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Frequency-network mechanism for alignment of diatomic molecules by multipulse excitation
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There are several effective nonadiabatic alignment control schemes that use multilaser pulse excitation. To
explain the control mechanisms in a unified manner through a case study, we apply nonresonant optimal control
simulation to a rovibrational model of N2. For experimental feasibility, we introduce a penalty and/or constraint
to the simulation to impose restrictions on the number of optically accessible rotational states. When the control
time is set to one rotational period, optimal pulses with linear polarization and a wavelength of around 800 nm
are composed of three subpulses. From the power spectra of the intensities of the optimal pulses, we see that the
optimal pulses construct a frequency network that connects the lowest three rotational Raman transitions. The
frequency-network mechanism is confirmed by calculating the degree of alignment using sets of three Gaussian
pulses. It shows several combinations of pulses that (approximately) satisfy the frequency-network condition,
which can explain why there exist several control schemes that achieve a high degree of alignment.
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I. INTRODUCTION

The control of molecular alignment realizes a macroscopi-
cally anisotropic ensemble of molecules that have a wide range
of applications, including the stereodynamics of chemical
reactions [1], the elucidation of molecular structures [2–7], and
so on [8–12]. Because the realization of molecular alignment
in an external-field-free condition is often required, a laser
pulse with a temporal width that is much shorter than a
rotational period is typically employed to create a rotational
wave packet [13–27]. When the wavelength of the laser
pulse is around 800 nm, a rotational wave packet is created
by an induced dipole interaction averaged over fast optical
oscillations. Within the polarizability interaction, i.e., the
lowest-order induced dipole interaction, the molecular system
follows the square of a pulse envelope function [28,29]. After
the laser pulse excitation, a highly aligned state appears at
regular time intervals (a rotational revival), which is explained
by the nonlinear dependence of the rotational energy on a
quantum number [30,31].

A single-pulse excitation is known to impose restrictions on
the achievement of the degree of alignment [17,18]. This was
recently confirmed by the quantum-state-selected experiment
of Ghafur et al. [26]. Multipulse excitations are, thus, required
to enhance molecular alignment. For example, Leibscher et al.
proposed optimal two- and three-pulse schemes, the timings
of which are consistent with their “accumulative squeezing”
scheme [17,18]; that is, the last pulses, the intensities of
which are much higher than those of the previous pulses,
appear at the timing of the maximal degree of alignment.
Lee et al., on the other hand, proposed another double-pulse
scheme in which the second pulse, the intensity of which is
comparable to that of the first pulse, is applied immediately
before the timing of the maximal degree of alignment [21].
This enhancement mechanism can be explained by the swing
analogy for rotational wave packets. In the repetitively kicked
scheme of Cryan et al., eight equally spaced pulses are applied
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to nitrogen molecules and the degree of alignment approaches
the theoretical maximum value; however, the control time is
about ten times longer than the former two schemes [25].
Suzuki et al. reported an optimal control experiment of
cold nitrogen molecules with the degree of alignment as
feedback and obtained a doubly peaked pulse as an optimal
alignment pulse [24]. Because of the availability of various
effective control schemes, it is natural to consider why the
different control schemes can achieve a similarly high degree
of alignment.

The purpose of the present numerical study is to answer in
part the above question by means of optimal control simulation
through a case study of the alignment control of nitrogen
molecules [32–34]. In Sec. II, after introducing a rovibrational
model of a nitrogen molecule, we outline the optimal control
procedure. In Sec. III, numerical results are presented and the
optimal pulses are examined in a frequency domain. In Sec. IV,
we discuss the control mechanisms from the viewpoint of a
network structure of the power spectrum by using a set of
model Gaussian pulses.

II. THEORY

We consider a nitrogen molecule in its electronic ground
state, which interacts with a linearly polarized laser pulse,
E(t). If we introduce the two nuclear coordinates, i.e., the
internuclear distance, r , and the polar angle between the
polarization vector of the laser pulse and the molecular axis,
θ , the total Hamiltonian will be expressed as

Ht = H − 1
2 [�α(r) cos2 θ + α⊥(r)] [E(t)]2, (1)

where H is a field-free molecular Hamiltonian and �α(r) =
α‖(r) − α⊥(r) is the nuclear-coordinate-dependent polariz-
ability with α‖(r) [α⊥(r)] being the component parallel
[perpendicular] to the molecular axis. Here, we assume that
the dynamical polarizability, which includes the contribution
from the excited electronic states, can be approximated by a
static one as we consider the laser frequencies (λ ∼ 800 nm)
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FIG. 1. Maximum expectation values of cos2 θ calculated by
assuming a rigid rotor with the given number of rotational states
that is specified by Jmax. The inset provides a magnified view.

