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We apply the Jacobi matrix method to the Faddeev-Merkuriev differential equations in order to calculate the
three-body wave function that describes the double continuum of an atomic two-electron system. This function is
used to evaluate within the first-order Born approximation, the fully differential cross sections for (e,3e) processes
in helium. The calculations are performed in the case of a coplanar geometry in which the incident electron is fast
and both ejected electrons are slow. Quite unexpectedly, the results obtained by reducing our double-continuum
wave function to its asymptotic expression are in satisfactory agreement with all the experimental data of
Lahmam-Bennani et al. [A. Lahaman-Bennani et al., Phys. Rev. A 59, 3548 (1999); A. Kheifets et al., J. Phys. B
32, 5047 (1999).] without any need for renormalizing the data. When the full double-continuum wave function is
used, the agreement of the results with the experimental data improves significantly. However, a detailed analysis
of the calculations shows that full convergence in terms of the basis size is not reached. This point is discussed
in detail.
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I. INTRODUCTION

The three-body Coulomb problem is one of the fun-
damental problems of theoretical physics which, to date,
remain unsolved. A typical example of a three-body Coulomb
system is helium. Despite its apparent simplicity, neither its
classical nor its quantum dynamics are integrable. This loss of
integrability, which is due to the electron-electron interactions,
renders the two-electron dynamics in general irregular and
chaotic with only small regions of regular motion in the
classical phase space. Quantum mechanically, the repulsive
interaction between the two electrons is responsible for the
autoionization of the doubly excited states and leads to a
highly structured energy spectrum with a spectral density
that increases dramatically very close to the double-ionization
threshold. This region of the energy spectrum just below the
double-ionization threshold is presently the focus of many
studies (see, for example, [1,2]).

In the present contribution, we are interested in exploring
the spectral region just above the double-ionization threshold.
One way of proceeding is to study (γ,2e) processes in
helium. Indeed, the double ionization leads, in this case,
to a final state which is a pure two-electron continuum.
Kinematically completely determined experiments have been
performed by Bräuning et al. [3]. Except for asymmetric
electron energy sharing, the corresponding absolute data are
in good agreement with the results of various theoretical
treatments. The time-independent ones include the convergent
close-coupling (CCC) approach [4,5], the hyperspherical
R-matrix approach [6,7] with semiclassical outgoing wave
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(HRM-SOW), the exterior complex scaling (ECR) method
[8], and the flux formula [9]. More recently, time-dependent
approaches have also been developed. They include the wave-
packet-evolution approach [10], the time-dependent close-
coupling method [11], and the Jacobi matrix calculations of
Foumouo et al. [12]. All these methods differ by how the
electronic correlations which result from the electron-electron
interaction are described. However, the good agreement of the
experimental data with all the theoretical results obtained with
these methods seems to suggest that the electronic correlations
in the final state do not play a crucial role in this context.

The situation described above contrasts with the (e,3e)
processes. For very high energies of the incident electron and
very small momentum transfers, that is to say, in the dipole
limit, the target final state is again a double continuum. As
for (γ,2e) processes, kinematically completely determined
experiments have been performed. Fully resolved fivefold
differential cross sections (5DCSs) of double ionization of
helium by 5.6 keV electron impact have been measured by
Lahmam-Bennani et al. [4,13]. They considered asymmetric
coplanar geometries and symmetric energy sharing between
the two ejected electrons at an excess energy of 8 and 20 eV
with 0.22 and 0.24 a.u. momentum transfer, respectively. Upon
these kinematical conditions and in particular for the lowest
value of the excess energy, all theoretical results [4,10,14–16]
show significant discrepancies, mainly concerning the magni-
tude of the cross section. In addition, most of these results do
not agree well with the absolute experimental data. Possible
reasons to explain those discrepancies are the following. First,
it is possible that the first-order Born approximation, which,
in the dipole limit, is expected to work, is not sufficient and
that higher-order terms become significant. This may be the
case when both electrons are ejected in the backward direction
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where the residual ion carries a large momentum. Second, the
use of initial- and final-state wave functions that do not satisfy
the Kato cusp conditions may introduce spurious effects in the
transition amplitude. Third, the correct asymptotic behavior
of the multichannel final-state wave function is not known,
requiring necessarily some approximations. The validity of the
first-order Born approximation has been studied by Kheifets
and Bray. They showed [5] that, in the conditions of the
experiments of Lahmam-Bennani, the contribution of the
second Born term is actually negligible, at least in the vicinity
of the main peaks. The role of the cusp conditions in (e,3e)
processes has been investigated by Chuluunbaatar et al. [17].
They concluded that in the experiments of Lahmam-Bennani
et al., the cusp conditions do not play any appreciable role.
Finally, Serov et al. [10] have shown that it is not essential
to use a final double-continuum wave function which has
the correct asymptotic behavior. They compared the CCC
results obtained with a double-continuum wave function that
has an incorrect asymptotic behavior with the results of their
time-dependent approach in which the final wave packet
evolves until it reaches the asymptotic region. Having found
similar results, they concluded that the disagreement between
the CCC results and the experimental data is not due to the
incorrect asymptotic behavior of the CCC double-continuum
wave function. This discussion seems to suggest that the way
electron-electron correlations are described in the final electron
double-continuum wave function at moderate distances is
actually at the origin of the discrepancies between theory and
experiments.

