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We develop the theory of radiative association of an atom and a diatomic molecule within a close-coupling
framework. We apply it to the formation of H3

− after the low-energy collision (below 0.5 eV) of H2 with H−.
Using recently obtained potential energy and permanent dipole moment surfaces of H3

−, we calculate the lowest
rovibrational levels of the H3

− electronic ground state and the cross section for the formation of H3
− by radiative

association between H− and ortho- and para-H2. We discuss the possibility for the H3
− ion to be formed and

observed in the cold and dense interstellar medium in an environment with a high ionization rate. Such an
observation could be a probe for the presence of H− in the interstellar medium.
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I. INTRODUCTION

Many chemical reactions in the interstellar medium (ISM)
are powered by cosmic rays: atoms and molecules (mainly
molecular hydrogen) are ionized by radiation, which provides
sufficient energy to initiate a chain of chemical reactions
in interstellar clouds leading to the synthesis of polyatomic
molecules. About 14 positive ions have been observed and
identified in the ISM, including the simplest triatomic one,
H3

+. This ion plays an important role in the chemistry and
evolution of interstellar clouds [1,2], as its abundance is
strongly related to the production of H2

+ in the ISM. In
contrast, the existence of stable negative ions has long been
thought to be impossible due to the presence of UV radiation
in the ISM. In particular, the H− ion, which has a single bound
state, has not been directly detected yet, so its presence, though
probable, is still controversial [3]. Although it was proposed
some time ago [4], the surprise came with the detection of
negative molecular ions in dense molecular clouds or carbon
star envelopes. Several carbon chain ions have been detected so
far: C6H− [5–7], C4H− [8], C8H− [9], C3N− [10], C5N− [6,7],
and CN− [11]. All these species are closed-shell systems with
a quite high electron binding energy (3.8 eV for C6H−) and the
large permanent dipole moment of several debyes. Although
it is generally accepted that in the ISM these ions are formed
after radiative capture of an electron by the parent neutral
molecules [12], no detailed quantum mechanical treatment
has been developed yet for modeling the process.

As the negatively charged counterpart of H3
+, the H3

− ion
is predicted to be stable by about 0.013 eV [13,14]. It has
never been detected so far in the cold regions of the ISM,
while Wang et al. [15] observed it by mass spectrometry
of laboratory plasmas. The H3

− ion cannot be formed by
radiative attachment from the unstable H3 molecule, so one
must consider alternative paths: three-body recombination
(TBR), H2 + H− + X → H3

− + X, or radiative association
(RA), H2 + H− → H3

− + h̄ω . The TBR mechanism must
be the dominant process of H3

− formation in laboratory
plasma, but it is probably inefficient in the ISM because of
low H2 densities. The goal of this study is to investigate the
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possibility of forming H3
− by RA of H2 and H− in low-

temperature (<150 K) environments. Note that RA between
H2 and He+ was investigated recently in a similar energy
range [16].

Collisions between H− and H2 have been studied both
theoretically [13,17] and experimentally [18,19], only for
collision energies higher than 0.5 eV. In contrast, the structure
of the H3

− ion has rarely been explored in the past [13].
Recently, we calculated (see Ref. [14], hereafter referred to
as paper I) a new accurate potential energy surface for the
H3

− electronic ground state, whose accuracy was improved
compared to that of the previous ab initio calculations [13,17].
In addition, we have determined for the first time the H3

−
permanent dipole moment surface, which is needed for the
RA calculations. The H3

− ion is well represented as a loosely
bound H2 · · ·H− complex with several rovibrational states,
bound by, at most, about 70 cm−1. We have also found that
there are a number of predissociation resonances, which can be
described as excited rovibrational states (j,v) of H2 perturbed
by H− coupled to the dissociation continuum H2(j ′,v′) +
H− with an energy of the dimer state E(j ′,v′) lower
than E(j,v).

The paper is organized as follows. In the next section we
discuss the geometry of the H3

− molecule. In Sec. III we
introduce the rovibrational wave functions of the molecule for
bound and continuum states. The theory of RA of a dimer and
an atom is developed in Sec. IV. Finally, in Sec. V we present
results of numerical calculations of the RA cross section and
of the rate coefficient for H3

− formation, and we discuss the
possibility of observing the H3

− ion in the ISM.

