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In this paper a scheme is proposed for measuring nuclear-spin-dependent parity-nonconservation effects in
highly charged ions. The idea is to employ circularly polarized laser light for inducing the transition between
the level (1s2s) 1S0 and the hyperfine sublevels of (1s2s) 3S1 in He-like ions with nonzero nuclear spin. We
argue that an interference between the allowed magnetic dipole M1 and the parity-violating electric dipole E1
decay channel leads to an observable asymmetry of order 10−7 in the transition cross section, in the atomic range
28 � Z � 35. Experimental requirements for asymmetry measurements are discussed in the case of He-like 77

34Se.
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I. INTRODUCTION

Atomic parity nonconservation (PNC) is known to be a
versatile tool for testing the neutral-current hadronic part of
the weak interaction at low energy. Special attention has been
devoted to this interaction for its sensitiveness to new physics
beyond the standard model of particles, which manifests itself
in the violation of fundamental symmetries [1–3].

The PNC interaction is P odd, T even, and flavor conserv-
ing. The effective Hamiltonian of the PNC electron-nucleus
interaction can be cast in the form [4]

HPNC = GF√
2

(
−QW

2
γ5 + κ

I
α · I

)
ρ(r), (1)

where GF is the Fermi constant, I the nuclear spin vector, and
ρ the density of nucleons normalized to unity. Besides, the fac-
tors QW and κ characterize, respectively, contributions of the
nuclear-spin-independent (nsi) and nuclear-spin-dependent
(nsd) parts of the Hamiltonian (1). The nsd interaction, due
to its explicit dependence on I , is only active in I �= 0 nuclei,
while the nsi one is always present. The tensor properties of the
two parts of the Hamiltonian are defined by the pseudoscalar
γ5 = iγ0γ1γ2γ3 and the vector αi = γ0γi (with i = 1, . . . ,3),
where γ0, . . . ,γ3 are the Dirac matrices.

The nuclear-spin-independent and nuclear-spin-dependent
parts of the PNC Hamiltonian are of different physical origins.
The nsi term arises from the exchange of Z0 bosons between
nucleons and atomic electrons. Since this is the dominant
contribution in atomic PNC, it has attracted until now the most
experimental and theoretical efforts (see, e.g., the review [5]).
Instead, the nsd component principally comes from the
magnetic interaction of an atomic electron with the nuclear
anapole moment. The latter originates from parity-violating
weak interactions among nucleons [6–8] that create spin and
magnetic moment helixes in the nucleus [4]. Aside from the
anapole moment, the nsd part in Eq. (1) also accounts for two
other phenomena: one is generated by the combination of the
usual nsi coherent Z0 coupling together with the magnetic
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hyperfine interaction [9], and the other by the axial-coupling
Z0 exchange to the nucleus [9,10].

The joint effect of the nsd PNC contributions is very
interesting because it offers access to the tiny and poorly
understood spin and hyperfine dependences of PNC. The
experimental analysis of such dependence is, however, a very
complicated task, owing to the smallness of the nsd term in
the effective Hamiltonian (1), if compared with the nsi one
(|QW | ∼ 100|κ|). Therefore, up to the present, only a single
experiment has succeeded in unambiguously detecting nsd
PNC in transitions between the hyperfine sublevels of 6s and
7s in 133Cs with a 14% accuracy [11]. Furthermore, upper
limits on the magnitude of the anapole moment of 205Tl have
also been ascertained [12], and future experiments in atomic
traps have been recently proposed for Rb and Fr [13]. We stress
that all these measurements make use of neutral heavy I �= 0
atoms, where nsd PNC is enhanced by the A2/3 scaling [8,9]
with respect to the mass number A. Therefore, the assessment
of the effective strength κ from the experimental findings
requires, in general, detailed knowledge of the structure of
neutral atoms. Due to the complicated multielectron structure
in neutral heavy atoms, the total error on κ is dominated by
that of theoretical calculations. We emphasize here that the
need for accurate atomic structure calculations is not only
a technical issue aiming at higher precision, rather it also
has fundamental implications. In fact, the interpretation of
measurements free of atomic-theory uncertainties is crucial to
testing the electroweak theory in the low-energy regime [14].

To circumvent the atomic-structure complications of neu-
tral atoms, one might explore nsd effects in highly charged
ions. An evident advantage of this choice would be a significant
improvement of the theoretical accuracy, ensured by the simple
electron structure of highly charged ions. Moreover, it would
be possible to employ high-precision spectroscopy techniques
already available at ion storage rings [e.g., the experimental
storage ring (ESR) at GSI]. Future experiments with highly
charged ions will exploit the degeneracy of opposite-parity
levels [15–19] to enhance PNC influence.