In this paper, we use the Jacobi matrix approach to
the Faddeev-Merkuriev differential equations to generate a
correlated three-charged particle continuum wave function in
which the two-body subdomains are treated correctly. We
apply this method to the calculation, within the first-order
Born approximation, of the 5DCS for electron-impact double
ionization of helium in the small momentum transfer regime.
A similar method based on Faddeev-Merkuriev integral
equations has been successfully used by Papp et al. in many
different contexts as, for instance, the description of bound [18]
and resonance states [19–21] of three-body Coulomb systems
or electron-hydrogen scattering [22]. Note that in the cases
treated by Papp et al., the kernel of the Faddeev-Merkuriev
integral equation is compact, giving a convergence of the
results as a function of the size of the basis. Recently, Zaytsev
et al. used the present approach to treat (e,2e) and (e,3e)
processes in helium [16,23]. In the case of the (e,2e) processes,
they considered single ionization with and without excitation
of the residual ion and demonstrated the convergence of the
results as a function of the basis size [23]. In the case of the
(e,3e) processes, such a convergence analysis has not been
shown. However, this analysis is pertinent, since the present
approach involves a Lippmann-Schwinger equation with a
noncompact kernel. In this paper, this point is discussed in
detail.

This paper is organized as follows. After this Introduction,
we briefly review the theoretical approach used to generate
the double-continuum wave function in Sec. II. In Sec. III A,
we give some technical details about how we calculate the
5DCS for the (e,3e) process we study in helium. Section
III B is devoted to the results. We first calculate these cross

sections by reducing the double-continuum wave function
to its asymptotic expression and compare the results with
all the experimental data of Lahmam-Bennani et al. [4,13]
at 5.6 keV electron incident energy. Then, we use the full
double-continuum wave function to evaluate these 5DCSs and
compare the results to both the experimental data and the
results obtained with other theoretical approaches. Finally, in
Sec. III C, we study the convergence of our results as a function
of the basis parameters. Unless explicitly stated, we use atomic
units throughout this paper.

II. DOUBLE CONTINUUM WAVE FUNCTION: THEORY

The two-electron continuum wave function with an asymp-
totic ingoing wave behavior is a solution of the following
Schrödinger equation:

[
E + 1

2
�1 + 1

2
�2 + Z

r1
+ Z

r2
− 1

r12

]
×�(−)(k1,k2; r1,r2) = 0, (1)

where r1 and r2 are the position vectors of electrons 1 and 2,
and k1 and k2 their corresponding momentum. r12 = |r2 − r1|
is the interelectronic distance. Z = 2 denotes the charge of
the infinitely massive nucleus, the position of which coincides
with the origin of the laboratory system. E is the total energy
of the two electrons. Following Merkuriev and Faddeev [24],
we split the electron-nucleus Coulomb potentials into a short-
and a long-range part:

Z

ri

= V
(s)
i (r1,r2) + V

(l)
i (r1,r2), (2)

where

V
(s)
i (r1,r2) = Z

ri

ζ (ri,rj ), V
(l)
i (r1,r2) = Z

ri

[1 − ζ (ri,rj )],

(3)

and

ζ (ri,rj ) = 2/{1 + exp[(ri/a)ν/(1 + rj /b)]}. (4)

The subscripts i and j take the value 1 or 2 with i �= j . The
role of ζ (ri,rj ) is to fix a border between �0, the so-called true
three-body scattering region (where r1 ∼ r2), and the two-body
scattering regions �1 (r1 � r2) or �2 (r2 � r1). Note that
although the function ζ (ri,rj ) depends on the three adjustable
parameters a, b, and ν, the final results should not depend on
the choice of these parameters.

The fact that the two electrons are identical particles
allows us to introduce the new functions �

(−)
i (k1,k2; r1,r2)

(i = 1,2), such that �(−) = (1/
√

2)[�(−)
1 + �

(−)
2 ]. Taking

into account the exchange symmetry of the solution of
Eq. (1), �(−)(k1,k2; r1,r2) = g�(−)(k1,k2; r2,r1), where g =
+1 (−1) for a singlet (triplet) state, we have

�
(−)
2 (k1,k2; r1,r2) = gP̂12�

(−)
1 (k1,k2; r1,r2). (5)
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We now demand that the functions �
(−)
1 and �

(−)
2 satisfy the

following equations of Faddeev type:[
E + 1

2
�1 + 1

2
�2 + V

(l)
1 + V

(l)
2 − 1

r12

]
�

(−)
1

= −
√

2 V
(s)

2 �(−), (6)[
E + 1

2
�1 + 1

2
�2 + V

(l)
1 + V

(l)
2 − 1

r12

]
�

(−)
2

= −
√

2 V
(s)

1 �(−). (7)

According to the previous discussion, we can rewrite Eq. (6)
as [

E + 1

2
�1 + 1

2
�2 + V

(l)
1 + V

(l)
2 − 1

r12

]
�

(−)
1

= −V
(s)

2 (1 + gP̂12)�(−)
1 , (8)

since �(−) = 1/
√

2[1 + gP̂12]�(−)
1 . Equation (7) can be trans-

formed in exactly the same way. As a result, we obtain only
one equation for the component �

(−)
1 (k1,k2; r1,r2), which is

fully equivalent to Eq. (1). Let us now rewrite Eq. (8) in the
following way:[

E + 1

2
�1 + 1

2
�2 + Z − 1

r1
+ Z

r2

]
�

(−)
1 = V (r1,r2)�(−)

1 ,

(9)

where
V (r1,r2) = 1

r12
− V

(l)
1 (r1,r2) + Z − 1

r1
− gV

(s)
2 (r1,r2)P̂12.