II. REPRESENTATION OF THE H2 · · ·H− COMPLEX AT
LOW ENERGIES

The H3
− molecule is composed of three identical nuclei,

described in principle within the CNPI (complete nuclear
permutation inversion) group D3h [20]. However, due to
the loosely bound nature of the H3

− ion in its electronic
ground state [13,14], the probability of exchange of the H−
proton with the dimer protons is negligible. Moreover, the
component of the permanent dipole moment of H3

− along
the axis separating H2 and H− is 2 orders of magnitude
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larger than its transverse components (paper I). Therefore,
low-energy collision between H2 and H− can be studied as an
inelastic collision of two structured particles. We first define
two coordinate systems: The space-fixed (SF) frame, with axes
(x,y,z), and the body-fixed (BF) frame, with axes (X,Y,Z),
whose orientation in the SF frame is given by the Euler angles
αe, βe, and γe. The Z axis connects the center of the H2

molecular axis with the nucleus of H−, and its X axis is in
the plane of the three nuclei. The orientation of the dimer with
respect to Z is given by the azimuthal angle θ . The natural
coordinate system associated with the BF frame is the Jacobi
coordinate system (R,r,θ ), where R is the distance between
H2 and H− along the Z axis, and r the internuclear distance
of H2.

The quantum numbers resulting from the symmetry opera-
tions of the C∞v group are well adapted to this “superdimer”
approximation. The quantum numbers of the H2 dimer are
treated as good quantum numbers. The quantum states of the
H2 · · ·H− complex at low energies are characterized by the
quantum numbers (J,M,j,v,�±): J and j , associated with
the total angular momentum Ĵ of the complex and with the
angular momentum ĵ of the dimer, the vibrational state v of
H2, the absolute values M and � of the projection of Ĵ on
the SF z axis, and of ĵ on the BF Z axis, and the intrinsic
parity ± of the wave function with respect to the reflection
σv through the plane containing the Z axis. For � �= 0 the
�+ and �− states are degenerate in this approximation. If the
H2 · · ·H− complex is bound, an additional quantum number vt

characterizes the vibration along the Z axis. One defines the
basis set |J,v,j,�〉

|J,v,j,�〉 =
√

2J +1

8π2

[
DJ

M�(αe,βe,γe)
]∗

	�
j (cos θ )χvj (r),

(1)

where the normalized function 	�
j (cos θ ) = P �

j (cos θ )/
√

4π

[21] is proportional to the associated Legendre polynomial
and describes the rotational state of the dimer, and χvj (r) is
the vibrational wave function of H2. The Wigner function
DJ

M�(αe,βe,γe) is associated with the rotation of the complex
in the SF frame. The function above is not yet symmetrized
with respect to σv , and correspondingly, � can be positive or
negative. Assuming that the potential energy surface V (R,r,θ )
is known (see paper I), one derives the interaction matrix V
(diagonal with respect to �) written in the above basis (after
integration over r and θ , denoted by the subscripts to the angle
braces):

V J
vj�,v′j ′�′(R) = 〈Jvj�|V (R,r,θ )|Jv′j ′�〉r,θ δ��′ . (2)

As R → ∞, the diagonal (in v and j ) elements of this matrix
become equal to the energies εvj of the rovibrational quantum
states |vj 〉 of H2. The diagonalization of the V matrix at every
R value yields a set of adiabatic potential energy curves,
correlated, at large R, with the sum of εvj and of the H−
ground state (Fig. 1). These curves can accommodate bound
levels corresponding to the quantization of the vibrational
motion along the R coordinate. The H2 nuclear spin id = 0
(para-H2) or id = 1 (ortho-H2) determines the possible values
of j , namely, even in the former case, and odd in the latter
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FIG. 1. (Color online) Adiabatic curves of H3
− as functions of

the Jacobi coordinate R (on a logarithmic scale), and the scheme for
radiative association at a low collisional energy E. Horizontal lines
indicate positions of several bound states (reported in Table I) and
resonances.

case. The energy of the state does not depend on the quantum
number M , which is omitted in the following.

The wave functions of Eq. (1) must be properly sym-
metrized with respect to σv and total inversion E∗, correspond-
ing to the symmetry operators of the C∞v group relevant to
the present approximation. The |J,v,j,�〉 functions obey the
transformations

σv|J,v,j,�〉 = |J,v,j, − �〉
(3)

E∗|J,v,j,�〉 = (−1)J |J,v,j, − �〉
so we define the appropriate symmetrized combinations for
� > 0:

|J,v,j,�±〉 = (|J,v,j,�〉 ± |J,v,j, − �〉) /
√

2 . (4)

From these equations, the total parity of the �+ and �− states
is given by the value of (−1)J and (−1)J+1, respectively.
Permutation (12) of the the two nuclei of H2 requires another
symmetrization of the dimer wave functions,