A possible scenario for studying nsd effects in highly
charged ions has been proposed by Nefiodov et al. in Ref. [20].
In that work, a scheme employing a He-like ion beam in
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FIG. 1. Scheme of the first excited levels of He-like 77
34Se (not in scale). Energies in brackets are measured in eV, and F stands for the total

angular momentum of any atomic state. Lines with arrows visualise the dominant electromagnetic transitions. The thick arrow line denoted
“nsd PNC” represents the laser-induced transition considered in this paper.

the (1s2s) 1S0 state was investigated. Owing to nsd PNC
interaction, the states (1s2s) 1S0 and (1s2p) 3P1 mix in and, as
a consequence, a small degree (∼10−5) of polarization in the
photons emitted from the (1s2s) 1S0 → (1s2) 1S0 spontaneous
decay may appear. The difficulties in this observation scheme
lie in the required polarization of the ion beam as well as in the
detection of the evanescent polarization of the emitted photons.
To overcome the latter critical points, we propose in this
paper an alternative and promising scenario for measuring nsd
phenomena. We shall focus in particular on He-like 77

34Se ions,
where nsd PNC effects are markedly enhanced, for reasons
that will be clarified in the next sections. A low-energy level
scheme of this ion is sketched in Fig. 1. The idea is to prepare
unpolarized ions in the (1s2s) 1S0 state and induce an E1
transition to the (1s2s) 3S1 state with circularly polarized laser
light, in competition with the spontaneous M1 one. An easy
tagging of this process would be the M1 decay of (1s2s) 3S1

to the ground state, accompanied by emission of an 11.5 keV
photon. By performing this experiment alternately with left
and right circularly polarized laser light, we will show that an
asymmetry proportional to the nsd PNC interaction strength κ

may be observed in the transition cross section. An extreme ul-
traviolet (EUV) laser [�E ≡ E(2 3S1) − E(2 1S0) � 43.8 eV,
see Fig. 1] with an intensity ∼1011 W/cm2 will be required for
such an observation. A similar scheme was recently proposed
by Shabaev et al. [21] to investigate nuclear spin-independent
PNC effects. Here, instead, we shall focus on the nsd PNC
only.

This paper is organized as follows. In Secs. II and III,
we discuss the parameters of the nsd PNC Hamiltonian
and evaluate the mixing between the states (1s2s) 1S0 and
(1s2p) 3P1. In Sec. IV we present the method employed to
assess the hyperfine splitting of the first excited levels in

He-like ions. The theoretical treatment of nsd PNC asym-
metry in the cross section of the laser-induced transition
(1s2s) 1S0 → (1s2s) 3S1 is then developed in detail in Sec. V.
A discussion of experimental requirements follows in Sec. VI,
while conclusions are drawn in Sec. VII. Relativistic units
(h̄ = c = 1) will be adopted throughout this paper.

II. NUCLEAR-SPIN-DEPENDENT PARITY
NONCONSERVATION

In this work, we shall concentrate on the effects of PNC
mixing between the opposite-parity states 2 1S0 ≡ (1s2s) 1S0

and 2 3P1 ≡ (1s2p) 3P1, in nuclei with spin I �= 0 and atomic
number 28 � Z � 36. Since these two states have different
total angular momenta, the mixing is mediated by the nsd
part of the Hamiltonian (1) only, while any contribution from
the nsi term is forbidden, as we will motivate in Sec. III. In
principle, the nsi PNC interaction might be responsible for the
mixing of 2 1S0 with 2 3P0 ≡ (1s2p) 3P0, but this is strongly
suppressed by a large energy separation of these states in the
Z interval we are discussing [19]. Therefore, in the rest of
this work, we shall focus on the nsd component only of the
effective weak Hamiltonian (1), which we recall here for the
sake of clarity [5,9,22]:

Hnsd(r) = GF√
2

κ

I
α · I ρ(r). (2)

As already mentioned in the Introduction, three different
effects contribute to the spin-dependent Hamiltonian in Eq. (2).
Accordingly, the strength κ is usually parametrized in the form

κ = K

I + 1
κa − K − 1/2

I + 1
κ2 + κQ, (3)
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where the constant K reads

K = (−1)I+1/2−�
(
I + 1

2

)
, (4)

with � being the total orbital angular momentum of the valence
nucleons [5]. Although � is in general poorly known, its value
only discriminates the sign of K and, according to definition
(3), the overall sign of the Hamiltonian Hnsd as well. However,
as we will note in Sec. V, this is not a critical issue, and
the actual sign of K could be extracted from experimental
detection of the nsd PNC asymmetry. The strength κ is likewise
weakly affected by the sign of K . Nevertheless, the relative
variation of κ for K = ±(I + 1/2) is always constrained
below ∼ 3%.

In Eq. (3), the term κa describes the interaction of the
nuclear anapole moment and is the dominant spin-dependent
contribution [7]. The term κ2 is the strength of the axial-
coupling Z0 exchange to the nucleus, while κQ denotes the
effect of coherent Z0 coupling to the nucleus perturbed by
the hyperfine interaction [9,22]. As follows from Eq. (3),
any further analysis of nsd PNC phenomena in He-like ions
requires knowledge of the numerical value of the coefficients
κa , κ2, and κQ. For the ions in the interval 28 � Z � 36,
however, neither theoretical calculations nor experimental data
about the aforementioned parameters are available. Therefore,
in analogy with the treatment in Ref. [20], we will employ
in this work the well-known A2/3 scaling law [7,8]. We
also note that the parameters κa , κ2, and κQ reflect nuclear
properties only, independent of the electronic structure of
the system under investigation, and therefore they equally
apply to both neutral atoms and ions. For neutral atoms,
the best theoretical estimates of κa for the nuclide 133Cs,
including finite-size nuclear effects, is 0.362(62) [23,24],
in agreement with the most accurate PNC experimental
measurements [11,25]. For the same nuclide, the other two
coefficients read κ2 = −0.063 [26] and κQ = 0.017 [10]. We
use the latter numerical values, rescaled to the A values of the
ions considered in this work.