(10)

It is straightforward to see that the potential V (r1,r2) is short
range in the two-body scattering region �1 (r1 � r2).

Equation (9) is the basic equation for the numerical
calculation of the double-continuum wave function. Instead of
solving this equation directly, however, it is more convenient to
transform it into the following integral equation of Lippmann-
Schwinger type:

�
(−)
1 (k1,k2; r1,r2)

= [ϕ(−)(k2,r2; Z) ϕ(−)(k1,r1; Z − 1)θ (k1 − k2)

+ gϕ(−)(k1,r2; Z) ϕ(−)(k2,r1; Z − 1)θ (k2 − k1)]

+
∫ ∫

dr′
1 dr′

2G
(−)(r1,r2; r′

1,r
′
2; E)

×V (r′
1,r

′
2) �

(−)
1 (k1,k2; r′

1,r
′
2). (11)

This new equation incorporates the boundary conditions
through the Green’s function G(−) associated with the operator
of the left-hand side of Eq. (9). This operator describes two
independent subsystems, namely, an electron in the field of
a nucleus of charge Z and another electron in the field of
a nucleus of charge Z − 1. The first term in the square
brackets in the right-hand side of Eq. (11) is the solution of
Eq. (9) without the right-hand-side term (the homogeneous
equation). In principle, this term describes the two electrons
asymptotically, since the potential V (r1,r2) is short range.
However, this is only true in the two-body scattering region
�1 and not necessarily in the three-body scattering region �0.
This and the fact that both electrons are not symmetrically

described led us to the introduction of an ansatz for this
term, the choice of which was inspired by the method of
the effective charges [25] in the same spirit as in the Jacobi
matrix approach [26]. This ansatz involves a product of two
Coulomb waves ϕ(−)(ki ,r2; Z) ϕ(−)(kj ,r1; Z − 1) describing
a slow escaping electron which, being closer to the ion, “sees”
its full charge Z and a fast electron which, being far from both
the nucleus and the slow electron, sees a charge Z − 1. The
step functions θ with θ (0) = 1/2 are introduced to ensure that
when k1 > k2, the fast electron momentum k1 is associated
with the effective charge Z − 1 and k2 to Z and vice versa if
k1 < k2. When k1 = k2, k1 can be associated with either Z or
Z − 1.

Green’s function G(−) can be evaluated as a convolution
integral along a contour C in the complex energy E plane:

G(−)(r1,r2; r′
1,r

′
2; E)

= 1

2πi

∫
C

dEg(−)(r1,r′
1; E − i0; Z − 1)

× g(−)(r2,r′
2; E − E − i0; Z). (12)

For the time being, the contour C runs from −∞ to +∞ along
the real axis of the complex E plane. We now perform a partial
wave decomposition of the wave function �

(−)
1 and write

�
(−)
1 (k1,k2; r1,r2) = 2

π

1

k1 k2

∑
L,M,λ0,l0

{
ψLM

l0λ0
(r1,r2; k1,k2)

×YLM∗
l0λ0

(̂k1,̂k2) θ (k1 − k2)

+ g ψLM
l0λ0

(r1,r2; k2,k1)

×YLM∗
l0λ0

(̂k2,̂k1) θ (k2 − k1)
}
. (13)

L is the total angular momentum and M its projection on the
quantization axis. l0 and λ0 are the individual angular momenta
of the two electrons. YLM

l0λ0
(̂p,̂q) is the bipolar harmonics. The

partial wave function ψLM
l0λ0

in Eq. (13) can be further expanded
in a basis of Coulomb Sturmian functions [12] and bipolar
harmonics:

ψLM
l0λ0

(r1,r2) =
∑

l, λ, n, ν

CL(lλ)
nν (E) 〈r1,r2|n l ν λ; LM〉 , (14)

with
〈r1,r2|n l ν λ; LM〉 = φκ

nl(r1)

r1

φκ
νλ(r2)

r2
YLM

l λ (̂r1, r̂2). (15)

The Coulomb Sturmian functions φκ
νλ(r) form a complete and

discrete set of L2-integrable functions defined as follows:

φκ
νλ(r) =

[
κ(ν − λ − 1)!

ν(ν + λ)!

]1/2

(2κr)λ+1e−κrL2λ+1
ν−λ−1(2κr),

ν � 1 + λ, (16)

where Lα
n(x) is a Laguerre polynomial. κ is a nonlinear parame-

ter which plays the role of a dilation parameter. These functions
are known to be orthogonal with the weight 1/r , that is,

∞∫
0

dr

r
φκ

νλ(r)φκ
ν ′λ(r) = κ

ν
δνν ′ ,

and lead to a representation of the Coulomb potential in the
form of an infinite tridiagonal (Jacobi) matrix [27]. Note, that
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any radial Coulomb eigenstate ϕα l(r; Z) can be expanded
into a series of Sturmian functions:

ϕαl(r; Z) =
∑

ν

Sνl(α,Z)φκ
νl(r). (17)

For the continuum states we are concerned with, the expansion
coefficient takes the following form:

Sνl(k; Z) =
[

ν(ν + l)!