(12) |J,v,j,�〉 = (−1)j |J,v,j,�〉 , (5)

so that we can write the following four wave functions labeled
by the irreducible representations (irreps) of the C2v group
 = A1,A2,B1,B2 (see Eq. (94.18) of [21]) (with � � 0):

|A1,J,v,j,�〉 = N (|J,v,j,�〉 + (−1)j |J,v,j,�〉
+ (−1)J |J,v,j, − �〉
+(−1)J+j |J,v,j, − �〉), (6)

|A2,J,v,j,�〉 = N (|J,v,j,�〉 + (−1)j |J,v,j,�〉
− (−1)J |J,v,j, − �〉
−(−1)J+j |J,v,j, − �〉), (7)
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|B1,J,v,j,�〉 = N (|J,v,j,�〉 − (−1)j |J,v,j,�〉
− (−1)J |J,v,j, − �〉
+(−1)J+j |J,v,j, − �〉), (8)

|B2,J,v,j,�〉 = N (|J,v,j,�〉 − (−1)j |J,v,j,�〉
+ (−1)J |J,v,j, − �〉
−(−1)J+j |J,v,j, − �〉), (9)

where the factor N ensures normalization to unity. Some func-
tions above are identically equal to 0 for certain combinations
of J, j , and �, which means that the corresponding irreps are
not allowed with these combinations.

III. BOUND AND CONTINUUM WAVE FUNCTIONS OF
THE H2 · · ·H− COMPLEX AT LOW ENERGIES

The superdimer approximation above is useful for defining
basis functions with the appropriate symmetry. However, the
quantum numbers of the H2 internal state can be used at large
separation, but not when H2 approaches H−. An accurate
description of the wave functions |,J,E〉 of the H2 · · ·H−
complex with energy E (E being either the collision energy
or the bound-state energy of the complex) is obtained within
the close-coupling framework, for which we recall below the
main steps. The close-coupled expansion on Ntot symmetrized
channel functions |,J,a〉 is written as

|,J ; E〉 =
Ntot∑
a=1

Ca(E)|,J,a; E〉, (10)

where a is the channel index. The channel functions |,J,a; E〉
are the independent solutions of the Schrödinger equation with
appropriate boundary conditions. They are written as a linear
combination of Ntot basis functions |,J,v,j,�±〉

|,J,a; E〉 =
Ntot∑
k=1

Fk,a(R; E)|,J,vk,jk,�k〉. (11)

In these expressions, the index a can be assigned to the
asymptotic limit of the channel wave function in the BF
frame at large distances, that is, (a ≡ va,ja,�a). The number
of channels Ntot is determined by convergence check on the
calculated physical property, namely, the binding energies or
the RA cross sections.

The Fk,a expansion coefficients are solutions of the set of
coupled differential equations written (in a matrix form) in the
BF frame as[

− h̄2

2m

∂2

∂R2
I + (ε − EI) + W(R)

]
F(R) = 0, (12)

where m is the reduced mass of the complex, and ε the diagonal
matrix of the H2 energies εvj . The interaction matrix W is the
sum of the interaction potential matrix V [Eq. (2)] and of
matrix R (diagonal in v and j ) describing the atom-diatom
relative rotation with the orbital angular momentum operator
l̂ = Ĵ − ĵ:

RJ
vj�,v′j ′�′ = 〈,J,v,j,�|̂l2|,J,v′,j ′,�′〉δvj,v′j ′

2mR2
. (13)

A detailed expression of these matrix elements in the BF
frame is given in Ref. [22]. The operator l̂2 couples channels

with different values of �, through long-range terms that
dominate the potential energy terms due to their R−2 character.
Therefore to treat a scattering process conveniently, it is
usual to choose the representation in the SF frame where
the scattering channels are fully decoupled, and where the
l̂2 operator is diagonal [with eigenvalues �(� + 1)]:

RJ
vj�,v′j ′�′ = �(� + 1)

2mR2
δvj�,v′j ′�′ . (14)

Similarly to Eq. (10), the total wave function |,J ; E〉 in the
SF frame is expressed as

|,J ; E〉 =
Ntot∑
α=1

Cα(E)|,J,α; E〉, (15)

where the channel wave functions |,J,α; E〉 are expanded on
the basis set |,J,v,j,�〉

|,J,α; E〉 =
Ntot∑
κ=1

Fκ,α(R; E)|,J,vκ,jκ ,�κ〉. (16)

Like the channel index a in the BF frame, the index α can be
assigned at large distances to the asymptotic channel, that is,
(α ≡ vα,jα,�α). The Fκ,α coefficients are solutions of Eq. (12)
where the matrices are expressed in the SF basis set. The matrix
elements of V in the SF frame are related to those in the BF
frame according to

V J
vj�,v′j ′�′(R) =

J∑
�=0

〈�|�〉J V J
vj�,v′j ′�(R)〈�|�′〉J , (17)

where 〈�|�〉J is a matrix element of the transformation
between BF and SF angular basis sets:

〈�|�〉J = (−1)J+�
√

2� + 1
√

2 − δ�,0

(
j J �

� −� 0

)
. (18)

The total parity (−1)J and (−1)J+1 for the �+ and �− states
imposes that the sum in Eq. (16) is restricted to j and �

values satisfying (−1)J = (−1)j+� and (−1)J+1 = (−1)j+�,
respectively.