III. NUCLEAR-SPIN-DEPENDENT PNC MIXING OF
2 3 P1 AND 2 1 S0

Is it well known [17–19] that crossings of opposite-parity
levels may be discovered in the low-energy spectrum of
He-like ions for selected values of the atomic number Z. In
particular, a quasidegeneracy of the two levels 2 3P1 and 2 1S0

occurs at Z ∼ 32 [19]. This occurrence can be conveniently
exploited in nsd PNC measurements. To demonstrate this,
let us first recall a few relevant properties of the nsd PNC
Hamiltonian Hnsd in Eq. (2). It contains two vectors, α and
I, that operate in separate Hilbert spaces: α in the space of
the atomic wave functions, while I in that of the nuclear wave
functions. Atomic states of opposite parity and total electron
angular momenta J1 and J2 such that J1 − J2 = ±1,0, may
be connected by operator α. Therefore, 2 3P1 and 2 1S0 can
mix together through the effective nsd interaction. The latter
property is rather peculiar if compared with the pseudoscalar
nuclear-spin-independent Hamiltonian, which mixes states
of opposite parity and identical total angular momentum
(J1 − J2 = 0) only.

Owing to the Hamiltonian Hnsd, the 2 1S0 atomic state in
He-like ions with nuclear spin I �= 0 can be described as

|2 1S0,I,IM〉 + iη|2 3P1,I,F1M1〉, (5)

where M is the magnetic quantum number of the coupled 2 1S0

state, while F1 and M1 stand, respectively, for the total angular
momentum and magnetic number of the coupled state 2 3P1.
The mixing coefficient iη in Eq. (5) is expressed at leading
order of perturbation theory by

iη = 〈2 3P1,I,F1M1|Hnsd(1) + Hnsd(2)|2 1S0,I,IM〉
E(2 1S0) − E(2 3P1) − i[�(2 1S0) − �(2 3P1)]/2

= 〈2 3P1,I,F1M1|Hnsd(1) + Hnsd(2)|2 1S0,I,IM〉
E(2 1S0) − E(2 3P1)

, (6)

where E and � represent the level energy and width of
each state. The notation Hnsd(i), with i = 1,2, means that
the one-particle Hamiltonian operates on the i-th electron of
He-like atomic states. The suppression of � terms in Eq. (6) is
a consequence of time invariance [27], which demands that η

be a real number.
By making use of standard angular momentum techniques,

the matrix element in Eq. (6) simplifies as

〈2 3P1,I,F1M1|[α(1) + α(2)] · I ρ(r)|2 1S0,I,IM〉

= (−1)2I δIF1δMM1

{
I I 1

1 0 I

}

×〈2 3P1||[α̂(1) + α̂(2)]ρ(r)||2 1S0〉〈I ||Î ||I 〉

= −δIF1δMM1

√
I (I + 1)

3
〈2 3P1||[α̂(1) + α̂(2)]ρ(r)||2 1S0〉,

(7)

since atomic and nuclear parts of the wave functions can
be decoupled. The result in Eq. (7) imposes that the two
coupled states |2 3P1,I,F1M1〉 and |2 1S0,I,IM〉 must have
the same total angular momentum and magnetic number,
i.e., F1 = I and M1 = M . Above, as well as in the rest
of the paper, we introduced the common notation 〈a||V̂ ||b〉
to denote the reduced matrix element of a generic vector
operator V between two states a,b. We also made use of
〈I ||Î ||I 〉 = √

I (I + 1)(2I + 1).
Although the atomic reduced matrix element

〈2 3P1||[α̂(1) + α̂(2)]ρ(r)||2 1S0〉 is calculated between
two-electron wave functions, it is also possible to express
it in terms of one-particle matrix elements. While the state
2 1S0 can be treated in a single determinantal approach,
i.e., |2 1S0〉 = |(1s2s)0〉, the 2 3P1 requires us to include
mixing between the configurations (1s2p1/2)1 and (1s2p3/2)1.
Therefore, we pose

|2 3P1〉 = c2p1/2 |(1s2p1/2)1〉 + c2p3/2 |(1s2p3/2)1〉, (8)

where we calculated the coefficients c2p1/2 and c2p3/2 in the
framework of relativistic many-body perturbation theory, as
described in Ref. [18]. By employing Eq. (8), the reduced
matrix element of the operator [α̂(1) + α̂(2)]ρ(r) can be
rewritten explicitly in terms of one-electron matrix elements
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(see e.g., Ref. [28]) as

〈2 3P1||[α̂(1) + α̂(2)]ρ||2 1S0〉
= c2p1/2 〈(1s2p1/2)1||[α̂(1) + α̂(2)]ρ||(1s2s)0〉

+ c2p3/2 〈(1s2p3/2)1||[α̂(1) + α̂(2)]ρ||(1s2s)0〉
= c2p1/2 〈2p1/2||α̂ρ||2s〉 + c2p3/2 〈2p3/2||α̂ρ||2s〉, (9)

where, with the help of the Wigner-Eckart theorem, explicit
expressions of 〈2p1/2||α̂ρ||2s〉 and 〈2p3/2||α̂ρ||2s〉 are readily
evaluated:

〈2p1/2||α̂ρ||2s〉 =
√

6 〈2p1/2,m = 1/2|αzρ|2s,m = 1/2〉

= −i
√

6
∫ +∞

0
dr r2ρ(r)

[
f2p1/2 (r)g2s(r)

+ 1

3
f2s(r)g2p1/2 (r)

]
, (10)

〈2p3/2||α̂ρ||2s〉 =
√

6 〈2p3/2,m = 1/2|αzρ|2s,m = 1/2〉

= − 4i√
3

∫ +∞

0
dr r2ρ(r)f2s(r)g2p3/2 (r). (11)

In the explicit numerical calculations of Eqs. (10) and (11),
the nuclear density ρ is chosen to be spherically symmetric and
homogeneous. The large (g) and small (f ) components of the
Dirac wave functions ψnκm(r) come from the usual definition

ψnκm(r) =
(

gnκ (r)�κm(r̂)

ifnκ (r)�−κm(r̂)

)
, (12)

where κ = (−1)j+l+1/2(j + 1/2).
From Eqs. (7), (9), (10), and (11), together with

definitions (2) and (6), the PNC mixing coefficient iη

follows explicitly

iη = iGF

κ

E(2 1S0) − E(2 3P1)

√
I + 1

I

[
c2p1/2

×
∫ +∞

0
dr r2ρ(r)

(
f2p1/2 (r)g2s(r) + 1

3
f2s(r)g2p1/2 (r)

)

+ 2
√

2

3
c2p3/2

∫ +∞

0
dr r2ρ(r)f2s(r)g2p3/2 (r)

]
. (13)

Table I reports a comparison of our numerical results of
the mixing coefficient η with those in Ref. [20], for several
nuclides with 29 � Z � 36. After correcting for the hyperfine
energy splitting E(2 3P1) − E(2 1S0) with F = I (which we
calculated as discussed in Sec IV), a fair agreement is achieved.
It is already evident from Table I that 77

34Se is a likely candidate
for nsd PNC investigations, since it offers the largest mixing
factor among the listed nuclides. We will, however, come back
to the ion choice in Sec. VI.

IV. HYPERFINE LEVEL SPLITTING

We showed in the previous section that nsd PNC effects
are inversely proportional to �E = E(2 1S0) − E(2 3P1) in
He-like ions. Therefore, it is essential to accurately calculate
the energy splitting between the F = I hyperfine component
of atomic levels 2 3P1 and 2 1S0. To this purpose, we consider
the Hamiltonian

H = H0 + Hhf, (14)

where H0 describes the He-like ion without including any
magnetic effect, and Hhf is the hyperfine perturbation in dipole
approximation,

Hhf = T · M. (15)

The vectors T and M act separately in the space of the electrons
and of the nucleus. The electron operator T is defined in terms
of the Dirac matrices and vector spherical harmonics (see e.g.,

TABLE I. Comparison of the numerical results for the weak mixing coefficient η, normalized to κW ≡ √
2 κ (I + 1)/K , with those

of Ref. [20] for several He-like ions in the region 29 � Z � 36. Our |η/κW | value is corrected by the factor CE = �E/�Eref , where
�E = E(2 3P1) − E(2 1S0) is our calculated energy splitting (see Sec. IV) and �Eref is that reported in Ref. [20]. For each ion, we list its
nuclear spin and parity Iπ .

E(2 3P1) − E(2 1S0) 10−101/CE |η/κW | 10−10|η/κW |
Ion Iπ (meV) CE (this work) Ref. [20]

63
29Cu 3/2− 218.75 1.12914 2.13483 2.08
65
29Cu 3/2− 217.31 1.13663 2.13374 2.08
67
30Zn 5/2− 191.55 1.08066 2.93813 2.87
69
31Ga 3/2− 150.22 1.22487 3.93801 3.83
71
31Ga 3/2− 143.92 1.27849 3.93592 3.83
73
32Ge 9/2+ 172.74 1.05361 4.51164 4.38
75
33As 3/2− 168.43 1.19930 4.84842 4.70
77
34Se 1/2− 206.58 1.19566 5.12805 4.97
79
35Br 3/2− 263.46 1.20322 4.12056 3.98
81
35Br 3/2− 260.51 1.21684 4.11812 3.98
83
36Kr 9/2+ 399.99 1.03776 3.51849 3.41
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Ref. [29]). Instead, M is connected to the nuclear magnetic
moment µ, since it obeys the relation

〈I ||M̂||I 〉 =
√

(2I + 1)(I + 1)

I
µ. (16)

The matrix element of the Hamiltonian (14) between two
states of atomic angular momentum J and J ′, and total angular
momentum F reads

WF
J,J ′ = EJ δJJ ′ + (−1)I+J+F

{
I J F

J ′ I 1

}
〈J ||T̂ ||J ′〉〈I ||M̂||I 〉,

(17)

where EJ is the unperturbed energy of the atomic state of
angular momentum J .