well below the electronic transition frequencies. The field-free
Hamiltonian is given by

H = − h̄2

2µ

1

r2

∂

∂ r

(
r2 ∂

∂ r

)
+ J 2

2µ r2
+ V (r), (2)

where µ is the reduced mass, V (r) is the internuclear
potential, and J is the angular momentum operator. Because
of the symmetry of the system, the azimuth angle does not
appear in Eq. (2) so that the quantum number associated
with the projection on a space-fixed frame is conserved.
In the present study, we assume that the time evolution of
the molecular system is described by the time-dependent
Schrödinger equation:

i h̄
∂

∂ t
|ψ(t)〉 = Ht |ψ(t)〉 . (3)

To design an optimal pulse, we introduce an objective
functional, F = 〈ψ(tf)|W |ψ(tf)〉, that evaluates the degree of
alignment by using a target operator, W , at a specified final
time, tf . The optimal pulse is defined by a pulse that maximizes
the functional, F [32–36]. Because the expectation value of
cos2 θ is often used to evaluate the degree of alignment, it
would be natural to choose it as a target operator. A rotational
wave packet with an extremely high degree of alignment, on
the other hand, involves highly excited rotational states that
are not easily optically accessible. For practical purposes,
we need to impose a restriction on the rotational excitation
while achieving a “reasonably” high degree of alignment.
To estimate the number of rotational states required for this
purpose, Fig. 1 shows the maximum expectation values of
cos2 θ , assuming a rigid rotor. As shown in the inset of Fig. 1,
for example, the wave packet consisting of rotational states of
up to Jmax = 8 can lead to the maximum expectation value
of 〈cos2 θ〉max = 0.948. To explicitly specify the rotational
states, we introduce a projector, P , whereby the target operator
is expressed as W = P cos2 θ P . Another way to design an
experimentally feasible laser pulse is to impose a restriction
on the peak intensity. This can be done, for example, by
introducing a penalty factor that is proportional to the intensity
of the pulse.

An optimal pulse is derived by applying the calculus of
variations to the objective functional, F , under the constraint
of Eq. (3). If we introduce the Lagrange multiplier, |ξ (t)〉,
associated with this constraint, the first-order variational
optimality condition will be represented by

Im〈ξ (t)|[�α(r) cos2 θ + α⊥(r)] |ψ(t)〉 = 0, (4)

where Im〈· · ·〉 denotes the imaginary part of 〈· · ·〉. The
equation of motion for the Lagrange multiplier is given by

i h̄
∂

∂ t
|ξ (t)〉 = (Ht )†|ξ (t)〉, (5)

with the final condition, |ξ (tf)〉 = W |ψ(tf)〉. If we assume zero
temperature or a specified initial state, the optimal pulse will
be obtained by solving the coupled pulse-design equations that
consist of Eqs. (3), (4), and (5). The finite-temperature effects
on the alignment control will be discussed in Sec. III.

The coupled pulse-design equations are solved by an
iterative method. Here, we adopt the iterative procedure
reported in our previous papers, in which the laser field,
E(t), is artificially divided into two components, E1(t) and
E2(t) [33,34]. All the equations associated with the pulse
design are expressed as the symmetrical sum of products
of these artificially divided components. Assuming that the
iteration starts by solving |ψ (0)(t)〉 with an appropriate set
of initial trial fields, E

(0)
1 (t) and E

(0)
2 (t), the monotonically

convergent algorithm at the kth iteration step is summarized
as follows:

i h̄
∂

∂ t
|ξ (k)(t)〉 =

{
H − 1

2
[�α(r) cos2 θ

+α⊥(r)]† E(k)
p (t) E(k−1)

q (t)

}
|ξ (k)(t)〉, (6)

with the final condition, |ξ (k)(tf)〉 = W |ψ (k−1)(tf)〉, and

i h̄
∂

∂ t
|ψ (k)(t)〉 =

{
H − 1

2
[�α(r) cos2 θ

+α⊥(r)] E(k)
p (t) E(k)

q (t)

}
|ψ (k)(t)〉, (7)

with the initial condition |ψ (k)(t = 0)〉 = |ψ0〉. Suffixes pand
qrepresent (p, q) = (1, 2) or (p, q) = (2, 1). The artificially
divided components of the optimal pulse are given by