At this stage, the coefficients of channel superposition in
Eq. (10) are still unspecified. They are determined by applying
appropriate boundary conditions when the set of differential
equations of Eq. (12) is solved. Bound states are characterized
by imposing the standard boundary conditions for each channel
α:

Fκ,α(0; Et ) = 0 ∀ κ ∈ [1,Ntot],
(19)

Fκ,α(R; Et )
R→∞−→ 0 ∀ κ ∈ [1,Ntot].

These quantization conditions are fulfilled only for discrete
energies Et , corresponding to a discrete vibrational level vt of
H3

− characterizing the number of nodes (in the R coordinate)
of the radial wave function in the dominant channel α′

0 for given
 and J . We used the renormalized Numerov method [23] to
solve the coupled Eq. (12) written in the SF frame, so the
resulting superposition coefficients Cvt

α ensure that outward-
propagated and inward-propagated wave functions are equal
with identical derivatives at a well-chosen matching distance
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TABLE I. Computed binding energies (in cm−1) of the vibrational
levels vt ordered as rotational progressions in J , of the para-H2–H−

complex with respect to the lowest dissociation limit H2 (v = 0, j =
0) + H−. Levels are labeled with the approximate quantum numbers
v = 0, j = 0, and � ≡ J . Their total parity is given by (−1)J .

,J,v,j,�,vt Energy ,J,v,j,�,vt Energy

A1,0,0,0,0,0 −71.2 A2,1,0,0,1,1 −23.8
A2,1,0,0,1,0 −68.2 A1,2,0,0,2,1 −20.2
A1,2,0,0,2,0 −62.4 A2,3,0,0,3,1 −15.0
A2,3,0,0,3,0 −53.8 A1,4,0,0,4,1 −8.6
A1,4,0,0,4,0 −42.8 A2,5,0,0,5,1 −1.7
A2,5,0,0,5,0 −29.7 A1,0,0,0,0,2 −5.4
A1,6,0,0,6,0 −15.3 A2,1,0,0,1,2 −4.5
A1,0,0,0,0,1 −25.7 A1,2,0,0,2,2 −2.7

A2,3,0,0,3,2 −0.4

[23]. Equations (15) and (16) are recast for the wave function
of an H3

− bound level |,J,vt 〉 as

|,J ; α′
0,vt 〉 =

Ntot∑
κ ′=1

�
α′

0vt

Jκ ′ (R)|,J,vκ ′ ,jκ ′ ,�κ ′ 〉, (20)

�
α′

0vt

Jκ ′ (R) =
Ntot∑
α′=1

C
α′

0vt

α′ Fκ ′,α′ (R; Et ). (21)

As an illustration, the calculated energies of lowest H3
−

bound levels for J = 0 to 6 corresponding to the binding of
para-H2(v = 0,j = 0) with H− are reported in Table I, labeled
with vt and with the approximate quantum numbers v,j,� of
the corresponding dissociation threshold. This is justified by
the weak interaction of the lowest channel (v = 0, j = 0, �)
with the others, as already noted in paper I. There is a
single dominant component in the expansion of Eq. (20).
The present energies for J = 0 are found to be in agreement
within 0.5 cm−1 with those obtained in paper I using a
different integration method. Beyond J = 6 no bound level
can exist below the dissociation threshold. Bound levels with
energies below the ortho-H2 (v = 0, j = 1) + H− threshold
are reported in Table II. All other bound levels, which are found
at energies below thresholds with nonzero even(odd) values of
j , correspond to predissociation resonances, which will decay
into the continua of the H2 (v = 0,j ′) + H− thresholds with
j ′ even(odd) and 0(1) � j ′ < j . All these levels are included
in the RA cross-section calculations below.

Note that these results, in addition to transition dipole
moments obtained from the permanent dipole moment surface,
could be used to model an absorption spectrum that could
guide the search for H3

− rotational transition lines in the ISM
absorption spectra in the millimeter-wavelength range. Only P

and R lines (�J = ±1) will be observed between levels within
levels in the same part in Tables I (A1-A2 transitions) and
II (B1-B2 transitions). Q transitions (�J = 0) will connect
only levels from the upper part in Table II with levels from the
lower part in this table (B1-B2 transitions).