Diagonalization of matrix WF
J,J ′ for any allowed F gives

access to the energies of the hyperfine sublevels into which
any state splits. To calculate the energies of the 2 3P1 multiplet,
we considered mixing between the closely lying 2 3P0,1,2 and
2 1P1 levels. Numerical results are reported in Ref. [30] and,
for the case of He-like 77

34Se, also in Fig. 1.
In contrast to the 2 3P1 multiplet, hyperfine corrections

on the 2 1S0 state take place through mixing with 2 3S1 ≡
(1s2s) 3S1 only. In the Z interval considered in this paper,
however, the energy separation between even-parity states
is large (� 56 eV in 77

34Se, see Fig. 1) in comparison with
that of the odd-parity states (�2.7 eV between 2 3P0 and

2 3P1 in 77
34Se [31]), and the hyperfine correction has been

found correspondingly negligible. Therefore, we assume in
the following that no shift affects the 2 1S0 energy, and that the
three F = I,I ± 1 hyperfine sublevels of 2 3S1 are degenerate.
We will see in Sec. VI that this approximation is also motivated
by experimental requirements.

The numerical values of the splitting �E = E(2 1S0) −
E(2 3P1), complete with hyperfine corrections, are listed in
Table I, for He-like ions in the range 29 � Z � 36.

V. LASER-INDUCED 2 1 S0 → 2 3 S1 TRANSITION

In the previous sections we pointed out that the two levels
2 1S0 and 2 3P1 of He-like ions are quasidegenerate and their
wave functions are mixed by a factor η due to the nsd
PNC interaction. We will focus here on the consequences
of this mixing upon the 2 1S0 → 2 3S1 transition induced by
circularly polarized laser light. From the discussion, it will
be clarified that forbidden transitions may take place and be
experimentally observed. In particular, we will prove that the
interference between the allowed M1 transition multipole (see
Fig. 1) and the forbidden E1 gives rise to measurable effects,
which are proportional to the nsd PNC strength.

To analyze the properties of the forbidden one-photon
2 1S0 → 2 3S1 transition, let us start by writing the cross
section in the general form

σ = 4(2π )3 1

2I + 1

∑
M,M ′

|〈2 3S1,I,F
′M ′|R(1) + R(2)(|2 1S0,I,IM〉 + iη|2 3P1,I,IM〉)|2

�2 3S1 + �2 1S0

. (18)

In this formula, we recalled that the initial state 2 1S0 is mixed
with 2 3P1 as in Eq. (5), and we defined with � and M ,
respectively, the decay width and the magnetic number of
the two levels. The hyperfine sublevel of the final state must
satisfy the selection rule |I − 1| � F ′ � I + 1. The scalar
one-particle operator R expresses the single-photon interaction
−eα · A, where A is the vector potential

A(x) = ε eik·x√
2ω(2π )3

. (19)

Here, the physical properties of the absorbed photon are
expressed by the polarization direction ε, the angular velocity
ω, and the wave vector k. They obey the relations |k| = ω

and k · ε = 0. To describe circularly polarized laser light, we
set [32]

ε = 1√
2

(ε1 + iλε2), (20)

where the linear polarization vectors ε1,2 are chosen in such a
way that ε1,2 · k = 0 and ε1 · ε2 = 0. The helicity λ = ±1 in
Eq. (20) is defined in such a way that the positive (negative)
sign corresponds to right (left) circular polarization of the laser
light.

As ensured by the smallness of the transition energy
considered here, operator R reduces in first order to

R = −eα · A ≈ −e
α · ε√

2ω(2π )3
(1 + ik · x). (21)

From approximation (21), in the electromagnetic multipole
expansion of operator R, only the electric dipole (E1),
magnetic dipole (M1), and electric quadrupole (E2) terms
are retained, while all higher orders disappear. Moreover, no
electric-quadrupole contribution is allowed between the two
levels under study, owing to angular momentum and parity
conservation of the electromagnetic interaction. By taking this
into account, the transition operator (21) simply reads

R = RE1 + RM1. (22)

Here, the E1 operator is defined as

RE1 = −iω
ε · d√

2ω(2π )3
, (23)

with d = er being the electric dipole. The M1 operator instead
reads

RM1 = i
ε × k · µ√

2ω(2π )3
, (24)
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where µ = e x × α/2 is the magnetic dipole. As known in
atomic structure calculations, the operator RE1 depends on the
particular choice of the gauge for the coupling of the radiation
field. In Eq. (23) we adopted the length gauge because, in this
case, the zeroth-order approximation already accounts for the
one-loop QED corrections in velocity gauge calculations, as
was shown in Ref. [21].

From Eqs. (18) and (22), we get for the 2 1S0 → 2 3S1 cross
section

σ (η) ∝
∑
M,M ′

|〈2 3S1,I,F
′M ′|RE1(1) + RE1(2) + RM1(1)

+RM1(2)(|2 1S0,I,IM〉 + iη|2 3P1,I,IM〉)|2
= |A|2 + 2ηRe(AB∗) + O(η2), (25)

where the tiny term proportional to η2 is neglected. In Eq. (25),
moreover, we introduced the short-hand notations

|A|2 = ω2

3
|〈2 3S1,I,F

′||µ̂(1) + µ̂(2)||2 1S0,I,I 〉|2, (26)

and

Re(AB∗) = ωλ

3
〈2 3S1,I,F

′||µ̂(1) + µ̂(2)||2 1S0,I,I 〉
× 〈2 3P1,I,I ||d̂(1) + d̂(2)||2 3S1,I,F

′〉. (27)

The two terms |A|2 and Re(AB∗) represent, respectively, the
allowed M1 transition, and the interference between M1 and
the parity-violating E1.