E(k)
p (t) = E(k−1)

p (t) − λ(k)
p (t)Im〈ξ (k)(t)|

× [�α(r) cos2 θ + α⊥(r)]|ψ (k−1)(t)〉E(k−1)
q (t)

(8)

E(k)
q (t) = E(k−1)

q (t) − λ(k)
q (t)Im〈ξ (k)(t)|

× [�α(r) cos2 θ + α⊥(r)]|ψ (k)(t)〉E(k)
p (t). (9)

Here, λ
(k)
1 (t) and λ

(k)
2 (t) are step-dependent positive func-

tions that characterize the searching speed and accuracy.
The algorithm guarantees that the artificially divided com-
ponents converge to the same electric field, lim

k→∞
E

(k)
1 (t) =

lim
k→∞

E
(k)
2 (t) = E(t), as all the equations in the algorithm have

a symmetric form with respect to E1(t) and E2(t).
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In practice, it is useful to minimize the difference between
E

(k)
1 (t) and E

(k)
2 (t) during the iteration to improve the con-

vergence behavior. For this purpose, we can alternately set
(p, q) = (1, 2) and (p, q) = (2,1) as the iteration. By doing
so, symmetry with respect to suffixes, E(k)

p (t) and E(k)
q (t), is

introduced into the algorithm. A more direct way to minimize
the difference would be to replace E

(k)
1 (t)and E

(k)
2 (t) with, for

example, [E(k)
1 (t) + E

(k)
2 (t)]/2, at each iteration step. As this

replacement can sustain the high numerical accuracy, which is
discussed in the Appendix and also confirmed numerically in
Sec. III, we employ this latter method in the present study.

Finally, we summarize the numerical details. We assume
a Morse potential for the intramolecular potential, V (r),
the parameters of which are taken from Ref. [37]. The
equilibrium distance, re = 1.10 Å, leads to the rotational
constant, B = 2.00 cm−1, which corresponds to the rotational
period, Trot = 8.35 ps. Although our simulations explicitly
include the vibrational degree of freedom, in the following
numerical results, the time and energy (frequency) are mea-
sured in units of Trot and B, respectively, for convenience.
The nuclear-coordinate-dependent polarizability components
are taken from Ref. [38]. In numerically integrating the
Schrödinger equation, we expand the wave function in terms
of the zero-order states {|v J 〉}, in which |v〉 and |J 〉 are the
eigenstates of

H
(0)
vib = − h̄2

2µ

1

r2

∂

∂ r

(
r2 ∂

∂ r

)
+ V (r) and H

(0)
rot = J 2

2µ r2
e

(10)

respectively. The maximum quantum numbers are set to v = 2
and J = 14. (We have checked the convergence with respect
to the number of basis functions by comparing the results
with those obtained by adopting a larger basis.) In the present
study, the final time is set to tf = Trot and the time evolution
of the expansion coefficients is calculated by the fifth-order
Runge-Kutta method with the number of time grids being 106

(in Figs. 2 and 3) and 5 × 105 (in other figures). In the iterative
calculations, the convergence parameters are set to a step-
independent constant, λ

(k)
1 (t) = λ

(k)
2 (t) = 1038 (in SI units).

III. NUMERICAL RESULTS

In the first example, the target operator is chosen as W =
P cos2 θ P , in which the projector, P , is expressed, in terms
of the zero-order rotational states [Eq. (10)], as

P =
Jmax/2∑
j=0

|2j 〉〈2j |, with Jmax = 8. (11)

From Fig. 1, the theoretical maximum value of the degree
of alignment is 0.948. In Fig. 2(a), the convergence behavior
is shown as a function of the number of iteration steps when
the calculation starts with an initial guess field:

E
(0)
1 (t) = E

(0)
2 (t)

=
⎧⎨
⎩

ε0 sin(π t /2τ ) sin(ωt) (0 � t � τ )
ε0 sin(ωt) (τ � t � tf − τ )
ε0 sin[π (tf − t)/2τ ] sin(ωt) (tf − τ � t � tf)

(12)

FIG. 2. Convergence behavior of the present monotonically con-
vergent algorithm is shown by (a) the values of objective functional
as a function of iteration steps, and (b) the values of the difference in
objective functional between adjacent iteration steps.

with ε0 = 0.8 GV/m and τ = 3 ps. The carrier frequency, ω,
corresponds to λ = 800 nm. The convergence is defined by
the value of the objective functional at the final iteration
step, beyond which further monotonic convergence breaks
down due to numerical limitations. Figure 2(b) shows the
values of the difference in objective functional between the
adjacent iteration steps, which give an indication of the search
precision. Even with the modification (see Appendix), the
present algorithm can search the optimal solution with an
accuracy of up to δF ∼ 10−8, which can validate the present
modification.