In a scattering process with energy E, the number of
energetically open channels No gives the number of physical
solutions of Eq. (12). The remaining Nc = Ntot − No closed

TABLE II. Computed binding energies (in cm−1) of the vibra-
tional levels vt of the ortho-H2–H− complex ordered as rotational
progressions in J , with respect to the lowest dissociation limit
H2 (v = 0, j = 1) + H−. Levels are labeled with the approximate
quantum numbers v = 0, j = 1, and �. The total parity is (−1)J for
the levels in the upper part and (−1)J+1 for the levels in the lower
part.

,J,v,j,�,vt Energy ,J,v,j,�,vt Energy

B2,0,0,1,1,0 −152.7 B2,0,0,1,1,2 −33.2
B1,1,0,1,0,0 −149.3 B1,1,0,1,0,2 −31.6
B2,2,0,1,1,0 −142.6 B2,2,0,1,1,2 −28.4
B1,3,0,1,2,0 −132.6 B1,3,0,1,2,2 −23.9
B2,4,0,1,3,0 −119.7 B2,4,0,1,3,2 −18.2
B1,5,0,1,4,0 −104.0 B1,5,0,1,4,2 −11.8
B2,6,0,1,5,0 −85.8 B2,6,0,1,5,2 −5.0
B1,7,0,1,6,0 −65.6 B1,1,0,1,2,0 −13.3
B2,8,0,1,7,0 −44.0 B2,2,0,1,3,0 −10.0
B1,9,0,1,8,0 −21.7 B1,3,0,1,4,0 −5.3
B2,0,0,1,1,1 −77.8 B2,0,0,1,1,3 −10.7
B1,1,0,1,0,1 −75.3 B1,1,0,1,0,3 −9.8
B2,2,0,1,1,1 −70.5 B2,2,0,1,1,3 −8.1
B1,3,0,1,2,1 −63.3 B1,3,0,1,2,3 −5.6
B2,4,0,1,3,1 −54.2 B2,4,0,1,3,3 −2.7
B1,5,0,1,4,1 −43.2 B2,0,0,1,1,4 −1.7
B2,6,0,1,5,1 −31.0 B1,1,0,1,0,4 −1.3
B1,7,0,1,6,1 −17.9 B2,2,0,1,1,4 −0.7
B2,8,0,1,7,1 −4.9 B1,1,0,1,0,5 −0.07

B2,1,0,1,1,0 −13.4 B1,4,0,1,4,0 −0.5
B1,2,0,1,2,0 −10.2 B2,1,0,1,1,1 −0.1
B2,3,0,1,3,0 −5.8

channels should lead to nonphysical long-range behavior since
the related wave functions diverge asymptotically. Accord-
ingly, the sum in Eq. (15) is restricted to the No open channels

|,J,α; E〉=
No∑

α=1

Cα(E)
Ntot∑
κ=1

Fκ,α(R; E)|,J,vκ,jκ ,�κ〉, (22)

and the usual boundary conditions are applied for each α to
the set of coupled equations

Fκ,α(0; E) = 0 ∀ α ∈ [1,Ntot],

Fκ,α(R; E)
R→∞−→ 0 ∀ α ∈ [No + 1,Ntot], (23)

Fκ,α(R; E)
R→∞−→ j (R,kκ )δκ,α − n(R,kκ )Kκ,α(E)

∀ α ∈ [1,No].

The standard collision matrix K(E) summarizes the channel
interactions. The functions j (R,kκ ) and n(R,kκ ) are the regular
and irregular spherical Bessel functions with momentum kκ

with respect to the H2(vκ,jκ ,�κ ) + H− limit. To be fully
determined, the total wave function |,J,E〉 must also
specify the initial state of the scattering process, that is,
the entrance channel α0, through standard outgoing wave
normalization:

Cα0
α (E) = [I − ıK(E)]−1

α,α0
. (24)
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IV. CROSS SECTION FOR DIMER-ATOM
RADIATIVE ASSOCIATION

RA of H− with H2 in an initial rovibrational level (v,j ),
creating H3

− in a vibrational level vt , with respect to a
dissociation limit H− + H2(v′,j ′),

H2(v,j ) + H− → H3
−(′,J ′,vt (v

′,j ′)) + h̄ωt , (25)

is shown schematically in Fig. 1 for v = 0, j = 0. A similar
picture holds for H− and ortho-H2(v = 0,j = 1) association.
We limit our study to these two states, which are the only
ones populated in cold and dense molecular ISM (see, e.g.,
Ref. [24]). The two partners approach each other with a
collision energy E above the threshold. A photon with energy
h̄ωt = E + Evt

is emitted to stabilize H3
− in the vibrational

level vt with binding energy Et , with respect to the H2(v =
0,j = 0) + H− or the H2(v = 0,j = 1) + H− limits.

