) via atomic states of the D1 and D2 line in
87Rb. The states |g1〉, |g2〉 and |e1〉 correspond to magnetic quantum
numbers mF = −1, 1, 0, respectively. Note that the transition (F =
1, mF = 0) ↔ (F ′ = 1, mF = 0) is dipole forbidden. All standing
light fields and the magnetic field are applied along the trapping axis
z. (b) Calculated light shift potential for the parameters of Fig. 4.
The red dashed line represents the light shift potential according to
Eq. (5). The solid black line corresponds to a numerical calculation via
the dipole force approach [see Sec. II B] and includes the unwanted
couplings of S0 to additional transitions.

potential is averaged in time over a period that is larger than
1/δg but much smaller than 1/
, we again obtain the black
curve in Fig. 7(b). It follows that our scheme can be realized
even if individual transitions cannot be addressed by their
polarization.

The realization of the general N × � level configuration
requires that each transition can be addressed individually via
its frequency. Furthermore, a realization of our scheme must
take into account that the dispersive field S0 will, in general,
couple to other ground states than |g1〉. It follows that the
detuning � of the dispersive coupling and the level structure
of the ground and excited states must be chosen such that the
transition |g1〉 ↔ | e0 〉 gives the dominant contribution.

VI. SUMMARY AND DISCUSSION

In summary, we propose a scheme to achieve subwave-
length optical lattices. It is based on a position-dependent dark
state, achieved by a set of resonant position-dependent driving
fields. In addition, a single field is coupled dispersively to
one of the ground states of the system, translating the dark
state population distribution into an effective optical potential.

Limitations to our scheme are essentially given by processes
which perturb the atoms out of the dark state, which are either
scattering processes, dephasing processes, or the trapping field
itself. For suitable parameters, the system essentially remains
in the dark state, such that the lattice is stable over an extended
time period. Note that a given setup allows one to dynamically
adjust the lattice period to lower values by turning on or off
the driving fields on the right side of the level scheme, thus
effectively changing the order N of the N × � level scheme.

Our scheme can be realized in realistic atomic systems.
In particular, we discuss a potential realization of the 1 × �

system in 87Rb. The required transitions are addressed
via a combination of frequency and polarization selection.
Numerical calculations indicate that the inevitable coupling
of the applied light fields to unwanted transitions can be
negligible, provided that the frequency differences of the
involved transitions are sufficiently large. Unique transition
frequencies can be achieved by the application of a magnetic
field, giving rise to different Zeeman shifts of angular momen-
tum multiplets. Alternatively, one could employ transitions
between different electronic levels giving rise to even larger
frequency differences. Furthermore, we verified numerically
that the 1 × � system could be realized with frequency
selection only. This opens up the possibility of realizing the
general N × � schemes.
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APPENDIX A: DERIVATION OF THE SEMICLASSICAL
STEADY STATE

The unperturbed dark state provides the approximation for
the ground-state coefficients in zeroth order of the expansion
|S(0)

0 |/�:

|DN×�〉 =
∑N+1

n=1 (−1)n+1 ∏n−1
k=1 Rk

∏N
j=n Sj |gn〉√∑N+1

n=1

∏n−1
k=1 R2

k

∏N
j=n S2

j

. (A1)

The perturbed dark state in the leading order of |S(0)
0 |/� can

be written as

|D′
N×�〉 = ce0 |e0〉 + · · · + ceN

|eN 〉 + |DN×�〉. (A2)

Since it is an eigenstate, we have

HS |D′
N×�〉 = h̄λN |D′

N×�〉, (A3)

with the eigenvalue

λN = −N 2 S2
0

�

N∏
i=1

S2
i . (A4)
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By examining the coefficients of the state |e0〉 on both sides of
Eq. (A3), we obtain

h̄�ce0 + h̄S0cg1 = h̄λNce0 . (A5)

Since λN 	 �, in the leading order

ce0 ≈ −S0

�
cg1 = −S0

�
N

N∏
i=1

Si. (A6)

Continuing with the coefficients for |g1〉 we obtain

h̄S0ce0 + h̄R1ce1 = h̄λNcg1 , (A7)

which can be written as

ce1 = λN

R1
cg1 − S0

R1
ce0 . (A8)