Figure 3 shows (a) the optimal pulse as a function of
time, and (b) the time evolution of the degree of alignment
and (c) that of the populations associated with the zero-order
rotational states [Eq. (10)]. The optimal pulse consists of three
subpulses and leads to 〈ψ(tf )| cos2 θ |ψ(tf )〉 = 0.933, which
is close to the ideal value of 0.948. Roughly speaking, the first
subpulse creates the J = 0 and 2 superposition state, the most
intense second subpulse excites a number of rotational states
(wave packet), and the third subpulse adjusts the shape of the
rotational states. The latter two subpulses appear at the timings
when the rotational wave packet has a large kinetic energy; this
could be qualitatively understood in terms of the swing analogy
[21]. As regards the vibrational excitation, it contributes little
to the improvement of the alignment control, as shown in
Fig. 4. This is mainly because centrifugal distortion, i.e.,
rovibrational coupling, can be neglected in the present system.

To further suppress the peak intensity while sustaining a
high degree of alignment, we next design the optimal pulse
by introducing a penalty term. The penalty is given by a
positive constant, γ , and is included in the polarizability
interaction such that (1 + i γ )�α. It represents the penalty
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FIG. 3. (Color online) (a) Optimal pulse, (b) degree of alignment,
〈cos2 θ〉(t) ≡ 〈ψ(t)|cos2 θ |ψ(t)〉, and (c) populations of zero-order
rotational states [Eq. (10)] as a function of time. Time is measured in
units of rotational period, Trot = 8.35 ps (see text).

due to instantaneous pulse intensity; that is, a higher pulse
intensity leads to a smaller norm of the wave function, and
this results in the decrease in the degree of alignment. The
optimal pulse in Fig. 5(a) is calculated by employing the target
operator W = cos2 θ , γ = 0.01, and the initial trial field in
Eq. (12). The overall convergence behavior is quite similar
to that in Fig. 2 except that the present calculation needs
about 15000 iteration steps (not shown). This optimal pulse
is substituted into the original equation of motion to calculate
(b) the time evolution of the degree of alignment and (c) that of
the populations of the zero-order rotational states. The optimal
pulse in Fig. 5(a) consists of three subpulses with similar peak
amplitudes. Although the optimal pulse has almost a half of
the peak amplitude (a quarter of the peak intensity) of that in
Fig. 3, it leads to a similar degree of alignment, 0.918, to that in
Fig. 3(b). By comparing the time evolution of the populations
in Fig. 5(c) with that in Fig. 3(c), we find that the optimal pulses
in both figures seem to share common control mechanisms.

Note that in our trials, we almost always obtain a set of
three subpulses as the optimal solution, independent of the
initial trial fields, the magnitude of the penalty factors, etc.
As for the optimal pulses in Figs. 3(a) and 5(a), the second
subpulses are accompanied by small substructures; however,
they make a tiny contribution to the improvement of the degree
of alignment. For example, if we remove such substructures
from the optimal pulse in Fig. 5(a), the degree of alignment is
reduced by only 0.009. This numerical result suggests that the
three-pulse control is essential for the present target, as long
as we set the control time to around tf = Trot.

FIG. 4. (Color online) Populations of zero-order vibrational states
[Eq. (10)] as a function of time, which are plotted in the logarithmic
scale. Time is measured in units of rotational period, Trot.

To examine the finite-temperature effects on the control
achievement, in Fig. 6, we show the time evolution of the
degree of alignment under the irradiation of the optimal pulse
in Fig. 5(a) for the six different temperatures. We assume
that the ensemble of nitrogen molecules consists of pure
14
7 N2 isotopes. Because we have already seen from Fig. 4
that rovibrational coupling is safely neglected, the zero-order
rotational states are physically meaningful states. We thus
attribute the statistical weights to the zero-order rotational
states to construct the initial thermal distribution, in which we
take into account the restrictions on the symmetry of rotational

(a)

FIG. 5. (Color online) (a) Optimal pulse, (b) degree of align-
ment, 〈cos2 θ〉(t), and (c) populations of zero-order rotational states
[Eq. (10)] as a function of time. Time is measured in units of rotational
period, Trot.
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FIG. 6. (Color online) Finite-temperature effects on the degree of
alignment. The degrees of alignment have values of 0.918 (T = 0 K),
0.895 (T = 2 K), 0.831 (T = 4 K), 0.782 (T = 6 K), 0.748 (T = 8 K),
and 0.723 (T = 10 K) at tf = Trot.