To obtain the RA cross section and rate coefficient, we
modify the theoretical approach developed by Herzberg [25],
which was later used by several authors [26–28] for RA in
diatomic molecules and for photoassociation of cold atoms
[29,30]. This formalism is somewhat similar to the treatment
one of us used previously for the photodissociation of van
der Waals systems, which can be considered as the inverse
process [31]. The initial and final states are specified in
the SF frame by |,J,E,α0〉 and |,J,vt ,α

′
0〉. The entrance

channel index α0 is correlated with the asymptotic quantum
numbers v0,j0 of the initial H2 level, and �0 specifying the
initial collisional state. The final state of the created bound
H3

− molecule has a multichannel nature, but it is labeled, for
convenience, with the vibrational index vt , and the index α′

0 of
the dominant channel in its expansion [Eq. (20)], also related
to the asymptotic quantum numbers α′

0 ≡ v′
0,j

′
0,�

′
0 (as in

Tables I and II).
The Einstein coefficient A

′J ′,J

α′
0;α0

(E,vt ) for the process of
Eq. (25) is written (in atomic units) [28]

A
′J ′;J

α′
0;α0

(E,vt ) = 4ω3
t

3c3

∑
σ=0,±1

|〈′J ′vtα
′
0|µσ |JEα0〉|2, (26)

where µσ = µ0,µ±1 are the three components of the perma-
nent dipole moment operator µ̂ in the SF frame. The µσ

components in the BF frame are related to those in the SF
frame (determined in paper I) by the Wigner rotation functions
D depending on the Euler angles αe and βe:

µσ =
∑

λ=0,±1

[
D1

σ,λ(αe,βe,0)
]∗

µλ. (27)

We obtain

A
′J ′,J

α′
0;α0

(E,vt ) = 4ω3
t

3c3
(2J + 1)(2J ′ + 1)

×
∑

σ=0,±1

(
J 1 J ′
M σ −M − σ

)2

×
∣∣∣∣ ∑

λ=0,±1

〈′,J ′; vt ,α
′
0|µλ|,J ; E,α0〉

∣∣∣∣2

,

(28)

which becomes, after averaging over the M values,

A
′J ′,J

α′
0;α0

(E,vt ) = 4ω3
t

3c3
(2J ′ + 1)

×
∣∣∣∣ ∑

λ=0,±1

〈′,J ′; vt ,α
′
0|µλ|,J ; E,α0〉

∣∣∣∣2

.

(29)

We now introduce the expressions for the total wave functions
[Eqs. (20) and (22)]:

A
′J ′,J

α′
0;α0

(E,vt ) = 4ω3
t

3c3
(2J ′ + 1)

×
∣∣∣∣ ∑

λ=0,±1

No∑
α=1

Cα0
α (E)d′J ′,J

λα (E,vt ,α
′
0)

∣∣∣∣2

,

(30)

with

d
′J ′,J
λα (E,vt ,α

′
0) =

N ′
tot∑

κ ′=1

Ntot∑
κ=1

〈
�

α′
0vt

Jκ ′ (R)
∣∣

×µλ
κ ′,κ (R)|Fκ,α(R; E)〉R. (31)

The subscript R to the angle braces denotes integration over
the R coordinate.1 The matrix elements of the R-dependent
transition dipole moment in the SF basis are

µλ
κ ′,κ (R) =

J ′∑
�′=0

J∑
�=0

〈�′|�′〉′J ′
µλ

v′j ′�′,vj�(R)〈�|�〉J , (32)

related to the matrix elements in the BF basis

µλ
v′j ′�′,vj�(R) = (−1)�

′
(

J 1 J ′

� λ −�′

) 〈
χv′j ′ (r)	�′

j ′ (θ )
∣∣

×µλ(R,r,θ )
∣∣χvj (r)	�

j (θ )
〉
r,θ

. (33)

The subscripts r,θ to the angle braces denote integration over
the r and θ variables. Note that the initial and final wave
functions are not necessarily described by the same number
of channels; that is, Ntot and N ′

tot can be different because
J �= J ′ and  �= ′. We use energy normalization for the initial
continuum state.

The probability P
′J ′,J

α′
0;α0

(E,vt ) of an RA event starting in

the |,J ; E,α0〉 state with momentum k = √
2mE toward the

final state |′,J ′; vt ,α
′
0〉 is given by the Einstein coefficient

divided by the current density of incident particles, which is
1/(2π ) for the energy-normalized wave function [21]. The
corresponding RA cross section is then expressed as

σ
′J ′,J

α′
0;α0

(E,vt ) = πP
′J ′,J

α′
0;α0

(E,vt )/k2. (34)