κ(ν − l − 1)!

]1/2

2l(sin ζ )l+1

× e−πt/2 ξ−it |�(l + 1 − it)|
(2l + 1)!

× (ξ )−(ν−l−1)
2F1(−ν + l + 1, l + 1

− it ; 2l + 2; 1 − ξ 2), (18)

where t = −Z/k and ξ = exp (iζ ) = (ik − κ)/(ik + κ).
Finally, from Eq. (11), we obtain the following system of
equations for the coefficients CL(lλ)

nν (k1,k2):

CL(lλ)
nν (k1,k2) = il0+λ0δ(lλ)(l0λ0)e

−i[σl0 (k1,Z−1)+σλ0 (k2,Z)]

×Snl0 (k1,Z − 1)Sνλ0 (k2,Z)

+
N−1∑

n′ ν ′, n′′ ν ′′=0

[
1

2πi

∫
C

dE g
(−)l
nn′ (E,Z − 1)

× g
(−)λ
νν ′ (E − E,Z)

]∑
l′′ λ′′

V
L(lλ)(l′′λ′′)
n′ν ′,n′′ν ′′ C

L(l′′λ′′)
n′′ν ′′ (E),

(19)

where
V

L(lλ)(l′λ′)
nν,n′ν ′ = 〈n l ν λ; LM|V (r1, r2)

∣∣n′ l′ ν ′ λ′; LM
〉

denotes a matrix element of the potential defined by Eq. (10)
in the basis (15). The upper limit in the sum in Eq. (19)
means that the matrix elements of the short-range potential
are assumed to be zero for any value of the index n

exceeding (N − 1). The partial Coulomb Green’s function
g(±)l(r,r ′; E; Z) can be represented by a sum over the
Coulomb eigenstates ϕα l(r; Z) as follows:

g(±)l(r,r ′; E; Z) =
∑

α

ϕ∗
αl(r; Z)ϕαl(r ′; Z)

E − εα ± i0
, (20)

Keeping in mind the decomposition (17) of the Coulomb
eigenfunctions, the contour integral in Eq. (19) becomes

1

2πi

∫
C

dE g
(−)l
nn′ (E,Z − 1) g

(−)λ
νν ′ (E − E,Z)

=
∑

α

S∗
nl(α,Z − 1)Sn′l(α,Z − 1) g

(−)λ
νν ′ (E − εα,Z). (21)

At this point we could apply Eq. (20) again and obtain a
double summation-integration in (21), but it is not convenient
for the numerical calculations. It is useful now to remember the
following representation for the matrix element g

(±)λ
ν ν ′ (E) [28]:

g
(±)λ
νν ′ (E; Z) = − 2

p
Sν<λ(p,Z) C(±)

ν>λ(p,Z), ν< = min{ν, ν ′},

ν> = max
{
ν, ν ′} , (22)

with p = √
2E. C(±)

nl (p,Z) is a Pollaczek function that can be
written as follows [27,29]:

C(±)
nl (p,Z) = −

[
n(n + l)!

κ(n − l − 1)!

]1/2 (n − l − 1)! eπt/2ξ it

(2 sin ζ )l

× �(l + 1 ∓ it)

|�(l + 1 ∓ it)|
(ξ )∓(n−l)

�(n + 1 ∓ it)

× 2F1(−l ∓ it, n − l; n + 1 ∓ it ; ξ∓2). (23)

The function C(+)
nl (p,Z) [C(−)

nl (p,Z)] is determined for Im(p) >

0 [Im(p) < 0] in the complex p plane and the analytical
continuation writes [29]

C(+)
nl (p,Z) = C(−)

nl (p,Z) + 2iSnl(p,Z). (24)

Equation (21) can be effectively used if E < 0, i.e., for
low-energy (e,2e) reactions. Details are presented in [23]. For
(e,3e) reactions, E > 0 and the direct evaluation of the contour
integral in Eq. (19) can be performed rotating the contour of
integration. This method was proposed by Shakeshaft [30]
and its application to our case is explained in [23]. We only
give the final result here. For this purpose, we first move
from the energy to the momentum space. For the sake of
clarity, we change the notations: we replace g

(±)λ
νν ′ (E; Z) by

Gλ(−)
νν ′ (p; Z) and rewrite the matrix element of the three-body

Green’s function (12) in the basis (16) as follows:

G
lλ(−)
nn′,νν ′ (E) = 1

4πi

∫
C

dE G l(−)
nn′ (

√
E0 + E ; Z − 1)

×Gλ(−)
νν ′ (

√
E0 − E ; Z). (25)

Where E0 = E. Now we rotate the contour C by a positive
angle ϕ. This may be done by the following change of variable
E → E0e

iϕt with t real and varying from −∞ to +∞. This
new contour crosses cuts of both Green’s functions in the
complex E plane. By using the analytical continuation (24)
while integrating along unphysical sheets, we arrive at the
expression

G
lλ(−)
nn′,νν ′ (E) = E0e

iϕ

4πi

{ 0∫
−∞

dt G l(−)
nn′ (k; Z − 1)

[
Gλ(+)

νν ′ (p; Z)

+4i

p
Sνλ(p; Z)Sν ′λ(p; Z)

]

+
∞∫

0

dt

[
G l(+)

nn′ (k; Z − 1) + 4i

k
Snl(k; Z − 1)

×Sn′l(k; Z − 1)

]
Gλ(−)

νν ′ (p; Z)

}
, (26)

where k =
√
E0(1 + teiϕ), and p =

√
E0(1 − teiϕ). This last

integral is calculated fully numerically and we checked that
the results do not depend on the angle ϕ.