This procedure leads to a recursive relation

cen
= λN

Rn

cgn
− Sn−1

Rn

cen−1 , (A9)

for 1 � n � N . After iteration it becomes

cen
= λN

Rn

cgn
− Sn−1

Rn

(
λN

Rn−1
cgn−1 − Sn−2

Rn−1
cen−2

)
, (A10)

which can be evaluated as

cen
= λN

Rn

n−1∑
j=0

(−1)j
j∏

i=1

Sn−i

Rn−i

cgn−j
+ (−1)n

n−1∏
j=0

Sj

Rj+1
ce0 .

Substituting in the known coefficients in the above equations
leads finally to the compact form for the excited levels

cen
= (−1)nNλN

Rn

∏n−1
k=1 Rk

∏N
l=n Sl

N+1∑
j=n+1

j−1∏
k=1

R2
k

N∏
l=j

S2
l . (A11)

As an example, we consider n = N in Eq. (A11) and find

ceN
= (−1)NNλN

SN

N∏
k=1

Rk. (A12)

Comparing this to the result obtained directly from the
coefficients of |gN+1〉,

h̄SNceN
= h̄λNcgN+1 , (A13)

we find identical results.

APPENDIX B: EQUIVALENCE OF THE TWO
SEMICLASSICAL APPROACHES

In this appendix, we demonstrate that the two semiclassical
methods presented in Sec. II lead to identical results in the
leading order of the expansion |S(0)

0 |/�.

In the dark-state potential method, the force can be found
by taking the derivative of the potential energy.

〈F〉 = −∇λN = ∇
(
N 2

�
S2

0

N∏
i=1

S2
i

)

=
∑
�

d

d�

(
N 2

�
S2

0

N∏
i=1

S2
i

)
∇�. (B1)

The terms for fields S0, Sn, Rn are

d

dS0

(
N 2

�
S2

0

N∏
i=1

S2
i

)
∇S0 = 2N 2S0

�

N∏
i=1

S2
i ∇S0, (B2)

d

dSn

(
N 2

�
S2

0

N∏
i=1

S2
i

)
∇Sn

= −2λN

Sn

∇Sn + λNN 2 d

dSn

⎛
⎝N+1∑

j=1

j−1∏
k=1

R2
k

N∏
l=j

S2
l

⎞
⎠ ∇Sn

= −2λNN 2
N+1∑

j=n+1

j−1∏
k=1

R2
k

N∏
l=j

S2
l

∇Sn

Sn

, (B3)

d

dRn

(
N 2

�
S2

0

N∏
i=1

S2
i

)
∇Rn

= λNN 2 d

dRn

⎛
⎝N+1∑

j=1

j−1∏
k=1

R2
k

N∏
l=j

S2
l

⎞
⎠ ∇Rn

= 2λNN 2
N+1∑

j=n+1

j−1∏
k=1

R2
k

N∏
l=j

S2
l

∇Rn

Rn

. (B4)

To find the force using the dipole force method, we will borrow
some results from the first method. Namely, the coefficients
from Appendix A lead to the coherence - nondiagonal density
matrix elements. The dipole force can be written as

〈F〉 = −2
∑
�

∇�

�
Re

[
ρ(�)

eg �
] = −2

∑
�

cec
∗
g∇�. (B5)

The force contribution due to S0, Sn, and Rn are

−2ce0c
∗
g1

∇S0 = 2
S0

�

∣∣cg1

∣∣2∇S0 = 2S0

�
N 2

N∏
i=1

S2
i ∇S0, (B6)

−2cen
c∗
gn+1

∇Sn = −2λNN 2
N+1∑

j=n+1

j−1∏
k=1

R2
k

N∏
l=j

S2
l

∇Sn

Sn

, (B7)

−2cen
c∗
gn

∇Rn = 2λNN 2
N+1∑

j=n+1

j−1∏
k=1

R2
k

N∏
l=j

S2
l

∇Rn

Rn

. (B8)

These results agree exactly with those from the dark-state
potential method.
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