In the following, the indexes α0 and α′
0 are assigned to their

asymptotic labeling (v0,j0,�0) and (v′
0,j

′
0,�

′
0). Physically, the

1Note that in the numerical implementation, the initial (energy-
normalized) and final (unity-normalized) wave functions are not
directly computed with the renormalized Numerov method; the
integral is progressively built during the integration process, as
explained in the Appendix in Ref. [31].
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entrance channel is determined asymptotically by the initial
rovibrational H2 level (v′

0,j
′
0), so that a sum over �0 must

be performed. Since nuclear spin is conserved during the RA
process, there is no need to include the nuclear spin degeneracy
factor. All possible final states should also be included for
computation of the total RA cross section. For each initial J

value, the contributions from each final value J ′ = J, J ± 1
must be added together. At a given collision energy E, the
summation over all possible values of J must be performed as
well. Finally, we are interested in the formation of H3

− in any
of its stable bound levels vt , so that the total cross section is
obtained as follows:

σv0j0 (E) =
∑

J�0,′J ′v′
t v

′
0j

′
0�

′
0

σ
′J ′,J

v′
0j

′
0�

′
0,v0j0�0

(E,vt ). (35)

As reported in paper I, the component µ0(R,r,θ ) (along the
Z axis) of the H3

− dipole moment in Eq. (33) is larger
by 2 orders of magnitude than the other two components
µ±1(R,r,θ ). Therefore, the contribution from the transverse
components is neglected. The total cross sections σ00(E) and
σ01(E) for RA of H− with para-H2 (v = 0, j = 0) and with
ortho-H2 (v = 0, j = 1), respectively, are shown in Fig. 2. We
have already mentioned that at low collision energies (below
400 cm−1), a single component dominates the multichannel
expansion of the initial and final wave functions. Therefore,
the approximate selection rules vi → vf = vi, ji → jf = ji ,
and J → J ′ = J ± 1 hold for the RA process (with the
appropriate selection rule for the parity). As expected from
Eq. (29), the cross section for RA with ortho-H2 is larger
than the one with para-H2, as the former species has a deeper
potential well and has more bound states than the latter.
The bumps near 1.5 cm−1 visible in both curves are due to
the enhancement of the probability density at the top of the
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FIG. 2. (Color online) RA cross section (in atomic units) starting
from para-H2 (v0 = 0, j0 = 0) (solid line) and from ortho-H2 (v0 =
0, j0 = 1) (dashed line) as a function of collision energy E above
the corresponding thresholds. Inset: Enlargement of the region of
Feshbach resonances induced by the bound states of the closed-
channel para-H2 (v = 0, j = 2) + H− (see Fig. 1).
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FIG. 3. (Color online) Rate coefficient kRA as a function of
temperature for RA of H− with para-H2 (v0 = 0, j0 = 0) (solid line)
and with ortho-H2 (v0 = 0, j0 = 1) (dashed line).

centrifugal barrier for low J . Moreover, one shape resonance
is predicted near 4.3 cm−1 in σ00(E) and near 6.5 cm−1 in
σ01(E) associated with nonzero J values. Once the collision
energy reaches 285 cm−1, at which the j = 2 rotational
state of para-H2 can be populated, a series of Feshbach
resonances induced by the bound states of the closed-channel
para-H2(v = 0,j = 2) + H− appears in the cross section.

The RA rate coefficient kRA(T ) is obtained by a standard in-
tegration over the Maxwell-Boltzmann collision velocity dis-
tribution. Its variation with temperature is displayed in Fig. 3
for RA of H− with para-H2 (v0 = 0, j0 = 0) and with ortho-
H2 (v0 = 0, j0 = 1). As a follow-up to Fig. 2, the rate is found
to be about 4 times larger in the ortho-H2 case than in the para-
H2 case. Note that the resonances in the latter case are too nar-
row to influence the rate above 200 K. The relative abundances
of ortho-H2 and para-H2 could be out of thermal equilibrium
in the interstellar clouds [24]. The obtained RA rates suggest
that the ratio of ortho-H2−H− to para-H2−H− is enhanced by
a factor of 4 compared to the ratio of ortho-H2 to para-H2.

V. DISCUSSION: IS THE FORMATION OF H3
− IN THE

ISM POSSIBLE?