III. (e,3e) PROCESSES IN HELIUM

A. First-order approach

The theoretical approach described above to calculate
double-continuum wave functions is now applied to (e,3e)
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FIG. 1. (Color online) Fully fivefold differential cross section (5DCS) for electron-impact double-ionization reaction He(e,3e)He++. The
incident energy is E0 = 5599 eV and the energies of the slow ejected electrons are E1 = E2 = 10 eV. The scattering angle θs of the fast
incident electron is fixed and equal to 0.45◦ while the angles of the ejected electrons are θ1 and θ2. One of these angles, θ1, is fixed and the other
varies. The blue dashed line is our result obtained by means of a zero-order calculation. The red solid line is the result obtained by solving the
Lippmann-Schwinger equation (11) for the double-continuum wave function. The solid dots with error bars are the absolute experimental data
of Lahmam-Bennani [4].

processes in helium. Here, we consider the case of very
high incident energies and small momentum transfer. In this
dipole limit, it is expected that a first-order Born treatment
is sufficient. The 5DCS which is the most differential one is
given by

σ (5) ≡ d5σ

d�s dE1 d�1 dE2 d�2

= 4psp1p2

pi

1

K4
| 〈�(−)(p1,p2)| exp(iK · r1)

+ exp(iK · r2) − 2|�0〉 |2 , (27)

where (Ei,pi), (Es,ps), (E1,p1), and (E2,p2) are the energy
and momentum of the incident, scattered, and the two ejected
electrons, respectively; K = pi − ps is the momentum transfer.
�0 and �(−) are the initial and the final double-continuum
wave functions of helium. The ground-state wave function �0

is expanded in a basis of the Coulomb Sturmian functions
(16) for the radial coordinates and bipolar harmonics for the
angular coordinates [12]:

�0(�r1,�r2) =
∑
l1l2

∑
n1n2

γ l1l2
n1n2

�l1l200
n1n2

A

×
(

φκ
n2l2

(r2)

r2
Y00

l1l2
(r̂1,r̂2)

φκ
n1l1

(r1)

r1

)
, (28)

where �l1l2LM
n1n2

is the expansion coefficient. They are obtained
by diagonalizing the atomic Hamiltonian in Eq. (1). A projects
onto either singlet or triplet states in order to ensure the
symmetry or antisymmetry of the spatial wave function as
required by the Pauli principle. The coefficient γ l1l2

n1n2
= 1 +

(1/
√

2 − 1)δl1l2
n1n2

controls the redundancies which, from the
exchange of the electrons, may occur in the basis. In the
present calculation, n1, n2 vary from 1 to 15 and l1, l2 from 0
to 3. By choosing the nonlinear parameter κ0 = 2, we obtain
E0 = −2.90327 a.u. for the ground-state energy [31].

B. Results and discussion

In this section, we present results on the 5DCS [Eq. (27)].
We consider the same kinematics as in the experiments of
Lahmam-Bennani et al. [4,13] where the geometry of the
(e,3e) process is coplanar asymmetric and both ejected elec-
trons have the same energy. Two different kinematics, referred
to as kinematics A and B, are considered: in kinematics A, the
excess energy is equal to 20 eV and the momentum transfer to
0.24 a.u., while in kinematics B, the excess energy is 8 eV and
the momentum transfer, 0.22 a.u.. The 5DCS is measured as a
function of one of the ejection angles, say, θ2 for fixed values
of θ1, the other angle.

To start our discussion, let us first calculate the 5DCS by
treating the target final state at the zero order. This means
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FIG. 2. (Color online) Fully fivefold differential cross section (5DCS) for electron-impact double-ionization reaction He(e,3e)He++. The
incident energy is E0 = 5587 eV and the energies of the slow ejected electrons are E1 = E2 = 4 eV. The scattering angle θs of the fast incident
electron is fixed and equal to 0.45◦, while the angles of the ejected electrons are θ1 and θ2. One of these angles, θ1, is fixed and the other varies.
The blue dotted-dashed line is our result obtained by means of a zero-order calculation. The red solid line is the result obtained by solving the
Lippmann-Schwinger equation (11) for the double-continuum wave function. The solid dots with error bars are the absolute experimental data
of Lahmam-Bennani [4].