states imposed by the nuclear spin, I = 1. Even in the worst
case of T = 10 K, the degree of alignment still shows a high
value of 0.723 even though only one-third of the population
(0.351) is initially distributed in the J = 0 state. In Fig. 6,
a higher temperature leads to the less prominent oscillating
behavior of the time evolution of 〈cos2 θ〉. Its fundamental
revival structure, however, is kept within the temperatures
considered here, which makes the three-pulse control scheme
effective even in the finite-temperature case. This can be in
part attributed to the fact that the rotational states with even
quantum numbers have larger statistical weights than those
with odd numbers because of the nuclear spin multiplicity.

Figure 7 shows the structure of the optimal pulse in Fig. 5(a)
in a frequency domain. As the molecule interacts with the
square of the electric field, [E(t)]2, we calculate its power
spectrum defined by

I (ω) =
∣∣∣∣

∞∫
−∞

d t e−iωt [E(t)]2

∣∣∣∣
2

, (13)

where the bar above [E(t)]2 means the cycle average over
the carrier frequency. Figure 7(a) shows the power spectrum
together with that of each subpulse. Each subpulse has a simple
Gaussian-like structure and is gradually broadened in temporal
order, reflecting the increase in the number of rotational states
involved in the wave packet. The overall structure, on the
other hand, consists of well-separated frequency components
that can be regarded as an interferogram due to the difference
in the temporal peak of the subpulses. We can see three kinds
of frequency progressions. Those frequency progressions can
be assigned by assuming a rigid rotor model because we can
safely neglect the contribution of the vibrational degree of
freedom (Fig. 4). If we measure the frequency in units of 2B

with B being the rotational constant, those progressions can
be referred to as an = 7n, bn = 7n + 3, and cn = 7n + 4 for
n = 0, 1, 2,... (a−n = −an, b−n = −cn−1, and c−n = −bn−1

for n = 1, 2,...). The three progressions construct a frequency
network. As will be discussed in Sec. IV in detail, the frequency
network is the key to achieving a high degree of alignment and
understanding the control mechanisms.
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FIG. 7. (Color online) Power spectrum of the intensity of the
optimal pulse in Fig. 5(a) [see Eq. (13)], in which the spectra of the
first, second, and third subpulses are shown by black-dashed (lower),
red (upper), and blue (middle) lines, respectively. (b) Magnified
view of (a) together with a portion of assignments associated
with Raman transitions. Solid, dashed, and dotted arrows represent
|J = 2〉 ← |J = 0〉, |J = 4〉 ← |J = 2〉, and |J = 6〉 ← |J = 4〉
transition frequencies, respectively.

The present frequency network connects the lowest three
rotational states through the Raman transitions. To explain
this, we consider the origin of the numbers that charac-
terize the progressions. Note that the frequencies associ-
ated with the lowest three rotational Raman transitions are
3 (|J = 2〉 ← |J = 0〉), 7 (|J = 4〉 ← |J = 2〉), and 11
(|J = 6〉 ← |J = 4〉) in units of 2B. As shown in Fig. 7(b),
the differences between the adjacent components in each
progression correspond to the |J = 4〉 ← |J = 2〉 transitions.
The combination of an and bn and that of an and cn also
correspond to the frequencies of the Raman transitions, while
that of bn and cn does not. This explains why the intensities of
the an components are higher than those of bn and cn.

IV. DISCUSSION

The power spectrum of the intensity of the optimal
pulse suggests that the frequency network that connects the
rotational states through the Raman transitions is essential to
achieve a high degree of alignment. To examine the alignment
control mechanisms in a unified manner, we generalize this
idea by adopting a set of three Gaussian subpulses, the total
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FIG. 8. (Color online) Effects of relative intensities of Gaussian
subpulses on the degree of alignment [see Eq. (14)]. The plus (+) in
the figure indicates the position of relative intensities corresponding
to the optimal pulse in Fig. 5(a).

fluence of which is set to a value that is the same as that of the
optimal pulse in Fig. 5(a). The control pulse is expressed as
the sum of Gaussian subpulses:

E(t) =
3∑

j=1

√
xj εG exp

[
− (t − τj )2

2σ 2

]
cos(ωt), (14)

where xj is the parameter that determines the relative in-
tensity of the jth subpulse and the normalization condition
is defined by x1 + x2 + x3 = 1. The temporal peak position
of the jth subpulse is specified by τj . The wavelength of
the carrier frequency is set to 800 nm. The amplitude and
the pulse temporal width parameters are chosen as εG =
10.0 GV/m and σ = 0.664 ps, respectively. The value of σ

is determined by the temporal width of the third subpulse
in Fig. 5(a).