By decoupling atomic and nuclear parts in Eqs. (26) and
(27), we obtain the explicit forms

|A|2 = ω2

3
(2I + 1)(2F ′ + 1)

{
1 F ′ I

I 0 1

}2

× |〈2 3S1||µ̂(1) + µ̂(2)||2 1S0〉|2

= ω2

9
(2F ′ + 1)|〈2 3S1||µ̂(1) + µ̂(2)||2 1S0〉|2, (28)

and

2Re(AB∗)

= (−1)3I+F ′ ωλ

3
(2I + 1)(2F ′ + 1)

{
1 F ′ I

I 0 1

}{
1 I I

F ′ 1 1

}
×〈2 3S1||µ̂(1) + µ̂(2)||2 1S0〉〈2 3P1||d̂(1) + d̂(2)||2 3S1〉

= (−1)2F ′+1 ωλ

3

√
2I + 1

3
(2F ′ + 1)

{
1 I I

F ′ 1 1

}
×〈2 3S1||µ̂(1) + µ̂(2)||2 1S0〉〈2 3P1||d̂(1) + d̂(2)||2 3S1〉.

(29)

By inserting expressions (28) and (29) into Eq. (25), we may
cast the transition cross section to the final hyperfine sublevel
of momentum F ′ in the presence of nsd PNC mixing η �= 0 as

σF ′(η) = (2F ′ + 1)σ (0)(1 + λKF ′ ), (30)

where the parity-preserving cross section reads

σ (0) = 4(2π )3ω2

9(2I + 1)

|〈2 3S1||µ̂(1) + µ̂(2)||2 1S0〉|2
�a + �b

, (31)

and the parameter KF ′ takes the form

KF ′ = 2ωRe(AB∗)

λ|A|2 = (−1)2F ′+12η

√
2I + 1

3

{
1 I I

F ′ 1 1

}

× c2p1/2〈2p1/2||d̂||2s〉 + c2p3/2〈2p3/2||d̂||2s〉
〈2s||µ̂||2s〉 − 〈1s||µ̂||1s〉 . (32)

We stress here that KF ′ depends explicitly on the mixing
coefficient η and, as a consequence of Eq. (13), on the effective
nsd PNC interaction strength κ .

Since all allowed |I − 1| � F ′ � I + 1 final substates are
degenerate in energy (within the approximations of Sec. IV),
we may cast the total 2 1S0 → 2 3S1 cross section as the
sum σT = σI+1 + σI + σI−1 of all three possible hyperfine
transitions, in the form

σT = 3(2I + 1)σ (0)(1 + λA). (33)

From this result it is evident that the total cross section σT

depends linearly on the photon helicity λ. This occurrence
suggests performing two separate sets of measurements of σT ,
which we name σ+ and σ−, employing, respectively, right
(λ = +1) and left (λ = −1) polarized laser light. Extraction
of the nsd PNC asymmetry A is in this way immediate, since

A ≡ σ+ − σ−
σ+ + σ−

= (2I + 3)KI+1 + (2I + 1)KI + (2I − 1)KI−1

3(2I + 1)
. (34)

The coefficient A represents the ultimate physical observable
in the proposed scheme and, as well as the coefficients K, is
proportional to the nsd PNC strength κ . Numerical results
of the asymmetry A are presented in Table II for several
isotopes of He-like ions in the interval 28 � Z � 35. Since A
depends on K , as defined in Eq. (4), whose sign is determined
by the unknown value � of the valence nucleon, the results
for A are averaged over the two possible values of K . The
maximum relative error introduced by the averaging procedure
is 3.4%.

VI. EXPERIMENTAL REQUIREMENTS AND DISCUSSION

Up to now, we focused on the general theoretical back-
ground and motivations of a spin-dependent PNC study. In
particular, we derived Eq. (34), which suggests that nsd effects
can be induced through a stimulated 2 1S0 → 2 3S1 transition
with circularly polarized laser light in He-like ions. We want
now to draw the consequences of this outcome and discuss
the requirements and implications for an actual experimental
measurement.

First of all, let us mention that the asymmetry defined in
Eq. (34) strongly depends on the nuclear spin I . As can be seen
in Tables II and III, for a fixed Z, the asymmetry is larger for
low-I nuclides. This correlation is particularly manifest in the
Ge nuclides, where A decreases from 5.40 × 10−7 at I = 1/2
to 0.70 × 10−7 at I = 9/2, as well as in Se nuclides, with A =
4.66 × 10−7 at I = 1/2, andA = 0.62 × 10−7 at I = 9/2. We
conclude that He-like ions with I = 1/2 are the best candidates
for nsd PNC asymmetry experimental measurements in the
laser-induced 2 1S0 → 2 3S1 transition.
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TABLE II. Asymmetry factor A ≡ (σ+ − σ−)/(σ+ + σ−) for
several isotopes with 28 � Z � 35. The nuclide half-life (t1/2),
nuclear spin (I ) and nuclear momentum (µ, expressed in nuclear
magnetons) are taken from Ref. [33].