that in the Lippmann-Schwinger equation (11), we only keep
the first two terms of the right-hand side and neglect the
correction which involves Green’s function. In other words,
we describe this final state by its asymptotic expression. In
these calculations, it is sufficient to take into account three
values (0, 1, and 2) of the total angular momentum L and a
maximum value lmax of 5 for the individual angular momenta.
The results (the dashed line) for kinematics A and B are shown
in Figs. 1 and 2, respectively. First, we see that the agreement
between our results and the experimental data is better in
kinematics A than in kinematics B. This is expected since
in the latter case, both electrons are slower. However, it is
surprising to see that the order of magnitude of our results
in particular for the kinematics B is correct and does not
necessitate any renormalization of the data as it is usually
needed with other approaches. This contrasts with the case
in which the final target state is a product of two Coulomb
functions with effective charges equal to 2 and which leads
to results in poor agreement with the experimental data as far
as the shape and the magnitude are concerned. In the present
conditions, on the other hand, this asymptotic term is unable to
reproduce well the node in the final target state wave function
at θ1 = θ2 (in kinematics A) when both ejected electrons share
exactly the same energy and especially when they are ejected
backward.

In Figs. 1 and 2, we also present our results (solid red line)
obtained by solving the Lippmann-Schwinger equation (11)
for the double-continuum wave function. In that case, we use
three values (0, 1, and 2) of the total angular momentum L and
a maximum value of 3 for the individual angular momenta.
The number N of Coulomb Sturmian functions is 25 with the
dilation parameter κ = 0.6 for kinematics A and 30 with κ =
0.4 for kinematics B. The parameters of the splitting function
(4) are a = 3, b = 20, and ν = 2.1. We clearly see that for
both kinematics, the agreement between the experimental data
and these new results has significantly improved. In particular,
we see that in many cases, the node of the double-continuum
wave function at θ1 = θ2 is better reproduced.

Let us now compare our results with those obtained
with other approaches. For kinematics A, this comparison is
presented in Fig. 3 for four different values of θ1: 27◦, 97◦,
221◦, and 319◦. Our results are represented by the red solid
lines. They are close to the other results in shape but not really
in magnitude. Knyr et al. [32] used a very similar method to
ours except for the number of Sturmian functions which, in
their case, is limited to 20, and a different description of the
ground state. Their results, given by the blue dashed line, are in
general of the same order of magnitude as ours. However, we
observe significant shifts of the main peaks, in particular for the
highest values of θ1. This may be due to a numerical instability
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FIG. 3. (Color online) Fully five-fold differential cross section (5DCS) for electron-impact double-ionization reaction He(e,3e)He++. The
incident energy is E0 = 5599 eV and the energies of the slow ejected electrons are E1 = E2 = 10 eV. The scattering angle θs of the fast incident
electron is fixed and equal to 0.45◦. The 5DCS is given as a function of θ2, the angle of one of the ejected electrons. Four values of θ1, the angle
of the other ejected electrons, are considered: 27◦ (a), 97◦ (b), 221◦ (c) and 319◦ (d). Our results given by the red solid line are compared with
those obtained by other approaches: the brown dotted line with open circles are the FBA(3C) results of Jones et al. [15]; the blue dashed line
are the results of Knyr et al. [32] by means of a similar method to ours; the green solid line are the CCC results (scaled up by a factor 3) of
Kheifets et al. [4]; and the dark blue dashed line with stars are the results of Berakdar [14] by using a first-order four-body Green’s function
expansion. The solid dots with error bars are the absolute experimental data of Lahmam-Bennani [4].

in their calculation of the dielectronic interaction potential
matrix elements. The CCC results of Kheifets et al. [4] are
the green solid lines. In their calculations, the ground-state
wave function is either a 20-term Hylleraas or a 18-term
multiconfiguration Hartree-Fock wave function. Except for a
small shift of the main peaks, they agree in shape with our
results. However, since they are scaled up by a factor of 3, the
orders of magnitude are significantly lower.

The last two curves shown in Fig. 3 were obtained by
Jones et al. [15] (brown dotted lines with open circles) and
by Berakdar [14] (dark blue dashed lines with stars). Jones
et al. used the FBA(3C) model, namely, the first-order Born
approximation with the Brauner, Briggs, and Klar (BBK)
wave function [33] to describe the two ejected electrons and
the Pluvinage function for the ground-state wave function. It
is worth mentioning that the BBK wave function describes
correctly both ejected electrons only in the asymptotic zone.
Berakdar used a first-order four-body Green’s function ex-
pansion formalism. The Jones and Berakdar calculations give

results that are in qualitative agreement with all the others as
far as the shape is concerned. However, the Jones results are
often much higher in magnitude. The quantitative agreement
of the Berakdar results with the experimental data is much
better, except for θ1 = 97◦.

Lahmam-Bennani et al. [13] performed a first-order Born
calculation with a Coulomb four-body final state which
describes well the long-range Coulomb interaction between
the three electrons and the residual ion only in the asymptotic
region far from the nucleus. However, it gives results (not
shown here) that must be scaled down by a factor of 10 to be
compared with the experimental data. Finally, let us mention
the wave-packet evolution approach [10] of Serov. His results
(not shown here) are very close in shape and magnitude to the
CCC results.