To see the effects of the relative intensities of the Gaussian
subpulses, we calculate the degree of alignment as a function
of x1 and x2 [see Eq. (14) and the normalization condition,
x1 + x2 + x3 = 1]. The timings of the three subpulses are set
to values that are the same as those of the optimal pulse and
are fixed in this calculation. Under these conditions, Fig. 8
shows the distribution of the maximum values of the degree
of alignment that are found during t ∈ [ Trot, 2Trot] because of
the revival structure of the rotational wave packet [31]. The
degree of alignment is greater than 0.90 over a wide range
of distribution, suggesting that the relative intensities of the
subpulses do not play a critical role in the alignment control.
In the following analyses, we thus assume a set of Gaussian
subpulses with equal intensities, i.e., x1 = x2 = x3.

Figure 9 shows the effects of the timing of the Gaussian
subpulses on the control achievement, in which we calculate
the degree of alignment as a function of times τ1 and τ2. Here,
we assume a fixed time for τ3, which is set to the same timing
as that of the third subpulse of the optimal pulse in Fig. 5(a).
For a given set of delay times, we can search the maximum
degree of alignment after the irradiation of the pulse during
t ∈ [ Trot, 2Trot]. The maximum values are plotted as a function
of τ1 and τ2 in Fig. 9. Because of our definition of the irradiation
timing, the figure has a symmetric structure with respect to τ1

FIG. 9. (Color online) Effects of the timing of the 1st and 2nd

Gaussian subpulses on the degree of alignment [see Eq. (14)]. Regions
specified by T1, T2, and T3 (T̄ ) represent those associated with the high
(low) degree of alignment in the case of triple-pulse excitation. The
region specified by D (D̄) represents that with the high (not-so-high)
degree of alignment in the case of double-pulse excitation.

and τ2. Contrary to the results in Fig. 8, the overall structure
is quite sensitive to a set of delay times. There appears a high
degree of alignment in several regions that are classified into
the triple-, double-, and single-pulse excitation regions.

There are three triple-pulse excitation regions specified by
T1, T2, and T3, one of which corresponds to the optimal solution
in Fig. 5(a). As suggested in Sec. III, the frequency network is
essential to achieving a high degree of alignment. In fact, these
three sets of triple pulses share the same network structure.
To show this explicitly, we estimate the temporal peaks of
subpulses from a frequency-networked power spectrum that is
assumed to be given by

Ĩ (ω) = Ĩ0 exp

(
−γ 2 ω2

4

) { N∑
n=−N

exp

[
−σ 2(ω − an)2

4

]

+
N−1∑

n=−N

exp

[
−σ 2(ω − bn)2

4

]

+
N−1∑

n=−N

exp

[
−σ 2(ω − cn)2

4

]}
, (15)

where γ determines the envelope of the power spectrum so
that γ << σ . The inverse Fourier transform of Eq. (15) yields

I (t) = I0 exp

(
−η t2

σ 2

){ N∑
n=0

exp

(
−η γ 2a2

n

4

)
cos(ant)

+
N−1∑
n=0

exp

(
−η γ 2b2

n

4

)
cos(bnt)

+
N−1∑
n=0

exp

(
−η γ 2c2

n

4

)
cos(cnt)

}
, (16)

where η = σ 2/(γ 2 + σ 2) � 1. Figure 10 shows the envelope
function when N = 5, in which the negative values come from
the oversimplified estimation. The three prominent temporal
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FIG. 10. Pulse envelope function reproduced from the frequency
network [see Eqs. (15) and (16)].

peaks within one rotational period correspond to the three
sets of triple pulses that achieve a high degree of alignment.
In Fig. 9, we can also see the regions associated with a
low degree of alignment, in which the spectra partly lack
the frequency components that are needed to construct the
network.

The double-pulse excitation regions are distributed along
the lines τ1 = τ3 and τ2 = τ3, in which stronger subpulses
appear later than weaker subpulses. Another double-pulse
excitation region lies along the line τ1 = τ2, in which stronger
subpulses appear earlier than weaker subpulses. Some regions
show a higher degree of alignment than the others depending
on the timing of the excitations. Although the double-pulse
excitation cannot construct the present frequency network
rigorously, the power spectra associated with a high degree
of alignment can approximately satisfy the frequency-network
condition because of their broad bandwidths.