Ion t1/2 I µ 10−7A
57
28Ni 36 h 3/2 0.88 0.664 31
61
28Ni stable 3/2 −0.750 02 0.665 95
65
28Ni 2.52 h 5/2 0.69 0.459 56
60
29Cu 23.4 min 2 1.219 00 0.739 67
61
29Cu 3.41 h 3/2 2.140 00 1.004 23
62
29Cu 9.73 min 1 −0.380 00 1.288 34
63
29Cu stable 3/2 2.223 29 1.029 04
64
29Cu 12.70 h 1 −0.217 00 1.326 57
65
29Cu stable 3/2 2.381 67 1.057 13
66
29Cu 5.1 min 1 −0.282 00 1.348 74
63
30Zn 18.1 min 3/2 −0.281 640 1.234 13
65
30Zn 244.1 d 5/2 0.769 000 0.840 09
67
30Zn stable 5/2 0.875 479 0.859 60
69
30Zn 13.86 h 9/2 1.140 000 0.51 262
71
30Zn 3.9 h 9/2 1.040 000 0.521 30
67
31Ga 78.3 h 3/2 1.850 700 1.832 83
68
31Ga 68.1 min 1 0.011 750 2.294 55
69
31Ga stable 3/2 2.016 589 1.891 61
71
31Ga stable 3/2 2.562 266 2.011 31
72
31Ga 14.1 h 3 −0.132 240 0.921 19
69
32Ge 39.0 h 5/2 0.735 0000 1.208 88
71
32Ge 11.2 d 1/2 0.547 0000 5.255 16
73
32Ge stable 9/2 −0.879 4677 0.700 81
75
32Ge 82.8 min 1/2 0.510 0000 5.395 67
69
33As 15 min 5/2 1.200 000 1.200 77
70
33As 53 min 4 2.106 100 0.801 74
71
33As 65.3 h 5/2 1.673 500 1.251 77
72
33As 26 h 2 −2.156 600 1.278 89
74
33As 17.78 d 2 −1.597 000 1.335 09
75
33As stable 3/2 1.439 475 2.086 91
76
33As 26.3 h 2 −0.906 000 1.403 86
73
34Se 7.1 h 9/2 0.8700 000 0.623 39
75
34Se 118.5 d 5/2 0.6700 000 1.084 38
77
34Se stable 1/2 0.535 0422 4.663 09
79
34Se 65000 yr 7/2 −1.018 0000 0.787 13
74
35Br 41.5 min 4 1.450 000 1.086 62
75
35Br 98 min 3/2 0.750 000 1.417 83
76
35Br 16.1 h 1 0.548 210 2.018 82
77
35Br 57.0 h 3/2 0.920 000 1.456 79
79
35Br stable 3/2 2.106 400 1.597 76
80
35Br 17.6 min 1 0.514 000 2.080 26
81
35Br stable 3/2 2.270 562 1.642 04
82
35Br 35.34 h 5 1.627 000 0.509 31
83
36Kr stable 9/2 −0.970669 0.44103
85
36Kr 10.7 yr 9/2 1.000000 0.46161
87
36Kr 76 min 5/2 −1.018000 0.76164

TABLE III. Einstein coefficients A and energies �E of the
electromagnetic transitions among the first excited levels in He-like
77
34Se ions. The type “hf” given for 2 1S0 → 1 1S0 stands for hyperfine-
induced transition.

Transition Type �E (eV) A (s−1) Ref.

2 1S0 → 1 1S0 2E1 11579.4923 2.068 × 1010 [34]
2 1S0 → 2 3S1 M1 43.8529 1.16 × 103 [35]
2 1S0 → 1 1S0 hf 11579.4923 587.21 [36]
2 3S1 → 1 1S0 2E1 11535.6394 4.200 × 109 [37]
2 3S1 → 1 1S0 M1 11535.6394 3.239 × 109 [38]
2 3P1 → 1 1S0 E1 11579.2857 2.795 × 1014 [38]
2 3P1 → 2 3S1 E1 43.6463 5.614 × 108 [38]

Moreover, from the discussion in Sec. III, it is also clear that
the splitting between the levels 2 1S0 and 2 3P1 should be as
small as possible in order to maximize the mixing. It is also
reasonable to require that the nuclides be stable, to avoid the
complications of operating with radioactive beams. Based on
these prerequisites, we argue that He-like 77

34Se ions are the
most suitable candidates for the proposed scheme. The benefit
of employing this isotope is that it is stable, it features a
low nuclear spin (I = 1/2), and the energy splitting is just
206.58 meV (see Table I). The complete energy spectrum of
the first excited levels in He-like 77

34Se has been already shown
in Fig. 1, while we list in Table III numerical values of the
dominant spontaneous decay rates.

Since we wish to study PNC 2 1S0 → 2 3S1 transitions,
the aim is to make them strong enough to compete with
spontaneous decay channels from the 2 1S0 state, by means of
a laser of suitable intensity. For the 2 1S0 state, in particular, the
PNC transition must compete with the 2E1 decay to the ground
state, whose rate is 2.068 × 1010 s−1 (see Table III). Based on
this condition, we can calculate the minimum required laser
intensity.