Let us now move to the kinematics B. The comparison be-
tween our results and those obtained with the other approaches
is shown in Fig. 4. Our calculations are the only ones that give
results (the red solid lines) with the correct order of magnitude.
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FIG. 4. (Color online) Fully fivefold differential cross section (5DCS) for electron-impact double-ionization reaction He(e,3e)He++. The
incident energy is E0 = 5587 eV and the energies of the slow ejected electrons are E1 = E2 = 4 eV. The scattering angle θs of the fast incident
electron is fixed and equal to 0.45◦. The 5DCS is given as a function of θ2, the angle of one of the ejected electrons. Two values of θ1, the
angle of the other ejected electrons, are considered: 99◦ (a) and 207◦ (b). Our results (red solid line) are compared with those obtained by other
approaches: the green solid line are the CCC results (scaled up by a factor 14) of Kheifets et al. [4] and the blue dashed line with stars are the
results [scaled up by a factor 25 in (a) and 10 in (b)] of Berakdar [14] by using a first-order four-body Green’s function expansion. The solid
dots with error bars are the absolute experimental data of Lahmam-Bennani [4].

Let us stress that in contrast to Ref. [14], the experimental data
shown in Fig. 4 are absolute and not renormalized. The results
of Berakdar (blue dashed lines with stars) are in rather good
qualitative agreement with the experimental data but strongly
differ from these data as far as the magnitude is concerned. In
the case of the CCC results (green solid line), the qualitative
agreement with the experimental data is less good, while the
results are also systematically much higher in magnitude.
Finally, it has been reported in [34] that a first-order Born
calculation using the BBK wave function for the final double
continuum gives results which have to be multiplied by a large
factor (around 40) to be compared with the experimental data.

C. Study of convergence

In this section, we study the convergence of our results
as a function of the Coulomb Sturmian basis size. Before
starting our discussion, it is worth mentioning that we have
tested the calculations of the matrix elements associated with
the potential (10) by using different techniques of quadrature
(which are known to be very stable and fast) and checked that
the results are stable even for very large values of the Sturmian
function indices. The same conclusions apply to the calculation
of Green’s function (26). However, great care must be taken
in the calculation by recursion of the Pollaczek function (23)
as described in [29]. No significant change has been observed
by changing the parameters of the cutoff function (4). The
matrix elements associated with the dielectronic interaction
potential have been evaluated by means of the method outlined
in [12]. In our calculations, we chose the value of the Sturmian
dilation parameter κ very close to the ejected electron velocity
(in a.u.). Indeed, the dilation parameter is roughly the electron
wave vector. We have checked that choosing a very small
value of κ , as is usually the case in order to have spatially
more extended Sturmian functions, does not help since many
Sturmian functions are therefore needed to reproduce the
spatial oscillations of the wave function.

The convergence of our results has been studied as a
function of the number of pairs (l,λ) of electron angular
momenta, as a function of the number of pairs (n,ν) of
Sturmian indices for a fixed value of N (the maximum value
of n or ν), and as a function of N . In Fig. 5(a), the 5DCS
is shown for two values of lmax, the maximum value of the
individual electron angular momentum. Since three values of
the total angular momentum L (0, 1, and 2) are taken into
account, lmax = 3 corresponds to a total number of pairs (l,λ)
of 17, and 29 for lmax = 5. The total number N of Coulomb
Sturmians per electrons and per pairs (l,λ) is fixed to 25.
We clearly see that the results are stable in terms of lmax. In
addition, this conclusion stays valid for higher values of N .
For a fixed value of N , we checked that the results for the
5DCS converge with respect to the number of pairs (ν,n).
The partial sums of each pair contribution converge to four
digits of accuracy. We also used the ε algorithm [36] based on
Padé approximants to accelerate the convergence of the partial
sums. In that case, we reach at least eight digits of accuracy. In
Fig. 5(b), we show the 5DCS for lmax = 3 and three different
values of N . For small values of N , it seems that the results
converge. However, for larger values of N , this convergence
deteriorates. It is worth mentioning that the use of the Lanczos
smoothing factor σN

i defined in [37] does not seem to solve
this problem. This suggests that the reason for the deterioration
of the convergence is more fundamental.

In fact, it is directly related to the noncompactness
of the kernel (G0V ) of the Lippmann-Schwinger (LS)
equations [38–40] involving three or more charged particles.
In the present case, the kernel of the LS equation (11) is not
compact. In this respect, the fact that the potential (10) is
only of finite range in the two-body scattering regions �1 and
�2 and not in the three-body scattering region �0 plays an
important role. By contrast, if we use the present method to
calculate the single-continuum wave functions of helium, the
integral part of the LS equation is convergent due to convergent
features of the single-continuum wave function, and we have
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FIG. 5. Fully fivefold differential cross section (5DCS) for electron-impact double-ionization reaction He(e,3e)He++. The incident energy
is E0 = 5599 eV and the energies of the slow ejected electrons are E1 = E2 = 10 eV. The scattering angle θs of the fast incident electron is
fixed and equal to 0.45◦ while the angles of the ejected electrons are θ1 and θ2. θ1 = 27◦ and θ2 varies. In (a), the calculations are performed
for two different maximum values lmax of the individual electron angular momentum and for N = 25 where N is the total number of Coulomb
Sturmian functions per electron and per individual electron angular momentum. In (b), the calculations are performed for three values of N

and lmax = 3.

checked that the results for the triply differential cross section
(3DCS) of single ionization (without excitation) of helium
converge.