The production rate of H3
− in the ISM is directly related

to the presence of H−. Here, we propose a rough estimation
of the abundance of H− in the ISM assuming that it is
formed only by dissociative attachment (DA) of an electron to
H2. Other possible mechanisms such as radiative attachment
to H are neglected. The chemistry of interstellar clouds is
initiated by ionization of molecular hydrogen by cosmic rays
with a typical rate constant ζ ∼ 3 × 10−17 s−1 in diffuse
interstellar clouds [2]. (Cloud densities are ∼102 cm−3 in
diffuse clouds and ∼104 cm−3 in dense clouds.) The ionized
molecular hydrogen H2

+ quickly forms H3
+ in collisions with

H2, with a rate constant ∼2 × 10−9 cm3/s [2]. The electron
that escapes after ionization of H2 has a high kinetic energy
and undergoes many elastic collisions with environmental
H2 before it thermalizes. In each elastic collision with H2,
the electron loses a fraction (about 4me/mH2 ) of its incident
energy. For example, the electron should experience about
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6200 elastic collisions with H2 before its energy is decreased
from 10 keV to 10 meV (T ∼ 120 K). Possible inelastic
e− + H2 collisions will lead to vibrational excitation of H2

and to DA, e− + H2 → H + H−. The DA reaction is allowed
for collision energies above the threshold at 3.7 eV with a cross
section of about σDA ∼ 3 × 10−21 cm2 at 4 eV [32,33].

We can roughly estimate the fraction fDA of escaped
electrons that would form H− rather than undergo the thermal-
ization process. This gives us an estimate of the production rate
of H− in the ISM. The upper bound for the e− + H2 elastic
cross section σel is about 1.7 × 10−15 cm2 [34]. If we take
Nth = 1000 elastic collisions corresponding to the thermaliza-
tion down to the energy below which DA is impossible, we
should compare σel/Nth with σDA. It gives approximately the
value fDA = σDANth/σel ∼ 0.0018 for the fraction of escaped
electrons that form H− by DA of H2. Therefore, the rate of
H− production (in cm−3.s−1) in the ISM can be estimated as
ζn(H2)fDA = ζn(H2)σDANth/σel. The H− ion has only one
bound electronic state and cannot be detected directly. How-
ever, if it forms a molecular ion AH− by an association with
an atom or molecule A, its presence in the ISM can be proven
indirectly by rovibrational absorption spectroscopy of AH−.

One of the motivations for this study was to investigate
whether H3

− can be formed in the ISM and be detected
by photoabsorption spectroscopy. The stability of H3

− was
confirmed in this study. Therefore, H3

− can exist in the ISM
in cold clouds (T < 100 K). However, to be observed by
far-infrared absorption spectroscopy, H3

− should be present
in the ISM in relatively large amounts. The H3

− molecular ion
and the H− ion can be destroyed in the ISM by cosmic rays and
by mutual neutralization with positive ions. These processes
limit the absolute abundance of H3

−. To determine the H3
−

abundance, one has to consider rate equations for all reactions
involving formation and removal of H− and H3

− in the ISM.
However, a rough estimation of H− and H3

− abundance in the
ISM can be made using the available data.

First, we estimate the H− abundance n(H−). According to
our model the rate of H− production is given by ζn(H2)fDA.
The principal channel of destruction is due to the mutual
neutralization with positive ions. Destruction by collisions
with other negative species with higher electronic affinities
is possible in principle, but their abundance is probably too
low compared to those of positive ions to induce a significant
loss channel. The number density n+ of positive ions can

be taken to be equal to the number density of electrons in
the ISM. In diffuse clouds, the electron number density is
about 0.1% of n(H2), that is, n+ ∼ 0.01 cm−3. Therefore, the
rate of removal of H− from the ISM is k±n(H−)n+ where
k± is the rate constant for mutual neutralization. We take
the value of k± ∼ 10−7 cm3/s for the H− + H+ → H + H
reaction [35–37] at 10 meV. Therefore, we derive the equilib-
rium abundance of H−: n(H−) = ζn(H2)fDA/(k±n+) ∼ 5 ×
10−7 cm−3. If we take the size of a cloud to be 10 pc, the
resulting column density is ∼1013 cm−2, which is a reasonable
value for observation.

The estimation of H3
− abundance n(H3

−) can be made
in a similar way. The rate of H3

− removal is determined by
a similar formula: k±n(H3

−)n+. The rate of H3
− formation

is kRAn(H−)n(H2). The equilibrium H3
− abundance is then

given by n(H3
−) = kRAn(H−)n(H2)/(k±n+) ∼ 10−17 cm−3.

This abundance would produce a column density that is low
even for a large interstellar cloud.

If we combine the formulas for H− and H3
− abundances,

we obtain

n(H−
3 ) = kRAζfRA

(k±)2

(
n(H2)

n+

)2

. (36)

This formula suggests that the H3
− abundance should be larger

in an environment with a smaller degree of ionization (i.e., with
a lower number density of positive ions). The environment
should be cold enough (<100 K) for the H3

− ion to be
stable with respect to nonreactive collisions with other species
(assuming, as above, that collisions with other negative species
with high electronic affinities are negligible). Therefore, if H3

−
can be detected in the ISM, one has to search for it in cold,
dense interstellar clouds. If H3

− is detected, it would prove
that H− is also present in the ISM.
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