Let us consider the rate W2 1S0→2 3S1 of the stimulated
transition 2 1S0 → 2 3S1. This is proportional to the laser
intensity I and obeys the relation [39]

W2 1S0→2 3S1 = 3

4π2

A2 1S0→2 3S1

�2 1S0

λ3
2 1S0→2 3S1

I. (35)

In this formula, by employing the numerical data in
Table III, A2 1S0→2 3S1 = 1.16 × 103 s−1 is the Einstein co-
efficient of spontaneous transition; �2 1S0 = h̄A2 1S0→2 3S1 +
h̄A2 1S0→1 1S0 = 1.36 × 10−5 eV the width of the initia state;
and λ2 1S0→2 3S1 = 282.73 Å the transition wavelength. Numer-
ically, we obtain from Eq. (35) the law

W2 1S0→2 3S1 = 0.03 046 986I, (36)

where the intensity I is measured in W/cm2, and the transition
rate W2 1S0→2 3S1 in s−1.

The condition that the rate in Eq. (36) be faster than the
decay to the ground state can be written as W2 1S0→2 3S1 >

A2 1S0→1 1S0 = 2.068 × 1010 s−1. By inverting Eq. (36), this
implies that the laser intensity I for a nsd PNC experiment
in He-like 77

34Se should satisfy

I � Imin = 6.79 × 1011 W/cm2. (37)
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The energy difference between levels 2 1S0 and 2 3S1 is
43.6463 eV in He-like 77

34Se, and therefore a laser in the EUV
range is required to stimulate the transition. Pulsed sources of
coherent EUV and soft x-ray light employing high harmonic
generation with intensity in the range 1011–1014 W/cm2 are
nowadays available [40], although polarization still remains
an issue. Another possibility would be to employ vacuum
ultraviolet (VUV) lasers, for which circular polarization is
practicable (see, e.g., [41–43]), and exploit the Doppler
effect such that the photon frequency in the ion’s rest frame
of reference matches the transition energy. All these laser
sources offer a bandwidth of several eV, i.e., much wider
than the sub-eV hyperfine structure of 2 3S1. This justifies
our approximation of neglecting the hyperfine splitting on the
2 3S1 level.

For the feasibility of a measurement in our present scheme,
it is essential to produce He-like ions in the 2 1S0 state. A tech-
nique for selective population in highly charged ions, based
on inner-shell ionization and simultaneous single-electron
excitation [44], was demonstrated for U (Z = 92) [45–48], and
recently employed for elements as light as Sn (Z = 50) [49,50]
and Au (Z = 79) [51]. Alternatively, another way also employs
dielectronic recombination of H-like ions into (2s2p) 1P1,
since the latter state decays promptly into 2 1S0. This method
has been already successfully adopted with He-like Ge [52],
i.e., in the Z range considered in this work.

As far as detection of the induced 2 1S0 → 2 3S1 transition is
concerned, we may notice that 2 3S1 decays to the ground state
either by emission of a single M1 photon or two 2E1 photons
(see Fig. 1), with rates 3.239 × 109 and 4.200 × 109 s−1,
respectively (cf. Table III). Detection of the 2E1 decay,
although viable [50], is unpractical since its energy spectrum
may be contaminated by two-photon decay from 2 1S0 to
the ground state. Instead, detection of a single photon of
fixed energy 11.536 keV in the M1 decay would provide an
ideal experimental signature of the 2 1S0 → 2 3S1 transition.
The background is in this case rather suppressed, because
2 3S1 is well isolated from other levels and therefore no
additional photon of comparable energy is expected. As a

drawback, however, only AM1/A2E1 = 43.5% of the 2 1S0 →
2 3S1 events can be tagged, and a high statistics is required for
precise measurement of nsd PNC asymmetry.

VII. CONCLUSIONS

In this paper we analyzed a scheme for the investigation
of nuclear-spin-dependent parity-nonconservation in He-like
ions. We showed that an interference between M1 and E1
multipoles in the laser-stimulated 2 1S0 → 2 3S1 transition
leads to an observable parity-violating asymmetry in the cross
section, when alternately left and right circularly polarized
light is employed. This effect is especially amplified in 28 �
Z � 36 ions of nuclear spin I = 1/2. The maximum value
of parity-violation asymmetry is found in the two unstable
A = 71 and A = 75 isotopes of germanium, as well as in the
A = 77 isotope of selenium. The latter is stable and may be
conveniently employed in a future experiment at storage rings.

The 2 1S0 − 2 3S1 transition energy in 77
34Se is 43.6463 eV,

which requires EUV lasers with an intensity of order
1011 W/cm2. Although adequate laser sources are available,
the circular polarization of their light still poses technical
problems.

As a tagging of the transition, we suggest using the
spontaneous decay of the 2 3S1 level to the ground state. This
occurs through emission of either two photons or a single M1
photon with approximately equal probability. Detection of the
M1 decay photon of ∼ 11.5 keV energy represents the simplest
and most convenient signature of the laser-induced transition,
thanks to low background. This can be performed employing
today’s high-accuracy spectroscopy methods at storage rings.
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