In Fig. 6, we present our results for an incident electron
energy of 5500 eV, an ejected electron energy of 75 eV, and
a scattering angle of 1◦. The calculations were performed for
four different values of N . We clearly see that convergence
is reached already for relatively small values of N . In the
case of ionization excitation, Zaystev et al. [23] also obtained
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FIG. 6. (Color online) Triply differential cross section (3DCS)
for electron-impact ionization of He as a function of θ1 the electron
ejection angle. The incident energy is E0 = 5500 eV, the energy of
the ejected electron is equal to 75 eV and the scattering angle to 1◦.
The results are presented for different values of N that defines the
size of the basis. The solid dots are the absolute experimental data of
Dupré et al. [35].

convergence with a small value of N , but they had to use the
Lanczos smoothing factor mentioned above.

The problem of the compactness of the kernel of the
LS equations involving three or more charged particles is
still the subject of current investigations by several groups
[41–44]. In this context, the problem of convergence we
encounter must be also present in all the approaches where
the free term in the right-hand side of the LS equation (11)
does not satisfy the correct three-body Coulomb asymptotic
behavior and where the kernel (GV ) is not compact. The well-
known and successful CCC method, when applied to (e,3e)
processes, must suffer from analogous problems. Indeed,
there the double-continuum wave function is obtained by
assuming that the coefficients CL(lλ)

n ν = Al
nB

λ
ν in Eq. (19),

where the coefficients An result from the diagonalization of the
matrix of the two-body Hamiltonian describing the subsystem
e + He++. Such operation replaces the two-body continuum
by a discrete number of pseudostates with positive energies. As
Berakdar underlines in [14], the four-body Green’s function
expansion approach should also face the problem of the
noncompactness of the kernel of the LS equation used.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper, we have applied the Jacobi matrix method
to the Faddeev-Merkuriev differential equations in order to
calculate the three-body wave function that describes the
double continuum of an atomic two-electron system. In order
to test this wave function, we performed a first-order Born
calculation of the fully differential cross section for electron-
impact double ionization of helium. In particular, we consid-
ered in detail the coplanar kinematics that have been treated
experimentally by the group of Lahmam-Bennani. These
kinematics involve a very high incident energy, a very small
momentum transfer, and very low ejected electron energies.
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Our double-continuum wave function which is the solution
of a Lippmann-Schwinger equation contains two terms: a free
term that satisfies the correct asymptotic conditions in the
two-body scattering regions and a correction term involving
Green’s function and a potential which is in principle of short
range. Quite unexpectedly, the results obtained by neglecting
the correction term are already in satisfactory agreement with
all the experimental data. This agreement is further improved
when the correction term is included. We want to stress that in
all cases and in particular when the electrons are emitted with
the lowest energy, our results do not need to be scaled to be
compared to the experimental data, in contrast to all the other
methods.

We have also examined the convergence of our results
with respect to the basis size. The convergence is reached
in terms of the number of electron angular momenta. In terms
of the total number of Sturmian functions, the results seem to
converge for small values of this number, but the convergence
deteriorates for larger values. This problem is related to the
noncompactness of the kernel of the Lippmann-Schwinger
equation and to the fact that the free term does not satisfy the
correct asymptotic conditions in the true three-body scattering
region. It is important to note that any approach where the
free term does not obey the correct three-body Coulomb
asymptotics and where the kernel of the Lippmann-Schwinger
equation is not compact cannot pretend to be a mathematically
blameless description of the three-body continuum.

One way to overcome the problem of the compactness of
the kernel could be the use of the BBK wave function as the
free term in the Lippmann-Schwinger equation and to work
in parabolic coordinates. In this way, it is known that the
potential that enters the correction term has a short range.
We are presently working on this approach. On the other
hand, it is instructive to mention that the problem of removing
the divergences from the Lippmann-Schwinger equation by
cutting the long-range potential is discussed up to now even
in the two-body case. In this context, a calculation based on

the ECS method is desirable. We also plan to replace the free
term by a product of two Coulomb functions with, in the case
of helium, an effective charge equal to 2 and cut at large
distances the dielectronic interaction potential that enters the
kernel of the Lippmann-Schwinger equation. This approach
will be applied to the treatment of (e,3e) processes with
unequal electron energy sharing and to the double ionization
of helium by photon impact. Finally, let us stress that methods
that do not rely on the Lippmann-Schwinger equation such as
the time-dependent approach initiated by Serov [10] should
be developed further. In this approach, the total wave packet
of the system can reach the genuine asymptotic zone where
the different ionization channels are decoupled, allowing a
much easier extraction of the relevant information about the
ionization processes.
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(UCL). Yu.P. and S.A.Z. thank the UCL for hospitality and
financial support. Yu. P. acknowledges the Russian Foundation
for Basic Research through the Project No. 11-01-00523-a.
The authors thank the UCL for providing them with access to
the supercomputer of the Calcul Intensif et Stockage de Masse,
which is supported by the Fonds National de la Recherche
Scientifique through the Fonds de la Recherche Fondamentale
Collective Project No. 2.4556.99, “Simulations Numériques et
Traitement des Données.”

[1] G. Tanner, K. Richter, and J.-M. Rost, Rev. Mod. Phys. 72, 497
(2000).

[2] J. Eiglsperger, B. Piraux, and J. Madroñero, Phys. Rev. A 80,
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