To examine the control mechanisms from the viewpoint of
the network in more detail, Fig. 11 provides typical examples
of the power spectra associated with the high [red (gray) lines]
and low (black lines) degrees of alignment in the cases of
(a) triple-pulse and (b) double-pulse excitations. The results
in Fig. 11(a) are taken from the regions specified by T1

and T̄ in Fig. 9, respectively. The black line clearly lacks
the frequency components associated with the |J = 4〉 ←
|J = 2〉 transition. On the other hand, the results in Fig. 11(b)
are typical examples associated with the high and not-so-
high degrees of alignment, which are located in regions D

and D̄ in Fig. 9, respectively. Because of the double-pulse
excitation, these power spectra are composed of equally spaced
frequency components. In Fig. 11(b), we see that due to the
finite frequency width of each component, the intervals of
the frequency components of the red line satisfy the lowest
three Raman transitions, |J = 2〉 ← |J = 0〉, |J = 4〉 ←
|J = 2〉, and |J = 6〉 ← |J = 4〉, simultaneously. Contrary
to this, the black line in Fig. 11(b) has no combination of the
frequency components that satisfies the |J = 4〉 ← |J = 2〉
transition, resulting in the decrease in the degree of alignment.
The broader the width of each frequency component, the
greater the chance for a pulse pair to approximately satisfy
the Raman transition condition. This can explain why we

FIG. 11. (Color online) Typical examples of power spectra asso-
ciated with the high [red (gray) lines] and low (black lines) degrees
of alignment in the cases of (a) three-pulse and (b) double-pulse
excitations. The results in (a) are taken from the regions specified by
T1 (solid circle) and T̄ (dotted circle) in Fig. 9, and those in (b) are
taken from regions D (solid circle) and D̄ (dotted circle) in Fig. 9.

see wide regions associated with a high degree of alignment,
e.g., along line τ1 = τ3 with τ2 > 0.5 compared to that with
τ2 < 0.5.

In Fig. 9, the single-pulse excitation corresponds to τ1 =
τ2 = τ3. We see that a single pulse that provides a structureless
network can lead to a reasonably high degree of alignment,
although its achievement is known to be limited by saturation
effects [17,18].

We have shown that the alignment control can be interpreted
on the basis of the frequency-network mechanisms. It would
be thus natural to consider the possibility of extending the
size of the present network. In fact, when we set the control
time to tf = 2 Trot, we have an optimal pulse that contains
new progressions, say, dn = 7n + 1 and en = 7n + 6 for n =
0, 1, 2,... (d−n = −en−1 and e−n = −dn−1 for n = 1, 2,...) in
addition to an, bn, and cn (not shown). Then, the frequency
components of the original set of progressions, {an, bn, cn},
can be connected to each other through the lowest three Raman
transitions, whereas those of the new progressions are partly
connected to each other. Furthermore, the combination of an

and dn(en) corresponds to the frequency of the higher Raman
transitions |J = 6〉 ← |J = 4〉. For a given pulse energy, the
increase in the number of frequency components results in the
decrease in the peak intensity of each frequency component.
To increase the peak intensity subject to minimal pulse energy,
the bandwidth of each frequency component needs to become
narrow, which requires a long control period.

The complete frequency network leads to the repetitively
kicked scheme proposed by Cryan et al. [25], in which an
equally spaced pulse appears at every rotational period. In this
sense, one may consider the similarity between the present
frequency-network control scheme and the optical frequency
combination approaches, although the physical objectives of
the former (latter) approaches are usually the control of
rotational wave packets (population transfer). As for the optical
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frequency combination approaches, we would suggest the
relevant studies in Refs. [39–41].

V. CONCLUSIONS

We have applied nonresonant optimal control simulation
to a rovibrational model of N2 to design a linearly polarized
laser pulse with a wavelength of around 800 nm that achieves
a high degree of alignment within one rotational period.
We have imposed restrictions on the number of optically
accessible rotational states explicitly (Fig. 3) and by adding
a penalty subject to the instantaneous intensity of a laser
pulse (Fig. 5). In our simulations, we saw virtually no
contribution from the vibrational degree of freedom to the
control achievement (Fig. 4). The designed optimal pulse
consists of three subpulses, the timing of which is qualitatively
examined by the swing mechanism proposed by Lee et al. [21]
From the quantitative analyses, we found that the power
spectrum of the intensity of the optimal pulse constructs the
frequency network (Fig. 7). This network consists of the
progressions of an = 7n, bn = 7n + 3, and cn = 7n + 4 in
units of 2B, and connects the lowest three rotational Raman
transitions to each other. The essential role of the frequency
network is confirmed by calculating the degree of alignment
by using a set of three Gaussian pulses (Figs. 8 and 9). For
example, the frequency network given by the optimal pulse
predicts the other two sets of three subpulses that lead to a high
degree of alignment, which consistently explains the calculated
results. As for the double-pulse excitation, the power spectra
associated with a high degree of alignment can approximately
satisfy the frequency-network condition because of their broad
bandwidths. There are several combinations of subpulses that
(approximately) construct frequency networks, and this can
explain why there exist several kinds of effective alignment
control pulses. From the viewpoint of the frequency-network
mechanism, the ultimate network consists of frequency com-
ponents having an equal interval of 2B, which leads to the
repetitively kicked scheme predicted by Cryan et al. [25]
One drawback of this control would be that a much longer
time is taken than one rotational period. In practice, we will
need to choose a suitable (approximate) network in relation
to the available laser resources and the required degree of
alignment.
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APPENDIX: CONVERGENCE BEHAVIOR OF THE
MODIFIED ALGORITHM

In the present simulation, we replace E
(k−1)
1 (t) and E

(k−1)
2 (t)

with the suffix-independent field, E(k−1)(t), after finishing
the (k-1)th iteration step [33,34]. To see the convergence
behavior of the modified algorithm, we calculate the difference
in objective functional between the kth and (k-1)th adjacent
steps, δF (k, k−1) = F (k) − F (k−1), assuming that E

(k−1)
1 (t) and

E
(k−1)
2 (t) are replaced with the suffix-independent field,

E(k−1)(t),

δF (k, k−1) = 〈δψ (k, k−1)(tf )|W |δψ (k, k−1)(tf )〉
+ 2Re〈ψ (k−1)(tf )|W |δψ (k, k−1)(tf )〉, (A1)

where |δψ (k, k−1)(t)〉 = |ψ (k)(t)〉 − |ψ (k−1)(t)〉.. To express the
second term of the right-hand side of Eq. (A1) in terms of an
electric field, we introduce an auxiliary function,

P (t) = 2Re〈ξ (k)(t) |δψ (k, k−1)(t)〉, (A2)

which gives P (tf ) = 2Re〈ψ (k−1)(tf )|W |δψ (k, k−1)(tf )〉 and
P (0) = 0. If we differentiate Eq. (A2) with respect to time and
then substitute the pulse design equations into the resultant
equation, we have

h̄
d

d t
P (t) = 1

λ
(k)
2 (t)

[
E

(k)
2 (t) − E(k−1)(t)

]2

+ 1

λ
(k)
1 (t)

E
(k)
1 (t)

[
E

(k)
1 (t) − E(k−1)(t)

] + Q(t),

(A3)

where

Q(t) = Im 〈ξ (k)(t)| �α cos2 θ |ψ (k−1)(t)〉E
(k−1)
1 (t)E(k−1)

2 (t).

(A4)

If we assume

E(k−1)(t) = 1

2

[
E

(k−1)
1 (t) + E

(k−1)
2 (t)

]
, (A5)

then the function Q(t) can be rewritten as

Q(t) = − 1

λ
(k)
1 (t)

E(k−1)(t)
[
E

(k)
1 (t) − E(k−1)(t)

]

+O (δE(k−1)(t))2, (A6)

where

δE(k−1)(t) = 1

2

[
E

(k−1)
2 (t) − E

(k−1)
1 (t)

]
. (A7)

It should be noted that in Eq. (A6), there is no term that is
proportional to δE(k−1)(t). Substituting Eq. (A6) into Eq. (A3)
and then integrating the resulting equation over [0, tf ], we
have

P (tf ) =
tf∫

0

dt

{[
E

(k)
2 (t) − E(k−1)(t)

]2

h̄λ
(k)
2 (t)

+
[
E

(k)
1 (t) − E(k−1)(t)

]2

h̄λ
(k)
1 (t)

+ O (δE(k−1)(t))2

}
.

(A8)

Because of P (tf ) = 2Re 〈ψ (k−1)(tf )| W |δψ (k, k−1)(tf )〉,
the monotonic convergence is guaranteed up to the first order
in δE(k−1)(t) and, therefore, the modified algorithm can work
with high numerical accuracy.
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